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Abstract

The coupling of highly turbulent convection with rotation within a full spherical shell ge-

ometry, such as in the solar convection zone, can be studied with the new anelastic spherical

harmonic (ASH) code developed to exploit massively parallel architectures. Inter-processor

transposes are used to ensure data locality in spectral transforms, a sophisticated load bal-

ancing algorithm is implemented and the Legendre transforms, which dominate the workload

for large problems, are highly optimized by exploiting the features of cache memory and in-

struction pipelines. As a result, the ASH code achieves around 120 M¯op/s per node on the

Cray T3E and scales nearly linearly for adequately large problem sizes. Ó 1999 Published by

Elsevier Science B.V. All rights reserved.
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1. Introduction

The dynamics of the vigorous convection in the outer envelope of a late-type star
such as the sun must determine the transport properties of energy, angular mo-
mentum and magnetic ®elds within that layer and consequently must be responsible
for much of the observed activity seen at the surface, as well as the di�erential
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rotation pro®le deduced from inversions of helioseismology data. Theoretical
modeling of such convection su�ers from the complexity of the problem: the motions
are compressible, turbulent, supersonic in places and are in¯uenced by rotation,
magnetic ®elds, changes in the equation of state and radiative transfer e�ects near
the surface. Although simple mixing-length models provided a good ®rst approxi-
mation to the structure of the convection zone, most of the recent advances in the
studies of convection have come from numerical simulations. These may be classi®ed
according to the simpli®cations adopted to make the problem more tractable. In the
f-plane simulations [2,3] only a small, localized planar slice is considered. This has
the advantage that the computational resolution can be su�cient to study highly
turbulent states, even when dealing with the full, compressible Navier±Stokes ¯uid
equations. However, in order to understand the global distribution of angular mo-
mentum in the convection zone, it is essential to deal with a full spherical shell so as
to capture the e�ects of geometry and of the varying angle between local gravity and
the rotation vector. Early studies of incompressible convection in spherical shells
were carried out under the Boussinesq approximation [5,6]. Since the e�ects of
density strati®cation across the depth of the convection zone are expected to be
signi®cant, we choose to use the anelastic approximation, described by Gough [14]
and Latour et al. [15], and adapted to the present situation by Gilman and Glatz-
maier [7]. This approximation admits mean density variations but ®lters out sound
waves so as to prevent the relatively short acoustic time scale from limiting the time
step. Sound waves are not expected to have a signi®cant e�ect on transport prop-
erties in the convection zone.

Early studies of spherical shell anelastic convection were carried out by
Glatzmaier [9±11]. He considered a strati®ed, rotating, spherical ¯uid shell heated
from below, and expanded perturbations to the magnetic ®eld, velocity and
thermodynamic variables in spherical harmonics to resolve their horizontal
structure and in Chebyshev polynomials to resolve their radial structure. He used
an explicit Adams±Bashforth time integration scheme for the advection and Co-
riolis terms, and an implicit Crank±Nicholson treatment of the di�usion terms.
Nonlinear terms were computed in physical space, while spatial derivatives were
computed in spectral space. In the laminar cases which were studied, he found an
equatorial acceleration driven by so-called `banana cells', with angular velocity
essentially constant on cylinders and decreasing with depth in the equatorial plane;
these results were con®rmed by Gilman and Miller [8], and most recently by Ti-
lgner and Busse [17]. The sun does not show such a pattern of di�erential rotation,
as judged so far from helioseismic observations, for its angular velocity at high
latitudes appears to increase with depth, at mid-latitudes is nearly constant on
radial lines, and near the equator ®rst increases and then gently decreases with
depth.

There is no evident solution yet to the solar di�erential rotation puzzle. A likely
explanation is that the spatial resolution of early global convection models
(spherical harmonic degree up to � 50) was capable of only describing mildly
turbulent ¯ows, whereas fully developed turbulence with its modi®ed transport of
angular momentum may yield quite di�erent mean ¯ows and rotation pro®les.
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The advent of parallel computers has enabled studies of convection in spherical
shells [12] to reach higher spatial resolutions, and consequently more turbulent
conditions than was previously possible. This has revealed convection that is
highly time dependent, involving ¯ows that are fairly complex, with little that
resembles the banana cells of the earlier investigations. The convection involves
intermittent plumes of up¯ow and down¯ow, with the down¯ows stronger in
amplitude, though there is still some north±south alignment of structures close to
the equator. The mean zonal velocity pro®les have shown prograde motion (fast
compared to the rotating reference frame) at low latitudes, a belt of retrograde
motion (slow) at mid latitudes, and a polar vortex of prograde motion (fast) near
the poles. These pro®les are somewhat suggestive of the helioseismic inferences
[16] at low latitude.

We aim to extend studies of convection in spherical shells to considerably
higher spatial resolutions (spherical harmonic degree up to � 500) using our new
anelastic spherical harmonic (ASH) code. The ASH code uses the basic approach
of Glatzmaier [9], but is highly optimized to run e�ciently on massively parallel
machines. The perturbation ®elds are expanded as spherical harmonics to resolve
their horizontal structure and in Chebyshev polynomials to resolve their radial
structure. Evolution is carried out in time using the same combination of an
Adams±Bashforth explicit scheme for the Coriolis and advective terms and a
Crank±Nicholson implicit method for the di�usive terms. The spherically aver-
aged mean values of the thermodynamic variables (sometimes referred to as the
reference state) are updated using the spherically averaged perturbation ®elds;
such a nonlinear feedback of the perturbations on the mean strati®cation is a
crucial feature. Optimization is achieved in three ways: the transformation
dimension for spectral transforms is made local by performing inter-processor
transposes using the message-passing strategy; a sophisticated load-balancing
algorithm is used to minimize processor latency; and single node performance is
maximized by carefully exploiting the structures of cache memory and instruction
pipelines.

The use of scaleably parallel technology and a very e�cient code has allowed us to
attain for the ®rst time su�cient resolution to realize substantially turbulent solu-
tions for convection within a full spherical shell. The results to date are very
promising and justify our belief that the modi®ed transport properties within tur-
bulent systems provide possible explanations for the remarkable angular velocity
pro®les being deduced from helioseismology.

This paper is divided into six sections besides the introduction. In Section 2 we
formulate the anelastic ¯uid equations and present our numerical algorithm for
solving them in a spherical shell. The details of the parallel implementation are
discussed in Section 3, with particular attention to how data structures are par-
titioned to ensure load balancing. Section 4 shows performance examples which
demonstrate the e�ectiveness of this implementation. Section 5 brie¯y discusses
results from a single run of the ASH code, with conclusions given in Section 6.
For completeness, Appendix A lists the equations as they are solved by the ASH
code.
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2. Formulation

2.1. The fundamental equations

We begin with the compressible ¯uid equations for a rotating reference frame,
comprising the continuity equation,

oq
ot
� ÿ$ � qv� �; �1�

the momentum equation,

q
ov

ot
� ÿq v � $� �vÿ $P ÿ $ �Dÿ qgr� 2q v� �X� �2�

and the energy equation,

qT
oS
ot
� ÿqT v � $S ÿ $ � � ÿ jqT $S ÿ jradqcP$T �

� 2mq eijeij

h
ÿ 1=3 $ � v� �2

i
; �3�

where D is the viscous stress tensor, with components

Dij � ÿ2qm eij

� ÿ 1=3 $ � v� �dij

�
; �4�

eij is the strain rate tensor, q, T , S and P the density, temperature, speci®c entropy
and pressure, respectively, cP the speci®c heat at constant pressure, g the local
gravitational acceleration, r a unit vector in the radial direction, v the velocity and X
the angular velocity of the rotating frame. Since viscous forces due to molecular
viscosity are extremely small relative to inertial forces (corresponding to an ex-
tremely large characteristic Reynolds number of O(1012)) , direct simulation of stellar
convection zones at scales ranging from the global scale down to the molecular
dissipation scale are impossible given the speed of current computers and will remain
so in the foreseeable future. For this reason, the kinematic viscosity m should be
regarded as a turbulent, eddy viscosity, arising from unresolved ¯uid motions on
scales smaller than the grid spacing of the model. Such unresolved motions also give
rise to a turbulent heat ¯ux proportional to the gradient of the entropy, with j in
Eq. (3) being the corresponding di�usivity. jrad is the thermal di�usivity arising from
radiative di�usion and thermal conduction [13]. m, j and jrad and g are ®xed func-
tions of radius alone which are set in the initial conditions.

The equation of state is taken to be that of an ideal monatomic gas,

P � RqT ; �5�
where R is the gas constant and cP is set to the ideal gas value, 5R=2.

Each of the thermodynamic variables, q, T , S and P is now rewritten as the
sum of a spherically averaged part, denoted by a horizontal bar and a pertur-
bation, e.g.

q�r; h;/; t� ! q�r; t� � q�r; h;/; t�; �6�
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where

jqj
q
� e; �7�

e being an expansion parameter re¯ecting the amplitude of the perturbations, which
scales like the square of the Mach number of the ¯ow (the ratio of the velocity to the
local sound speed). Since the Mach number is very small in the bulk of the con-
vection zone, e is also small, and we may make the anelastic approximation [15],
which consists of assuming

$ � �qv� � 0; �8�
e�ectively ®ltering out sound waves from the problem. Under this approximation,
the maximum time step is much longer than in the fully compressible case, since the
Courant±Freidrichs±Lewy (CFL) condition applies not to the sound speed, but to
the much smaller convective velocity. Notice that although the time derivative of the
density does not appear in the anelastic continuity equation, the density does vary in
time, but only on a convective time scale.

Using Eq. (6) and corresponding equations for T , S and P to linearize Eqs. (2)
and (3), and making use of Eq. (8), we obtain

oqv

ot
� ÿq v � $� �vÿ $ P

ÿ � P
�ÿ $ �Dÿ q� � q�gr� 2q v� �X� �9�

and

qT
o
ot

S
ÿ � S

� � ÿqT v � $ S
ÿ � S

�� $ � jqT$ S
ÿ� � S

��� jradqcP$ T
ÿ � T

�
� 2mq eijeij

h
ÿ 1=3 $ � v� �2

i
; �10�

where the components of the viscous stress tensor D are given by:

Dij � ÿ2qm eij

� ÿ 1=3 $ � v� �dij

�
: �11�

Linearizing the equation of state gives

q
q
� P

P
ÿ T

T
� P

cP
ÿ S

cP

: �12�

In order to cut the computational workload P , T and q are recalculated periodically
rather than at every timestep, thereby reducing the implicit solve overhead (see
Section 2.5). This is justi®ed since these spherically averaged mean quantities evolve
on timescales much longer than the corresponding perturbed quantities. q and P are
updated using the spherically averaged parts of the perturbations q and P, and T is
obtained from the zeroth-order equation of state,

P � RqT : �13�
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2.2. The streamfunction formalism

The system of equation (8)±(12) is solved numerically by ®rst expressing the mass
¯ux in terms of poloidal and toroidal streamfunctions,

qv � $� $� W r� � � $� Zr� �: �14�
The anelastic continuity equation, Eq. (8), is then satis®ed by construction. Substi-
tuting Eq. (14) into the energy and momentum equations, and using the equation of
state, Eq. (12), to eliminate q and T in favour of S and P, reduces the system to four
equations (the energy equation and the three components of the momentum equa-
tion) in four unknowns (S, P, W and Z). We obtain a more manageable set of four
equations by using the energy equation together with the radial component and
horizontal divergence of the momentum equation to give three coupled equations for
S, W and P, together with the radial component of the curl of the momentum
equation to give an equation for Z which is coupled only nonlinearly and via the
Coriolis term with the others. These equations are given explicitly in Appendix A,
using a spherical polar coordinate system aligned with the angular velocity vector X
of the rotating frame.

2.3. Spatial discretization

Each of the four ®elds is expanded in spherical harmonics. For example, the
entropy is written as

S�r; hi;/j; t� �
Xmmax

m�ÿmmax

Xlmax�m�

l�jmj
Sm

l �r; t�Ylm�hi;/j�; �15�

where hi and /j represent the ith latitudinal and jth azimuthal grid points, respec-
tively, and Ylm�h;/� is the spherical harmonic of degree l and order m, which is an
eigenfunction of the horizontal Laplacian:

$2
?Ylm�h;/� � ÿ l�l� 1�

r2
Ylm � ÿ L

r2
Ylm; �16�

where L � l�l� 1�. There is some freedom in choosing lmax in Eq. (15). The two
most popular choices of truncation are triangular, lmax�m� � lmax � mmax and
rhomboidal, lmax�m� � jmj � mmax. We choose the former since it is invariant to
rotation and provides uniform spatial resolution over the entire sphere [1].

Gaussian quadrature techniques are used to maximize the accuracy of the inverse
transforms. The Nh grid points in the h direction and the N/ grid points in the / di-
rection are placed at the corresponding Gaussian abscissae. This yields a uniform grid
in /, along with a h grid in which the hi are the zeros of the Legendre polynomial of
degree Nh. The density of the latitudinal grid points according to this prescription
increases slightly towards the poles, but does not di�er greatly from a uniform grid.
The number of spatial grid points is chosen to be su�cient to resolve the quadratic
nonlinear terms (such as the velocity advection terms), which are computed in physical
space and then transformed back to spectral space. To avoid aliasing errors, we require
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Nh P
3lmax � 1

2
�17�

and

N/ P 3mmax � 1: �18�
Derivatives in the h and / directions may easily be accomplished in spectral space by
making use of the appropriate Legendre and Fourier recursion relations, respec-
tively.

Radial derivatives are computed by expanding the spherical harmonic coe�cients
(e.g. Sm

l �r; t�) in terms of Chebyshev polynomials (chosen for their high degree of
accuracy over the whole range of approximation), applying the appropriate recur-
sion relations, and then transforming back to physical space. For reasons of nu-
merical accuracy and computational simplicity, the grid points are chosen to be the
appropriate Gaussian abscissae. This yields a higher density of points near the ends
of the range, and fewer near the middle. Since the problems under investigation are
expected to exhibit small-scale structure near the interface between the stable and
unstable regions, it is desirable to have good radial resolution in this region. For this
reason two stacked Chebyshev domains are used, having an interface at or near the
boundary between the stable and unstable regions. The upper and lower domains
have N1 and N2 grid points, respectively, with the total number of radial grid points
being Nr. Denoting the inner and outer radii by ri and ro, respectively, and the in-
terface radius by ra, the appropriate expansion for Sm

l �r; t� is

Sm
l �rk; t� �

2
N1ÿ1

P00N1

n�1 Sm
ln�t�Tn�rk� 16 k6N1;

2
N2ÿ1

P00Nr
n�N1�1 Sm

ln�t�Tn�rk� N1 � 16 k6Nr;

8<: �19�

where

rk �
1
2

ro � ra � ro ÿ ra� �cos kÿ1
N1ÿ1

p
� �h i

16 k6N1;

1
2

ra � ri � ra ÿ ri� �cos kÿN1ÿ1
N2ÿ1

p
� �h i

N1 � 16 k6Nr;

8><>: �20�

are the Chebyshev collocation points, and

Tn�rk� �
cos �kÿ1��nÿ1�

N1ÿ1
p

h i
16 k; n6N1;

cos �kÿN1ÿ1��nÿN1ÿ1�
N2ÿ1

p
h i

N1 � 16 k; n6Nr

8><>: �21�

the Chebyshev polynomials evaluated at the corresponding points. The symbol
P00

denotes a summation where the ®rst and last terms in the series are multiplied by 1/2.
Similar equations are used for the W, P and Z spherical harmonic coe�cients. The
forward transformation, which is easily derived from Eq. (19) using the orthogo-
nality properties of cosines, is given by:

Sm
ln�t� �

P00N1

k�1 Sm
l �rk; t�Tn�rk� 16 n6N1;P00Nr

k�N1�1 Sm
l �rk; t�Tn�rk� N1 � 16 n6Nr:

8<: �22�
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As mentioned above, the choice of grid points in Eq. (20) not only ensures high
accuracy, but also permits the use of fast numerical algorithms, since the transfor-
mations in Eqs. (19) and (22) are simply discrete Fourier cosine transforms.

For the purposes of Section 2.4, Eq. (19) may be written as the matrix equation:

Sm
l �rk; t� �TknSm

ln�t�; �23�
where the summation convention applies to the repeated index n. The elements of the
matrix T may be read o� from Eq. (19).

2.4. Time evolution

The evolution in time of the ®elds may be written:

o
ot

Sm
l �rk; t� �LS

lmk�t� �NS
lmk�t�; �24�

o
ot

W m
l �rk; t� �LW

lmk�t� �NW
lmk�t�; �25�

o2

otor
W m

l �rk; t� �LP
lmk�t� �NP

lmk�t�; �26�
o
ot

Zm
l �rk; t� �LZ

lmk�t� �NZ
lmk�t�; �27�

where Llmk�t� denotes the linear terms and Nlmk�t� denotes the nonlinear terms in
each equation. In the equations for W and Z, Coriolis forces, although linear, are
included in the Nlmk�t� part of the right-hand sides because they involve a coupling
between di�erent l values. Since radial derivatives are involved in these equations, it
is convenient to work with the Chebyshev-space representations of the spectral ®elds
S, W, P and Z. Combining the ®rst three of these equations into a single equation,
and concatenating the Chebyshev-space representations of S, W and P into a single
vector Wm

ln�t�, such that

Wm
l1 . . . Wl3N � Sm

l1 . . . Sm
lN ;W

m
l1 . . . W m

lN ; P
m
l1 . . . P m

lN

� 	
; �28�

we obtain:

o
ot
TW

knW
m
ln�t� �LW

lmk�t� �NW
lmk�t�; �29�

where

TW �
T 0 0
0 T 0
0 T0 0

0@ 1A �30�

and LW
lmk�t� and NW

lmk�t� express the concatenated S, W and P linear and nonlinear
terms, respectively. Introducing another matrix K, the linear terms may be ex-
pressed in terms of Wm

ln�t� as follows:

LW
lmk�t� �KW

l;knW
m
ln�t�; �31�
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where summation is implied with respect to the n index, but not with respect to the l
index. This is valid since LW

lmk�t� does not include terms which couple di�erent l
values, such as the Coriolis and advection terms. Eq. (29) thus becomes

o
ot
TW

knW
m
ln�t� �KW

l;knW
m
ln�t� �NW

lmk�t�: �32�

Rewriting Eq. (27) in a similar fashion gives the equation

o
ot
TknZm

ln�t� �KZ
l;knZm

ln�t� �NZ
lmk�t�: �33�

2.5. Time discretization

Discretization in time is achieved by using an implicit Crank±Nicholson method
for the linear terms and an explicit Adams±Bashforth scheme for the nonlinear
terms. Eq. (32) may be discretized as follows:

TW
kn

Wm
ln�tr�1� ÿWm

ln�tr�
Dt

� �
�KW

l;kn aWm
ln�tr�1�

� � �1ÿ a�Wm
ln�tr�

��NW
lmk�tr�

� 1

2

Dt
Dtold

NW
lmk�tr�

� ÿNW
lmk�trÿ1�

�
; �34�

where Dt � tr�1 ÿ tr, Dtold � tr ÿ trÿ1, and a is a parameter which characterizes the
Crank±Nicholson method. Rearranging this equation gives:

TW
kn

�
ÿ aDtKW

l;kn

�
Wm

ln�tr�1� � TW
kn

�
� �1ÿ a�DtKW

l;kn

�
Wm

ln�tr� � DtNW
lmk�tr�

� 1

2

Dt2

Dtold

NW
lmk�tr�

� ÿNW
lmk�trÿ1�

�
: �35�

Rewriting the left-hand side in terms of a new matrix A de®ned by:

AW
l;kn �TW

kn ÿ aDtKW
l;kn �36�

and rewriting the right-hand side as a single vector BW
lmk gives

AW
l;knW

m
ln�tr�1� � BW

lmk: �37�
The corresponding equation for Z is

AZ
l;knZm

ln�tr�1� � BZ
lmk: �38�

A complete iteration consists essentially of two steps. The ®rst is the computation
of the right-hand sides of Eqs. (37) and (38), BW and BZ . The stored Adams±
Bashforth terms from the previous step (NW

lmk�trÿ1� and NZ
lmk�trÿ1�) form part of

these terms, so only the new Adams±Bashforth terms and the Crank±Nicholson term
need be calculated. This is done by evaluating the required angular and radial de-
rivatives in spectral and Chebyshev space, respectively (as described in Section 3),
and transforming to physical space. The appropriate multiplications are performed
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to calculate BW and BZ in physical space, after which a transformation back to
spectral space gives the required quantities.

The second step, which is to solve the matrix Eqs. (37) and (38), is referred to as
the implicit solve step. It is carried out by ®rst LU decomposing the matrices AW and
AZ , and subsequently forming the solution for each separate right-hand side. The
LU decomposition need only be performed when the matrices change, such as when
the timestep is changed or the mean thermodynamic variables are updated. Finally
the solution is transformed back from Chebyshev space to physical space in the
radial dimension.

2.6. Boundary and continuity conditions

The coupled equations for S, W and P are sixth order in r and therefore require six
boundary conditions, while the equation for Z is second order and requires another
two boundary conditions. These are implemented in Chebyshev space in rows k �
1;Nr;Nr � 1; 2Nr; 2Nr � 1 and 3Nr of matrix Eq. (37) and rows k � 1 and Nr of
matrix Eq. (38). The entropy boundary conditions comprise a ®xed entropy at the
outer boundary,

Sm
l �ro; t� � 0 �39�

and a ®xed heat ¯ux at the inner boundary,

ÿ jqT
o��S � S�

or

�����
r�ri

ÿ jradqcP

o� �T � T �
or

�����
r�ri

� L�
4pr2

i

; �40�

where L� is the solar luminosity. Since the inner and outer boundaries are both
assumed to be impenetrable, W vanishes at both points, giving the next two boun-
dary conditions to be applied in Eq. (37):

W m
l �ri; t� � W m

l �ro; t� � 0: �41�
The ®nal four boundary conditions, two of which are applied in Eq. (37) and two

of which are applied in Eq. (38), arise from the assumption that the tangential
stresses also vanish at the inner and outer boundaries:

o2W m
l

or2
�r; t�

�
ÿ 2

r

�
� d lnq

dr

�
oW m

l

or
�r; t�

�
r�ri;ro

� 0; �42�

oZm
l

or
�r; t�

�
ÿ 2

r

�
� d lnq

dr

�
Zm

l �r; t�
�

r�ri ;ro

� 0: �43�

In addition to the above boundary conditions, continuity conditions must be
applied at the interface between the two Chebyshev domains. As before, since
Eqs. (37) and (38) are 6th and 2nd order, respectively, a total of eight continuity
conditions can be applied. They are implemented in rows k � N1;N1 � 1;
Nr � N1;Nr � N1 � 1; 2Nr � N1 and 2Nr � N1 � 1 of Eq. (37) and rows k � N1 and
N1 � 1 of Eq. (38), and apply to the quantities W , oW =or, P , o2W =or2, S, oS=or, Z,
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and oZ=or, respectively. These conditions ensure the continuity of all thermody-
namic and velocity variables, as well as ¯uid stresses and the di�usive eddy heat ¯ux.

3. Implementation

3.1. General considerations

The ASH code is written in FORTRAN 90, taking advantage of the modular
framework, ¯exible data structures, dynamic memory allocation, and user-de®ned
procedural interfaces, as well as the wide availability of e�cient compilers. Parall-
elization is achieved using the message-passing strategy, implemented on the Cray
T3E with the SHMEM library, and on the IBM SP-2 with the MPI library.

In a parallel-computing environment, two issues can greatly a�ect the execution
speed of a particular code. First, it is most e�cient to apply spectral transformations
to data local to each processor, with inter-processor transposes being performed
when necessary to arrange for the transformation dimension to be local. This ap-
proach minimizes the communication volume and as a result becomes most e�cient
as the problem size and the number of processors in increased [4]. Secondly, the load
on the nodes should be balanced so that no single node has an unduly large load and
presents a bottleneck. This section describes in detail how these two issues are ad-
dressed.

Suppose that the total number of nodes being used is NCPU. These are divided into
NIO nodes which deal with input and output, and NANGNRAD computing nodes. NANG

represents the number of nodes allocated to each spherical shell, while NRAD rep-
resents the number of nodes allocated to each radial line. For consistency,

NIO � NANGNRAD � NCPU: �44�
3.2. Primary con®guration

The primary con®guration is the principal data-storage arrangement used in the
code. The four ®elds (W , P , S, Z) are stored in �r; l;m� space, with the m values
distributed over NANG angular nodes, and the r values distributed over NRAD radial
nodes. For any particular �m; r� pair, all the corresponding l values are dealt with by
the same node; l is therefore said to be in processor. The distribution of the m and r
values is determined by the requirements of load balancing.

Successful load balancing between separate nodes in a parallel machine is one of
the most important aspects of producing an e�cient code. For problems in which the
data lies on a rectangular grid, such balancing is relatively straightforward to
achieve. In the case of the ASH code, where the grid is e�ectively triangular, load
balancing is more di�cult. The m values 0; . . . ; lmax are distributed over NANG nodes.
The strategy employed is to divide the m values 0; . . . ; 2NPNANG ÿ 1, where NP is
the largest integer satisfying 2NPNANG ÿ 16 lmax, into the balanced pairs (0,
2NPNANG ÿ 1), (1, 2NPNANG ÿ 2), . . ., (NPNANG ÿ 1, NPNANG). Each node is then
responsible for NP of these pairs. The remaining (up to 2NANG ÿ 1) m values are
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divided among the same nodes such that each node is responsible for up to two
additional m values. In the radial direction, the r values are simply divided evenly
among the NRAD radial nodes.

An example of the primary con®guration is shown in Fig. 1(a). In this case,
NRAD � 2, NANG � 5 and lmax � 11. The 10 computing nodes are numbered from 0 to
9. There are ®ve balanced pairs of m values, with two remaining (lmax and lmax ÿ 1).

3.3. Implicit con®guration

The implicit-solve matrices, AW and AZ , depend on l, but are independent of m.
It is therefore expedient to have all the m values for a particular l value in processor
at the same time when performing the implicit solve. Additionally, all the r values
must simultaneously be in processor. A di�erent con®guration is therefore adopted
in performing the implicit solve; it is illustrated graphically in Fig. 1(b). A very
similar procedure to that described in the previous section is adopted in dividing the
l values 0; . . . ; lmax between the NRADNANG computing nodes. If NRAD > 1, then the
division is less evenly balanced since the same load is divided between a larger
number of nodes; indeed, if NRADNANG > lmax � 1 then some computing nodes will
not be assigned any l values in this con®guration. However, since the implicit solve
represents only a relatively small fraction of the total operation count, such an
imbalance is not particularly important.

Fig. 1. (a) Primary con®guration (l in processor, m and r distributed). The numbers correspond to the

computing nodes 0; . . . ; 9; in this case NRAD � 2, NANG � 5 and lmax � 11. (b) Corresponding implicit-solve

con®guration (m and r in processor, l distributed). (c) Physical-space con®guration (/ in processor, h and r
distributed) for NRAD � 2, NANG � 3 and Nh � 12.
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3.4. Explicit terms

The explicit (Adams±Bashforth) terms form the right-hand sides (BW and BZ) of
the implicit-solve equations. The multiplications required to compute these terms are
performed in physical space, with the result being transformed back to the primary
(spectral) con®guration. The transformation from primary (spectral) con®guration
to physical space proceeds via three steps:
1. Legendre transform: In the primary con®guration, l is in processor, so no trans-

pose is required to perform this step.
2. Transpose: In order to perform the Fourier transform, m must be in processor,

and a transpose is required to achieve this.
3. Fast Fourier transform: After this operation, the ®elds are in physical �r; h;/�

space.
The reverse transformation from physical space back to spectral space proceeds by
performing the inverse of the above operations in the reverse order.

The physical-space con®guration is illustrated in Fig. 1(c) for the case Nh � 12,
NANG � 3, NRAD � 2. The distribution of h and r values over computing nodes is
straightforward in this case, owing to the rectangular grid.

Certain derivatives are required in calculating the explicit terms. Derivatives in the
/ and h directions are calculated in spectral space (using the appropriate recurrence
relation in the case of h derivatives), the results then being transformed to physical
space. Radial derivatives are calculated by transforming to Chebyshev space, ap-
plying the appropriate recurrence relations, and then transforming back to physical
space; if NRAD is greater than 1, then this operation requires an additional transpose
so that r is in processor for the Chebyshev transform.

4. Performance

4.1. Computing-node con®guration

In this section the e�ect of the computing node con®guration on the speed and
load balancing of the ASH code is investigated. Sixteen computing nodes are used
for this example, allowing ®ve possible NRAD � NANG combinations; in production
running of larger problems, a considerably greater number of nodes is employed.
Fig. 2(a) shows graphically the results for the case Nh � 128, with two stacked 33-
point Chebyshev expansions in the radial direction; the ®ve bars correspond to the
®ve possible combinations of compute nodes. Each bar gives the time required for
one iteration, and is subdivided into six pieces whose meanings are given in the key at
the top of the plot; these pieces represent cumulative times and may include several
repeats of an individual operation.

In the case of the Legendre transform, the unbalanced load (represented by the
second bar up) is calculated as the di�erence between the longest time required by
any one compute node and the time averaged over all the compute nodes (which is
representative of the ideal load distribution, and is shown by the bottom bar). The
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e�ectiveness of the load-balancing strategy described in Section 2 is attested to by the
small size of the unbalanced load relative to the total time for the Legendre transfor
m. The minimum unbalanced load occurs for the NRAD � 2, NANG � 8 case: for a
larger value of NANG, the angular load-balancing strategy described in Section 2 does
not produce a very even load distribution, while for a larger value of NRAD, the radial
division of the problem limits the load balancing. The variation of the total Legendre
transform load with the con®guration of the compute nodes is a consequence of the
storage of arrays in memory ± extreme values of NRAD and NANG reduce the number
of unit strides in accessing arrays, and therefore reduce the overall speed of the code.

The third bar up represents the total time spent performing spectral transposes
(both forward and reverse). Since the number of operations involved in each spectral
transpose increases with NRAD, the size of this bar increases from the left to the right
of the plot. The fourth bar up represents the time spent computing Fourier trans-
forms; it stays roughly constant irrespective of the way the computing nodes are
subdivided.

The ®fth bar up corresponds to the time required for the implicit solve, including
the forward and reverse implicit transposes. It varies with the distribution of the
compute nodes principally through the variation of the speed of the implicit trans-
poses ± as NRAD is increased, these take longer to execute, and the time for the im-
plicit solve increases. The top bar includes the contribution to the loop time from all
other sources not so far mentioned.

Fig. 2 shows that the choice of subdivision of the computing nodes can a�ect the
execution speed of the ASH code by up to about 20%. For the case in question, the
optimum speed is achieved with either NRAD � 2 or NRAD � 4.

In Fig. 2(b) Nh is increased from 128 to 256 and N/ is similarly doubled. The
most noticeable e�ect is that the Legendre transform increasingly becomes the
dominant contribution to the total loop time. This is because the time required for
the Legendre transform increases like NrN 3

h , a higher power of h than for any
other operation (e.g. the time for the Fourier transform only increases like
NrN 2

h logNh). If the number of radial points were increased proportionally to Nh,
then the time required for the implicit solve would increase at the same rate as

Fig. 2. (a) Timings for a single iteration with Nr � 66, Nh � 128, N/ � 256 on 16 compute nodes (300 MHz

clock speed) of the T3E. (b) Corresponding timings for Nh � 256, N/ � 512.

374 T.C. Clune et al. / Parallel Computing 25 (1999) 361±380



that required for the Legendre transform (since the number of operations is
proportional to N 2

r N 2
h ).

In summary, for increasing problem sizes with the number of radial points ®xed,
the time required for the Legendre transform is dominant in the limit (increasing
faster than the time for any other operations), while for increasing problem sizes with
Nh / Nr, the times for the implicit solve and Legendre transform dominate and in-
crease proportionally (although typically the Legendre transform still requires
considerably more time).

4.2. Scalability

One of the most important considerations a�ecting parallel codes is scalability,
which describes the extent to which the total execution speed is proportional to the
number of processing nodes. Preferably, the execution speed should increase linearly
with the number of nodes, though in practice this is di�cult to achieve. One problem
is that it becomes increasingly di�cult to achieve good load balancing for large
numbers of nodes. Another is that as the number of nodes is increased, the com-
munication between nodes becomes less e�cient as the packets being transferred
become smaller and smaller.

Fig. 3 shows the execution speed per node as a function of total number of nodes
for a problem of size Nr � 98, Nh � 256, N/ � 512. It illustrates the good scalability
of the ASH code for a large problem on the Cray T3E computer and shows the
excellent performance of up to 120 M¯ops per node. The total performance su�ers
by less than 20% as the number of nodes is increased from 16 to 128, which is a

Fig. 3. Execution speed per node in M¯op/s (on 300 MHz T3E processors) for Nr � 98, Nh � 256,

N/ � 512, plotted as a function of the number of compute nodes, NRADNANG.
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promising result for a spectral code. In practice, when we move to larger machine
con®gurations, we will increase the problem size rather than keep it constant as in
Fig. 3, which will therefore decrease the load imbalance and the relative communi-
cation costs.

5. Properties of a solar convection solution

Fig. 4 shows an example of a solution obtained for convection in a spherical shell
using the ASH code. Solar values are taken for the heat ¯ux, rotation rate, mass and
radius, while a solar model is used to provide initial values for P , q, and jrad. The
computational domain extends from 0.63 R� to 0.96 R�, where R� is the solar radius,
thereby including a region of stable strati®cation below the primary unstable zone in
which e�ects of penetrative convection can also be studied. The shell currently has a
density contrast across it of about 60, and thus compressibility e�ects are substantial.
The viscosity, m, and the entropy di�usivity, j, are constant throughout the con-
vecting region, while their ratio, the Prandtl number, is chosen to have a value of 0.1,
which enhances the in¯uence of intricate vortex dynamics. The spatial resolution is
Nr � 65� 33, Nh � 512, N/ � 1024, achieved using spherical harmonics up to degree
lmax � 340 with an imposed fourfold angular periodicity in longitude. The initial
conditions are uniform rotation with no ¯uid motion, but with a small, random
entropy perturbation. This perturbation initially grows linearly, but is ultimately
limited by nonlinear feedback. When thermal equilibrium is established, the mid-
layer Rayleigh number,

Ra � oq=oS� �P DSgd3

qmj
�45�

Fig. 4. Contours of radial velocity (with solid lines corresponding to downward ¯ows) a quarter of the way

into the unstable region at two instants in time (a, b) and contours of the resulting time-averaged dif-

ferential rotation at 10 nHz intervals, with solid lines corresponding to prograde rotation relative to the

rotating reference frame (c). The equator is shown dashed in (a) and (b); the dashed line in (c) shows the

position of the interface between the stable and unstable regions.
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and Taylor number,

Ta � 4X2d4

m2
; �46�

where d is the thickness of the convection zone and DS is the entropy change across
the convection zone, are approximately 106 and 6� 106, respectively. Fig. 4 shows
contours of the radial velocity (with solid contours indicating down¯ows) at two
instants in time about a quarter of the way into the unstable region, along with a
contour plot of the rotation rate (averaged over about a month of solar time).

The radial velocity contour plots show little evidence of the so-called banana cells
(sheared convective rolls) seen in more laminar solutions. The convection is now
dominated by intermittent plumes of up¯ow and stronger down¯ow, some pos-
sessing a distinctive cyclonic swirl, although there is still some semblance of north±
south alignment of structures in the equatorial region. The contours of rotation rate
show that the angular velocity is nearly constant on radial lines throughout much of
the convection zone at mid latitudes, and that there is a systematic decrease of ro-
tation rate with latitude in going from equator to the poles. Prior to this, most
models yielded a fast polar vortex, in addition to angular velocity constant on cyl-
inders aligned with the rotation axis. The sun's shear layer of angular velocity speed-
up just below the surface at low to mid latitudes is not realized in our simulations,
but that is a likely consequence of supergranulation e�ects which we are currently
not capturing. Further, the narrow transition region from di�erential rotation to
rigid body rotation at the base of the convection zone (known as the ``tachocline'') is
not obtained within our simulations since they operate at Reynolds number where
viscous coupling can imprint the local rotation rate of the unstable zone upon the
stable region. Currently we are encouraged to see that the angular velocity pro®les
within the convection zone itself have shifted to patterns much closer to the helio-
seismic ®ndings. Further, we can understand such behavior in terms of the modi®ed
mean Reynolds stresses established by the turbulent convection as contrasted to that
of more laminar ¯ows.

6. Conclusion

We have shown how careful attention to optimization issues, including the im-
plementation of inter-processor transposes and sophisticated load balancing, enables
the ASH code to make very e�ective use of massively parallel architectures, allowing
convection in spherical shells to be investigated at higher resolutions than was
previously possible. This in turn has enabled us to reach higher levels of turbulence,
where transport properties are in¯uenced by highly time-dependent and complex
¯ows. We have found di�erential rotation which is substantially di�erent from that
found by previous studies, and which more closely resembles that of the sun.

We believe these preliminary results to be very encouraging. It is now our goal to
explore the parameter space as far as computing resources allow, and increase our
understanding of how complex, turbulent ¯ows achieve organized angular mo-
mentum transport in such systems. We believe that despite the relative simplicity of
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our numerical model, such studies will lead us to a much greater understanding of
the processes which shape the angular momentum distribution in the solar convec-
tion zone.

Acknowledgements

This work is supported in part by the National Aeronautics and Space Admin-
istration through grants NAG5-2256, NAG5-3077 and NCCS5-157, and by the
National Science Foundation through grant ECS-9217394. Computational facilities
were provided by the Pittsburgh Supercomputing Center and the Cornell Theory
Center through MetaCenter grant MCA93S005P.

Appendix A. The equations

The momentum equation is given by:

oqv

ot
� ÿq v � $� �vÿ $ P

ÿ � P
�ÿ $ �Dÿ q� � q�gr� 2q v� �X�: �A:1�

Taking the radial component of this equation leads to the evolution equation for W :
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where a � o lnm=or, b � o lnq=or and X � jXj. Taking the radial component of the
curl of the momentum equation leads to the evolution equation for Z:
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Finally, taking the horizontal divergence of the momentum equation leads to the
equation for P :
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The energy equation is given by:
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After some manipulation, this leads to
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In all the above equations, the quadratic (advection and viscous heating) terms are
written in terms of the three components of the velocity in spherical polar coordi-
nates, while all the other terms are written in terms of W , Z, and S; this re¯ects how
the terms are calculated in the ASH code.

T.C. Clune et al. / Parallel Computing 25 (1999) 361±380 379



References

[1] J.P. Boyd, Chebyshev and Fourier Spectral Methods Springer, Berlin, 1989.

[2] N.H. Brummell, F. Cattaneo, J. Toomre, Turbulent dynamics in the solar convection zone, Science

269 (1995) 1370±1379.

[3] N.H. Brummell, N.E. Hurlburt, J. Toomre, Turbulent compressible convection with rotation. I. Flow

structure and evolution, Astrophys. J. 473 (1996) 494±513.

[4] I.T. Foster, P.H. Worley, Parallelizing the spectral transform method: A comparison of alternative

parallel algorithms, SIAM J. Sci. Comput. 18 (1997) 806±837.

[5] P.A. Gilman, Linear simulations of Boussinesq convection in a deep rotating spherical shell, J. Atmos.

Sci. 32 (1975) 1331±1352.

[6] P.A. Gilman, Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell,

Geophys. Astrophys. Fluid Dyn. 8 (1977) 93±1357.

[7] P.A. Gilman, G.A. Glatzmaier, Compressible convection in a rotating spherical shell. I. Anelastic

equations, ApJS 45 (1981) 335±349.

[8] P.A. Gilman, J. Miller, Nonlinear convection of a compressible ¯uid in a rotating spherical shell,

ApJS 61 (1986) 585±608.

[9] G.A. Glatzmaier, Numerical simulations of stellar convective dynamos. I. The model and method,

J. Comput. Phys. 55 (1984) 461±484.

[10] G.A. Glatzmaier, Numerical simulations of stellar convective dynamos. II. Field propagation in the

convection zone, ApJ 291 (1985) 300±307.

[11] G.A. Glatzmaier, A review of what numerical simulations tell us about the internal rotation of the

sun, in: B.R. Durney, S. So®a (Eds.), The Internal Solar Angular Velocity, Reidel, Dordrecht, 1987,

pp. 263±274.

[12] G.A. Glatzmaier, J. Toomre, Global-scale solar turbulent convection and its coupling to rotation, in:

R.K. Ulrich, E.J. Rhodes, W. D�appen (Eds.), ASP Conf. Ser., vol. 76, GONG '94: Helio- and Astero-

Seismology from Earth and Space ASP, San Francisco, 1995, pp. 200±203.

[13] R. Kippenhahn, A. Weigert, Stellar Structure and Evolution, Springer, Berlin, 1990.

[14] D.O. Gough, The anelastic approximation for thermal convection, J. Atmos. Sci. 26 (1969) 448±456.

[15] J. Latour, E.A. Spiegel, J. Toomre, J.-P. Zahn, Stellar convection theory I: the anelastic modal

equations, ApJ 207 (1976) 233±243.

[16] M.J. Thompson, Di�erential rotation and dynamics of the solar interior, Science 272 (1996) 1300±

1305.

[17] A. Tilgner, F.H. Busse, Finite amplitude convection in rotating spherical ¯uid shells, J. Fluid Mech.

332 (1997) 359±376.

380 T.C. Clune et al. / Parallel Computing 25 (1999) 361±380


