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Computational aspects of accurately modelling
salt advection beneath aquaculture ponds
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Abstract

Aquaculture is becoming an important primary industry in Aus-
tralia and the Asian region. Environmental concerns are raised when
above ground saline ponds are introduced over fresh groundwater.
The flow field can be simply modelled using series solutions for the
hydraulic potential. However, extracting the advection fronts and
isochrones can be much more challenging, particularly when solutions
are sought using a laptop or desktop computer. We present an efficient
and accurate way to calculate the advection front and the isochrones
for a realistic problem. These methods use the analytic nature of the
flow field solution and are an efficient and accurate alternative to the
traditional methods used.
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1 Introduction

The solution to Laplace’s equation has many applications in a wide vari-
ety of fields. In the area of groundwater modelling, analytic solutions of
Laplace’s equation provide accurate expressions for the flow field throughout
a domain. Using a series solution, Powers et al. [2], Read [3, 4] and others
solved for arbitrary boundaries within a saturated domain, whereas Philip [1]
successfully applied the technique to infiltration. But being able to repre-
sent streamlines, lines of potential and velocity fields only represents part
of the picture when dealing with groundwater movement. When modelling
the effects of contamination on a groundwater system, we need to know the
location of advection fronts at particular times (isochrones). In the past, this
was achieved using purely numerical techniques, but accurate solutions can
be difficult to obtain and verify in this manner. However, a simple extension
to the closed form solutions above provide these isochrones accurately and
computationally efficiently.

Figure 1 represents a soil profile taken from an aquaculture farm in the North
Queensland region, where saline ponds sit above a freshwater aquifer 40 me-
tres deep. Given the worst case scenario of saltwater leaking freely into the
groundwater beneath, we determine the contaminant advection fronts using



2 Original methodology C1077

Figure 1: Saline ponds above freshwater aquifer (bracketed terms are di-
mensionless)

two different techniques. The first method is a more traditional approach
for solving time dependent problems numerically. We integrate along the
closed form solution of the streamlines using a small discrete time step. This
technique has an advantage in simplicity, but can be slow to extract a solu-
tion, especially for low flow domains, or large isochrones. For this reason, we
present a second method which uses a small discrete spatial step. The new
technique is significantly quicker, but introduces some complexity which we
discuss.

2 Original methodology

Read [3, 4] describes the method of series solutions in some detail. For our
example (Figure 1), we non-dimensionalize the domain using the depth as
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our scaling factor. These non-dimensional parameters (shown in brackets)
constitute the domain of consideration in the rest of this article. Using the
method described by Read [3, 4], we truncate after N+ 1 terms to obtain a
potential function φ(x, y) and a stream function ψ(x, y),

φ(x, y) =

N∑
n=0

An cosh
nπy

r
cos

nπx

r
, (1)

ψ(x, y) = −

N∑
n=1

An sinh
nπy

r
sin
nπx

r
, (2)

where

A0 =
1

r

∫ r

0

ht(x)dx, (3)

An =
2

r

∫ r

0

ht(x) cos
nπx

r
dx , n 6= 0 . (4)

The partial derivatives of equations (1) and (2) (that is, the fluid velocity)
satisfy the bottom and side (impermeable) boundary conditions exactly (to
machine precision), with the remaining boundary condition (ht(x)) used to
evaluate the series coefficients An, n = 0, 1, . . . ,N .

From the series solution of the hydraulic head φ, we find the seepage veloc-
ity ū (that is, the macroscopic velocity averaged over the void and solid area)
from Darcy’s equation,

ū = −K∇φ(x, y), (5)

where the hydraulic conductivity K is a scalar. To find the pore velocity Ū
(that is, the actual flow velocity through the void space) from equation (5),
we simply divide through by the soil porosity σ (also a scalar),

Ū = −
K

σ
∇φ(x, y). (6)
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We non-dimensionalize equation (6) with the scaling factor K/σ and separate
the directional components to get an expression for the velocity field U =

(U,V),

U = −

(
∂φ

∂x
,
∂φ

∂y

)
. (7)

The velocity at any point is also

U =

(
dx

dt
,
dy

dt

)
, (8)

where the location at which the pore velocity is calculated is parametrised
using time t. That is, x and y are no longer independent variables, but are
now time dependent: x ≡ x(t) , y ≡ y(t). Thus, from equations (7) and (8),
the time t taken for a neutrally buoyant particle to be advected along a
streamline from (x0, y0) to (x(t), y(t)) is

t =

∫x(t)

x0

dx

U
= −

∫x(t)

x0

dx

∂φ/∂x
(9)

=

∫y(t)

y0

dy

V
= −

∫y(t)

y0

dy

∂φ/∂y
. (10)

We use this result to determine isochrones for the saltwater as it is trans-
ported away from the aquaculture ponds. Re-arranging equations (9) and (10),
the distances (∆x,∆y) a particle is advected in the x and y directions in a
small time interval ∆t is

∆x ≈ −
∂φ

∂x
∆t , (11)

∆y ≈ −
∂φ

∂y
∆t . (12)

Consider at time t = t0 a discrete set of I > 0 points (xi,0, yi,0), i = 1, . . . , I .
Then, for any time tJ = t0 + J∆t , J > 0 , we calculate the approximate
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location of the advection front (xi,J, yi,J) by calculating the intermediate
points (xi,j, yi,j), j = 1, . . . , J− 1 using the difference equations

xi,j ≈ xi,j−1 −

(
∂φ

∂x

)
i,j−1

∆t , (13)

yi,j ≈ yi,j−1 −

(
∂φ

∂y

)
i,j−1

∆t , (14)

where (
∂φ

∂x

)
i,j

=

(
∂φ(x, y)

∂x

)
x=xi,j, y=yi,j

, (15)(
∂φ

∂y

)
i,j

=

(
∂φ(x, y)

∂y

)
x=xi,j, y=yi,j

. (16)

For sufficiently small ∆t (that is, sufficiently large J), this converges to the
advection front at time tJ. Using this algorithm, we predict the advection
of solutes from any initial location in the flow domain. In particular, we de-
termine the isochrones of solutes advected from the water table immediately
below the saline ponds. Choosing an isochrone of tJ = 200, 000 dimensionless
units, Figure 2 shows the extent of the advection along each streamline. We
have then joined these final advection locations to create the advection front,
or isochrone.

3 Problems

The above methodology is inherently simple. But for the example considered
the large aspect ratio and relative small potential results in extremely low
flow velocities in part of the domain. As we see from equations (11) and (12),
a low velocity results in small spatial increments (∆x,∆y). If this happens,
then even for a large isochrone value, as in Figure 2, the final location of the
advection front moves little from its initial location (observe the area near
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Figure 2: ∆t solution scheme giving isochrone at tJ = 200, 000 .
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the right boundary of Figure 2). Although this is not a problem when solving
for particular isochrones, solving for the time to reach a particular location
can be problematic. If the location is in the low velocity part of the domain,
then the solution output time may be extremely high. If we want to solve
for the entire domain (that is, the time for water to move everywhere within
the domain), then the time to produce a solution may be excessive.

4 Modified methodology

For the most part, our modified methodology is similar to that of the original.
From Section 2, we follow the procedure described to equations (9) and (10).
It is after this point that our new method diverges.

From the original methodology, we observe that in the low velocity part of the
domain our solution progresses extremely slowly. If we could get a consistent
rate of progress throughout the domain at every iteration, this should result
in a faster solution output time. Rather than calculating the distance we
move along a streamline for a set ∆t, we set ∆s as the length we move along
the streamline, and find the time it takes to do so, that is,

∆s =
√

(∆x)2 + (∆y)2 = constant . (17)

Equation (7) defines the velocity field, U = (U,V), everywhere within the
domain. We define W as the speed along ∆s, therefore

W =
√
U2 + V2 . (18)

We also know,

W ≈ ∆s
∆t
. (19)

So, re-arranging and solving equations (11), (12) and (19),

∆x ≈
(
U

W

)
∆s , (20)
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∆y ≈
(
V

W

)
∆s , (21)

∆t ≈ ∆s

W
. (22)

Stepping along each streamline by ∆s means consistent progress at each iter-
ation, even in the low flow part of the domain. However, unlike the original
method where the time at any iteration, j, was found from the equation
(tj = t0 + j∆t), now the time varies, not only for each iteration, but for
each streamline in an iteration. For the modified methodology, as well as
recording ∆x and ∆y as in the original method, from equation (22), we need
to record ∆t.

Consider at time t = ti,0 a discrete set of I > 0 points (xi,0, yi,0), i = 1, . . . , I .
For a given number of iterations J, we now determine our progress through
the domain, both spatially and temporally (xi,J, yi,J, ti,J), by calculating the
intermediate values (xi,j, yi,j, ti,j), j = 1, . . . , J − 1 using the difference equa-
tions

xi,j ≈ xi,j−1 +

(
Ui,j−1

Wi,j−1

)
∆s , (23)

yi,j ≈ yi,j−1 +

(
Vi,j−1

Wi,j−1

)
∆s , (24)

ti,j ≈ ti,j−1 +

(
∆s

Wi,j−1

)
, (25)

where

Ui,j = −

(
∂φ(x, y)

∂x

)
x=xi,j, y=yi,j

, (26)

Vi,j = −
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)
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, (27)
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√

(Ui,j)2 + (Vi,j)2 . (28)
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Given a sufficiently small ∆s (that is, sufficiently large J), the advection
location on any streamline will converge at time t = ti,J (each value of i
represents a separate streamline). But unlike the original methodology, our
values of ti,J are not the same, and this introduces some complexity into
our scheme. Let’s take the previous example of solutes advected from the
water table immediately below the saline ponds. Choosing an isochrone
of 200, 000 dimensionless units, we now have to find the values of i, j where
ti,j = 200, 000 .

In our case, we found the simplest method was to let the scheme iterate
through j, with a stopping condition that for all i, ti,j > 200, 000 . The ends
of the streamlines in Figure 3 show when this stopping condition is met. We
now must find the values of ti,j = 200, 000 , but this is complicated by the
discrete nature of ∆t. We may not find even one set of i, j values where
ti,j = 200, 000 , so we must find the closest such values on each streamline
and interpolate. Using these values of i, j, we find the corresponding values
of xi,j and yi,j, and applying the same interpolation ratios, we produce the
isochrone for t = 200, 000 seen in Figure 3.

5 Comparison

The constant time step approach is an intuitive method, but when dealing
with low velocity domains such as Figure 1, we found the time taken to pro-
duce a solution was excessive. To produce satisfactorily accurate results for
the example considered in this article (Figure 2), we needed to run the scheme
overnight using a standard pc (Intel Pentium 4 cpu, 3.40 GHz, 1 GB ram,
Matlab). The constant spatial step approach was developed in response to
our need for faster solution output times. Keeping all other parameters equal,
but changing to a constant spatial step, the example in this article (Figure 3)
achieved a seven fold reduction in solution output time, from 11 hours to 95
minutes.
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Figure 3: ∆s solution scheme giving isochrone at t = 200, 000 .
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Of course, faster solutions can be achieved using the constant time step
approach, simply by choosing a larger value of ∆t, and allowing our accuracy
to suffer. To show that the increase in speed of the constant spatial step
method is not achieved by a corresponding decrease in accuracy, we compare
the two methods to the analytic solution. With both methods, we step
through the domain incrementally using the characteristics of the flow field
at each point to calculate the location of the next point. If our schemes are
accurate, the paths stepped out in this fashion correspond to streamlines
derived from the stream function (equation 2) starting at the same points.
We judge whether our values of ∆t or ∆s are sufficiently small by finding the
corresponding deviation from the analytic result.

For each of our methods, we take the final point of every streamline which
emerges at the water table for an isochrone of 200, 000, and compare it with
the final point as found from the analytic solution. Figure 4 is a plot of the
deviation of each of these streamlines for the examples in this article, that is,
∆t = 10 and ∆s = 0.005 . We see that the ∆s method not only gives a seven
fold improvement in solution output time, but is approximately an order of
magnitude more accurate as well.

6 Discussion

The constant spatial step method was developed to reduce the time required
to solve isochrones in low velocity flow domains. Since we are generally
interested in the physical location of a contaminant as it progresses through
a domain, the fact that this method is consistent in its progress at any
point is a big advantage over the constant time step method. A constant
time step will require a certain number of iterations to solve for a particular
isochrone, but in the low velocity part of the domain, the physical progress of
the contaminant may be infinitesimal compared with the progress elsewhere.
However, the constant spatial step method can potentially solve even large
isochrones in this low velocity area in a single iteration. For this reason
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Figure 4: Deviation of ∆t = 10 and ∆s = 0.005 from the analytical solution.
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the constant spatial step method is not constrained to a certain number of
iterations for any particular isochrone, but will produce a solution in the
number of iterations required to step to the final physical location.

For the examples considered in this article, ∆t = 10 and ∆s = 0.005 were
chosen as they represent the maximum values at which the accuracy of the
solutions started to decay. For ∆t = 10 , exactly 20, 000 iterations were
required to solve for the isochrone at t = 200, 000 , while just 3173 iterations
were required for ∆s = 0.005 for the same isochrone. We calculated many
other isochrones in this same flow domain for varying ∆t and ∆s values, with
the constant spatial step method significantly more efficient in every case
(Note that the errors were similar for both methods).

The relative improvements in time and accuracy of the constant spatial
step method will vary based on the isochrone being solved, the values of
∆s and ∆t, and the characteristics of the velocity field throughout the do-
main. For some situations there may be little advantage in using the constant
spatial step method at all. But as we have shown, when dealing with do-
mains where any part of the velocity field is small, the constant spatial step
method should perform significantly better.

In this article we have compared two different methods for integrating along
streamlines to find the advection front of possible groundwater contaminants.
Although different in their application, both techniques are based on simple
Euler forward integration. For the purposes of this article, this simple inte-
gration technique was sufficient, but future investigation of other numerical
integration methods may yet yield more accurate and/or faster results.
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