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Abstract
We consider optimization problems for minimizing conditional value–

at–risk (CVaR) from a computational point of view, with an emphasis
on financial applications. As a general solution approach, we sug-
gest to reformulate these CVaR optimization problems as two–stage
recourse problems of stochastic programming. Specializing the L–
shaped method leads to a new algorithm for minimizing conditional
value–at–risk. We implemented the algorithm as the solver CVaRMin.
For illustrating the performance of this algorithm, we present some
comparative computational results with two kinds of test problems.
Firstly, we consider portfolio optimization problems. Such problems,
involving conditional value at risk, play an important role in portfo-
lio optimization and financial risk management. Therefore, besides
testing the performance of the proposed algorithm, we also present
computational results of interest in finance. In our experiments, the
instances of the portfolio optimization problem involve 5 random vari-
ables representing asset classes. Secondly, with the primary aim of
testing algorithm performance, we also present comparative compu-
tational results with randomly generated test problems involving 50
random variables. In all of our tests, the experimental solver, based on
the new approach, outperformed by at least one order of magnitude
all general–purpose solvers, with an accuracy of solution being in the
same range as that with the LP solvers.

∗Financial support by the National Centre of Competence in Research ”Financial Val-
uation and Risk Management” is gratefully acknowledged. The National Centers in Re-
search are managed by the Swiss National Science Foundation on behalf of the Federal
Authorities.
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1 Introduction

In the financial industry, value–at–risk (VaR) is a widely used concept for
quantifying the downside risk of portfolios. A major drawback of this ap-
proach is that optimization problems, aiming at computing optimal portfolios
with respect to VaR, are typically hard to solve numerically. The reason is
that VaR is in general not a convex function of the portfolio weights. A re-
lated concept, conditional value–at–risk (CVaR), has recently been suggested
as an alternative downside risk measure. This concept enjoys increasing in-
terest in the finance industry. One of the reasons is that, unlike VaR, the
computation of CVaR–optimal portfolios leads to convex programming prob-
lems. For a finite discrete distribution, the situation is even better: optimal
portfolios can be computed by solving linear programming (LP) problems.
The currently pursued approach is to solve those LP problems by general–
purpose LP solvers.

In this paper, we consider optimization problems aiming at minimizing
CVaR and focus on the computational point of view. The main idea is as
follows: the single–stage CVaR minimization problems can be reformulated
as two–stage recourse problems of stochastic programming. This way we can
apply the techniques available for two–stage recourse problems for solving
the CVaR minimization problems. Specializing the L–shaped method leads
to a new algorithm for minimizing conditional value–at–risk. According to
our initial computational experience, the new method turns out to be quite
efficient.

We have developed an experimental implementation of the algorithm as
the solver CVaRMin. For illustrating the computational performance of
CVaRMin, we present comparative numerical results obtained by solving
two kinds of test problems: portfolio optimization problems involving the
minimization of CVaR and randomly generated test problems. For portfolio
optimization, we also present some parametric computational results. The
computations have been carried out by using the model management system
SLP–IOR for stochastic linear programming.
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2 Conditional value-at-risk

We consider in general the random variable

ζ(x, η, ξ) := ηTx− ξ (1)

where x ∈Rn is a vector of decision variables, η is an n–dimensional random
vector, and ξ is a random variable. (η, ξ) is defined on a probability space
(Ω,F , P ). We assume that (η, ξ) has a finite expected value and introduce
the notation η̄ = E[η] and ξ̄ = E[ξ]. Positive values of ζ(x, η, ξ) will be
interpreted as losses and negative values as gains. In the sequel, we will
concentrate on losses; therefore gains will be viewed as negative losses. The
probability distribution function of ζ(x, η, ξ) will be denoted by Ψ(x, ·) and
will be called the profit–loss distribution function. The quantile function
v :Rn × (0, 1) →R associated with ζ(x, η, ξ) will be defined as

v(x, α) := min { y | Ψ(x, y) ≥ α } (2)

= min { y | P [ ζ(x, η, ξ) ≤ y ] ≥ α } .

In mathematical terms, for a fixed x and α ∈ (0, 1) the corresponding value
of the quantile function is the left endpoint of the closed interval of the
α–quantiles of ζ(x, η, ξ). The interpretation in terms of losses is the following:
v(x, α) is the minimal loss level such that with probability α the loss will not
exceed v(x, α). In this context, α will be chosen as a large probability level,
for instance, α = 0.95. In optimization problems, the goal is to minimize
v(x, α) or to keep its value below a prescribed level.

In financial applications, v(x, α) is called value-at-risk (VaR) and is widely
used as a risk measure for evaluating ζ(x, η, ξ); for a discussion of VaR as a
risk measure see, for instance, Elton, Gruber, Brown, and Goetzmann (2003)
or Jorion (1996). Unfortunately, VaR is not a coherent risk measure as dis-
cussed by Artzner, Delbaen, Eber, and Heath (1999). From the optimiza-
tion point of view, the most important implication is that, apart from some
special cases, v(x, α) is not a convex function. Consequently, optimization
problems aiming at minimizing v(x, α) are in general non–convex problems
and therefore difficult to solve numerically.

Another obvious drawback is the following: although with a high prob-
ability α the loss will not exceed v(x, α), this measure does not account for
the loss–size concerning events when the loss exceeds v(x, α). Motivated by
this shortcoming, Rockafellar and Uryasev (2000) introduced the following
risk measure for continuous distribution functions

vC(x, α) := E [ ζ(x, η, ξ)|ζ(x, η, ξ) ≥ v(x, α) ] (3)
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with vC(x, α) as the conditional expected loss given that the loss exceeds
v(x, α). The function vC(x, α) is called conditional value-at-risk (CVaR)
function. Rockafellar and Uryasev have shown that, considered as a risk
measure, vC is coherent, and have derived the following representation

vC(x, α) = min
z

[
z +

1

1− α
E[ ( ζ(x, η, ξ)− z)+ ]

]
(4)

where y+ = max{y, 0} is the positive part of y ∈ R. The set of optimal
solutions of (4) coincides with the interval of the α–quantiles of ζ(x, η, ξ). The
representation (4) plays a crucial role from the optimization point of view.
On the one hand, it immediately implies that vC(x, α) is a convex function
of x. On the other hand, it is the basis of algorithms for the solution of
the corresponding optimization problems. Consequently, this risk measure is
well–suited for building optimization problems aiming at minimizing CVaR.

For general distributions and CVaR defined according to (3), the above
representation does not hold. According to an idea of Pflug (2000), the
representation (4) will be taken as the definition of CVaR. For general dis-
tributions, Rockafellar and Uryasev (2002) have shown that CVaR, defined
according to (4), has an interpretation in terms of conditional expectation, if
the conditional expectation is taken according to a tail distribution. Acerbi
(2002) gave a representation in terms of an average over α of the CVaR values
v(x, α). For detailed discussions of the properties of CVaR see the papers
of Rockafellar and Uryasev (2002), Acerbi (2002) and Acerbi and Tasche
(2002).

3 Minimizing CVaR

In this paper, we will concentrate on optimization problems with CVaR in the
objective; for problems involving CVaR constraints see Krokhmal, Palmquist,
and Uryasev (2002). We consider the following prototype problem

min
x

cTx + vC(x, α)

s.t. x ∈ P

}
(5)

where P is a polyhedral set given, for example, in standard form
P = {x | Ax = b, x ≥ 0} with A being an m × n matrix and b ∈ Rm.
For the sake of simplicity, we assume that P 6= ∅ and that P is bounded.
Substituting the definition of vC(x, α) from (4), we get the following opti-
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mization problem (Rockafellar and Uryasev (2000))

min
x,z

cTx + z + 1
1−α
E[(ηTx− ξ − z)+]

s.t. x ∈ P .

 (6)

This is a linearly constrained convex programming problem. We observe
that (6) can be equivalently formulated as the following two–stage recourse
problem

min
x,z

cTx + z +E[QC(x, z, η, ξ)]

s.t. x ∈ P

}
(7)

with the recourse subproblem

QC(x, z, η, ξ) := 1
1−α

min
y

y

s.t. y ≥ ηTx− ξ − z

y ≥ 0.

 (8)

The LP dual of the recourse subproblem (8) is

QC(x, z, η, ξ) = 1
1−α

max
u

(ηTx− ξ − z)u

s.t. 0 ≤ u ≤ 1,

 (9)

which has an optimal solution u = 0 or u = 1, depending on the sign of ηTx−
ξ− z, and the optimal objective value is 1

1−α
(ηTx− ξ− z)+. This shows the

equivalence of (6) and (7). For a discussion of two–stage recourse problems
see, for instance, Birge and Louveaux (1997), Kall and Mayer (2005b), or
Kall and Wallace (1994).

The reformulation (7) has the following algorithmic implication: solution
methods, designed for two–stage recourse problems, can be considered as
candidates for solving the CVaR minimization problem (6). In particular,
there are algorithms available for solving (7) with continuously distributed
random vectors (η, ξ). Examples of algorithms of this type are the successive
discrete approximation method or the sample average approximation method
(SAA); these methods are discussed, for instance, in Kall and Mayer (2005b),
Kall and Wallace (1994), and Linderoth, Shapiro, and Wright (2004). Note
that the algorithm suggested by Rockafellar and Uryasev (2000) for the solu-
tion of (6) is, from the two–stage recourse point of view, essentially the SAA
method.
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Notice that (7) has a simple recourse structure (the recourse matrix is
a simple recourse matrix), but besides the right–hand–side, the technology
matrix may also be stochastic. If in (7) only the right–hand–side is stochastic,
that is, if η ≡ t with t ∈ Rn holds, then we have a simple recourse problem
in the classical sense. For such problems quite efficient algorithms exists, see
Kall and Mayer (2005b) and Kall and Wallace (1994), and for computational
results see Kall and Mayer (2005a). In the general case, when η is random
vector with a non–degenerate distribution, the traditional way for solving
such problems in stochastic programming consisted in applying methods,
designed for complete recourse problems, like the methods mentioned in the
previous paragraph.

Recently Klein Haneveld and Van der Vlerk (2002) proposed an algorithm
for general simple recourse problems with a random technology matrix, which
we consider an important development in stochastic programming. Starting
with algorithms for integrated chance constraints, the authors arrive at a
cutting–plane algorithm for general problems with simple recourse structure.
For the case of discrete distributions, their method is essentially the Benders
algorithm, specialized to the structure. In this paper, we start with the two–
stage recourse formulation (7) of CVaR minimization problems and design a
specialized version of Benders decomposition. From the purely mathematical
point of view, our proposed method can be considered as a version of the
general method of Klein Haneveld and Van der Vlerk, as specialized to CVaR
minimization.

In the sequel, we will solely consider the case where the probability dis-
tribution of ζ(x, η, ξ) is finite discrete; the probability distribution is then
given by the tableau  p1 . . . pN

η̂1 . . . η̂N

ξ̂1 . . . ξ̂N

 (10)

where (η̂k, ξ̂k) is the kth realization of (η, ξ) with the corresponding proba-

bility pk > 0, ∀ k = 1, . . . , N , and
N∑

k=1

pk = 1 holds.

It is well–known and easy to see that in the discretely distributed case the
two–stage recourse problem (7) can be equivalently written as the following
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linear programming problem

min
x,z

cTx + z + 1
1−α

N∑
k=1

pkyk

s.t. (η̂k)Tx− z − yk ≤ ξ̂k, k = 1, . . . , N

yk ≥ 0, k = 1, . . . , N

x ∈ P .


(11)

The above LP formulation of the CVaR minimization problem, via the rep-
resentation (4), has been proposed by Rockafellar and Uryasev (2000) as a
basis for numerical solution. This result is a breakthrough, regarding the
numerical solution of optimization problems involving CVaR. In their nu-
merical experiments, the authors use a general–purpose LP solver for solving
(11).

We will explore how the special structure of the problem can be uti-
lized for building an algorithm for our problem. The starting point is the
L–shaped method for two–stage recourse problems with finite discrete dis-
tribution, which is one of the most widely used technique for this problem
class; see, for instance, Birge and Louveaux (1997), Kall and Mayer (2005b),
or Kall and Wallace (1994). The L–shaped algorithm is based on the Ben-
ders decomposition method (Benders (1962)), which has been specialized for
the structure of two–stage recourse problems by Van Slyke and Wets (1969).
We propose an algorithm for the solution of the CVaR minimization prob-
lem (6) by further specializing the L–shaped method for the structure of the
equivalent two–stage recourse problem (7).

The main idea of the L–shaped method is a reformulation of (7) in terms
of optimal solutions uk of the dual recourse–subproblems (9) corresponding
to the realizations (η̂k, ξ̂k), k = 1, . . . , N . As we have seen above, the dual
problem (9) is extremely simple: the dual–feasible vectors are just scalars,
and the optimal solution of the dual problem is either uk = 0 or uk = 1. With
the L–shaped method, the (aggregate) cuts are constructed on the basis of
the N–dimensional vector (u1, . . . , uN)T. In our case, this is a binary vector,
which can be identified in a one–to–one manner with a subset of the index–
set N = {1, . . . , N}; this identification is done by choosing those indices k as
elements for which uk = 1 holds. Consequently, the equivalent formulation
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of (7) in terms of Benders cuts assumes the following form

min
x,z,w

cTx + z + 1
1−α

w

s.t.
∑
k∈K

pk

(
(η̂k)Tx− ξ̂k − z

)
−w ≤ 0, K ⊂ N

x ∈ P

 (12)

which will be called the full master problem. Note that in (12) we have 2N

inequalities out of which the inequality corresponding to K = ∅ just requires
the non–negativity of w. For large N this results in master problems having
an astronomical number of inequality constraints. Taking N = 100, for
instance, we have no chance to set up (12) for numerical solution nor to solve
it directly by a general–purpose LP solver. Notice that, in general, many of
the constraints in (12) may be redundant; due to the constraint x ∈ P , not
all of the N–dimensional binary vectors will appear in the underlying duality
consideration.

The idea of the L–shaped method is constraint–generation: the con-
straints are included into (12) in a successive manner. In each step the
current relaxed master problem

F ν :=min
x,z,w

cTx + z + 1
1−α

w

s.t.
∑
k∈Ki

pk

(
(η̂k)Tx− ξ̂k − z

)
−w≤0, i = 1, . . . , ν

w≥0

x ∈ P


(13)

is solved, where ν is the number of constraints generated so far, and Ki ⊂ N
∀ i, Ki 6= Kl for i 6= l. It is easy to see that under our assumptions this
problem has an optimal solution. Based on the solution of (13), the next
constraint is added (a cut is generated).

Before proceeding with the formal specification of the algorithm, let us
pause for a moment for discussing some implications of the equivalent repre-
sentation (12). Let

D :=

{
(x, z, w) |

N∑
k=1

pk

(
ζ(x, η̂k, ξ̂k)− z

)+

− w ≤ 0

}
.

We have the following polyhedral representation for this set:
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Proposition 1

D =
⋂
K⊂N

{
(x, z, w) |

∑
k∈K

pk

(
(η̂k)Tx− ξ̂k − z

)
− w ≤ 0

}
(14)

with the sum defined as zero for K = ∅.

Proof. The proposition follows immediately from the equivalent represen-
tation (12). An alternative, direct proof is based on the following fact: for
arbitrary real numbers α1, . . . , αN the equality

N∑
k=1

α+
k = max

K∈N

∑
k∈K

αk

obviously holds, and the maximum on the right–hand–side is attained for the
set K∗ = {k | αk > 0}. This implies the proposition. 2

Proposition 1 is the CVaR–analogue of a polyhedral representation re-
sult concerning integrated chance constraints of Klein Haneveld and Van der
Vlerk (2002). The direct proof given above follows the same lines as the
proof in the cited paper.

The formal specification of the L–shaped method, as specialized for (6)
with a finite discrete distribution, follows. We introduce the notation

η̂[i] :=
∑
k∈Ki

pkη̂
k, ξ̂[i] :=

∑
k∈Ki

pkξ̂
k, p[i] :=

∑
k∈Ki

pk, (15)

and utilize this to formulate the relaxed master problem (13) as

min
x,z,w

cTx + z + 1
1−α

w

s.t. η̂T
[i]x −p[i]z −w ≤ ξ̂[i], i = 1, . . . , ν

w ≥ 0

x ∈ P .


(16)

The algorithm runs as follows.

Step 0. (Initialize)
Let K1 := N and consequently η̂[1] = η̄, ξ̂[1] = ξ̄, and p[1] = 1.
Set ν := 1. The single inequality constraint in the relaxed
master problem will be η̄Tx− z − w ≤ ξ̄.

9



Step 1. (Solve the relaxed master problem)
Solve the current relaxed master problem (16). Let (x∗, z∗, w∗)
be an optimal solution, and let

K∗ := {k | 1 ≤ k ≤ N, (η̂k)Tx∗ − ξ̂k − z∗ > 0} and

w∗
+ :=

∑
k∈K∗

pk

(
(η̂k)Tx∗ − ξ̂k − z∗

)
.

Step 2. (Check for optimality)
If w∗

+ − w∗ ≤ 0 then Stop; x∗ is an optimal solution of (6).
Otherwise continue with the next step.

Step 3. (Append a cut to the master problem)
Set ν := ν + 1, Kν = K∗, and compute η̂[ν], ξ̂[ν] and p[ν]

according to (15). Append the corresponding cut to the set
of constraints in the relaxed master problem (16). Continue
with Step 1.

For the sake of completeness, we state the well-known finiteness result con-
cerning Benders decomposition and give a direct proof for it in our special
case.

Proposition 2 The above algorithm finds an optimal solution of (6) in a
finite number of iterations.

Proof. If in Step 1 K∗ = Ki holds for some 1 ≤ i ≤ ν, then the stopping
criterion holds, and the algorithm stops in Step 2. Thus, none of the subsets
Ki ⊂ N is repeated, and consequently the algorithm stops after a finite
number of iterations. The optimal objective value F ν := cTx∗ + z∗ + 1

1−α
w∗

of the relaxed master problem (13) is obviously a lower bound for the optimal
objective value of (6). On the other hand, we have the inequality∑

k∈K

pk

(
(η̂k)Tx∗ − ξ̂k − z∗

)
≤

∑
k∈K∗

pk

(
(η̂k)Tx∗ − ξ̂k − z∗

)
= w∗

+

which holds for anyK ⊂ N , due to the definition ofK∗. Thus, (x∗, z∗, w∗
+) is a

feasible solution of the full master problem (12). Consequently,
F ν := cTx∗ + z∗ + 1

1−α
w∗

+ is an upper bound. Finally, the stopping cri-

terion obviously implies the inequality F ν − F ν ≤ 0 which is equivalent to
F ν = F ν , thus completing the proof of the proposition. 2

From the purely mathematical point of view, our algorithm is the
Benders decomposition method applied to (7). From the computational point
of view, the L–shaped method has been adapted to the special structure of
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(7). As mentioned above, the two–stage equivalent (7) has a simple recourse
structure with a random technology matrix, for which Klein Haneveld and
Van der Vlerk (2002) proposed an algorithm for the finitely distributed case.
From this viewpoint, our algorithm may be also considered as a variant of
the method of Klein Haneveld and Van der Vlerk, as applied to the CVaR
minimization problem.

Whereas the lower bounds F ν are monotonically increasing, the upper
bounds F ν do not form a monotonically decreasing sequence. Therefore,
instead of the stopping criterion F ν − F ν ≤ 0, it is reasonable to use for
ν > 1 the stopping criterion F

∗
ν−F ν ≤ 0, where F

∗
ν is the best (lowest) upper

bound found in the iterations so far. Formally, the definition is F
∗
1 := F 1

and for ν > 1, F
∗
ν := min{F ν , F

∗
ν−1}. This observation is due to Benders

(1962). It is easy to see that the modified algorithm is still finite, the proof
of Proposition 2 goes through with straightforward modifications.

Finally, let us remark that the polyhedral representation above and the
algorithm presented carry over, with obvious changes, to the case of problems
with CVaR constraints.

4 Computational results

We utilized the model management system SLP–IOR as a workbench for our
computational experiments. For a detailed description of the architecture
and the features of SLP–IOR see, for example, Kall and Mayer (1996), Kall
and Mayer (2004a), Kall and Mayer (2004b), and references therein. For
the solvers connected to SLP–IOR also see Mayer (1998). Let us emphasize
here one of the features of SLP–IOR: it has an interface to the solvers avail-
able with the general algebraic modeling language GAMS (Brooke, Kendrick,
Meeraus, and Raman (1998); some of those solvers will participate in our ex-
periments). The computations were carried out on a 2.6 GHz Pentium-III
PC with 1 GB RAM, under the operating system Windows 2000.

For the specialized version of the L–shaped method, as described in Sec-
tion 3, we implemented a first experimental solver, called CVaRMin. The
solver has been developed in Delphi 7.0.

For solving LP subproblems in CVaRMin, Minos 5.4 (Murtagh and Saun-
ders (1978)) has been employed. Minos is a commercial solver, available in
source form, and is primarily aimed at NLP problems. In our algorithm,
we have to solve a sequence of relaxed master LP problems. In this first
implementation, the primal form (13) is solved. However, in the sequence
of LP’s, apart from the first one, each LP differs from its predecessor by a
single additional row, corresponding to the cut. Therefore, a straightforward
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idea is to solve the dual of (13), which then has an additional column. Thus,
the optimal basis of the dual problem from the predecessor can be employed
as a starting basis in a hot start, which most probably results in reduced
computational time. This will be the next step in the future development of
the solver.

Implementing the algorithm, due to the finite precision arithmetic, the
stopping criterion in Step 2 of the method has to be modified by employing
a stopping tolerance ε. A straightforward stopping criterion is

F ν − F ν =
1

1− α
(w∗

+ − w∗) ≤ ε, (17)

that is, the algorithm is stopped, when the gap between upper– and lower–
bounds becomes smaller than the prescribed tolerance ε. In most practical
cases, the relative error is what matters, therefore we have implemented in
CVaRMin a stopping rule involving the relative error. Furthermore, instead
of the current upper bound, at iteration ν > 1 the best upper bound F

∗
ν

found so far is used. The implemented stopping rule is

F
∗
ν − F ν

|F ν |
≤ ε (18)

for |F ν | > 10−8, and F
∗
ν − F ν ≤ ε otherwise. In our computations, the

stopping tolerance has been chosen as ε = 10−10.
In the experiments, besides CVaRMin, we employed several solvers for

comparative purposes. On the one hand, we chose the GAMS general–
purpose LP solvers GAMS/Cplex 9.0 and GAMS/OSL Version 1, see Gams
Development Corporation (2004), with the default setting of the run–time–
parameters. The nonlinear programming solvers GAMS/Conopt,
GAMS/Minos, and GAMS/Snopt were also employed. Additionally, we took
BPMPD 2.1, an interior point LP solver, developed by Mészáros (1997), with
stopping tolerance 10−10 for the relative duality gap. Although BPMPD
is a general–purpose LP solver, it turned out that it is especially well–
suited for solving two–stage recourse problems with a finite discrete distri-
bution, see Mészáros (1997) and Kall and Mayer (2005a). We employed also
QDECOM (1985), developed by Ruszczyński (1986), a regularized version
of the L–shaped method. QDECOM is, according to our computational ex-
perience with two–stage recourse problems in general, an excellent solver for
this type of problems. In the meantime, a significantly improved version and
implementation in the solver Decomp has been developed by Ruszczyński
and Świȩtanowski (1997). However, this solver is currently not connected to
SLP–IOR, for technical reasons.
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Concerning the computational experiments, two kinds of test problems
were employed. First, we applied the algorithm for solving portfolio opti-
mization problems of the CVaR minimization type, similarly as the authors
did in Rockafellar and Uryasev (2000). The difference lies in the choice of
the asset classes. Concerning the algorithm, this gives a first impression on
the performance of the method for small–scale problems involving 5 random
variables. On the other hand, this way we also provide an example for the
practical application of the abstract problem type (5). For readers interested
in portfolio optimization, we have also included some parametric results.
These computations also serve for illustrating the effect of a warm starting
strategy concerning the method. Secondly, we solved randomly generated
test problems with 50 random variables, with the sole purpose of illustrat-
ing the comparative computational performance of the algorithm and the
accuracy of the results.

Interested readers may perform their own experiments: SLP–IOR is freely
available for academic purposes, with the solvers CVaRMin, BPMPD, and
QDECOM connected to it; for obtaining a copy please contact J. Mayer
(e-mail: mayer@ior.unizh.ch). Concerning the commercial solvers
GAMS/Cplex and GAMS/OSL, however, a separate licence for GAMS and
for these solvers is needed. The test problems used in the computations are
also available on request, in SLP–IOR input format.

4.1 Portfolio optimization

In this section, we present computational results concerning financial port-
folio optimization. Let us consider a one–stage portfolio selection problem,
which belongs to the class of problems discussed in Section 3. It corresponds
to the classical standard–problem of Markowitz (1959) with the variance as a
risk measure replaced by CVaR. Portfolio optimization problems of this kind
have firstly been formulated by Krokhmal, Palmquist, and Uryasev (2002).
We have n risky assets with random returns r̃1, . . . , r̃n. Denoting the port-
folio weights by x1, . . . , xn, we consider the following problem of the type
(5):

min −r̄Tx + vC(x, α)

s.t.
n∑

i=1

xi = 1

xi ≥ 0, i = 1, . . . , n,

 (19)

where r̄ is the vector of expected returns, that means, r̄ = E[r̃] holds.
vC(x, α) is the CVaR value corresponding to the loss function
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ζ(x, r̃) := −r̃Tx; the loss that enters the definition of CVaR is the nega-
tive portfolio return.

We consider portfolios consisting of five risky asset classes: Swiss equi-
ties, European equities, world equities, Swiss franc bonds, and global bonds.
To describe the properties of these asset classes, we use the price data of
the following total return indices that are all provided by Datastreamr:
MSCI Switzerland (in the sequel abbreviated to MSCI.CH), MSCI Europe
ex Switzerland denominated in Swiss francs (MSCI.E), MSCI World ex Eu-
rope denominated in Swiss francs (MSCI.W), Pictet General Bond Total
(Pictet.Bond), and J.P. Morgan Global Broad Index denominated in Swiss
francs (JPM.Global). The original monthly price data of the indices range
from January 1987 till December 2002. Using S-PLUSr 6.1 for Windows,
Professional Edition, Release 1 and the functions in S+FinMetrics, we calcu-
lated the monthly continuously compounded returns ranging from February
1987 till December 2002; that gives a total number of 191 observations. Fig-
ure 1 displays the returns for two of the indices. The horizontal lines in the
figure indicate the zero–return level.

All the following statistical analyzes were also done using S-PLUS and
S+FinMetrics; for analyzing financial time series data with S-PLUSr and
with the functions in S+FinMetrics, see, for example, Zivot and Wang (2003).
The mean r̄ and the covariance matrix Σ of the monthly returns are given
in Table 1 and Table 2, respectively.

Index mean return
MSCI.CH 0.007417
MSCI.E 0.005822
MSCI.W 0.004236
Pictet.Bond 0.004231
JPM.Global 0.005534

Table 1: Mean of the monthly returns

Index MSCI.CH MSCI.E MSCI.W Pictet.Bond JPM.Global
MSCI.CH 0.003059 0.002556 0.002327 0.000095 0.000533
MSCI.E 0.002556 0.003384 0.002929 0.000032 0.000762
MSCI.W 0.002327 0.002929 0.003509 0.000036 0.000908
Pictet.Bond 0.000095 0.000032 0.000036 0.000069 0.000048
JPM.Global 0.000533 0.000762 0.000908 0.000048 0.000564

Table 2: Covariance matrix of the monthly returns
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Figure 1: Return data for the MSCI.CH and Pictet.Bond indices

Assuming a joint normal distribution for the asset returns, we gener-
ated the realizations of the returns by random sampling from a multivariate
normal distribution with the parameters r̄ and Σ. The pseudo–random se-
quences were generated by S-PLUS. The straightforward method has been
used, which consists of generating standard normal variates first, followed by
a linear transformation with the lower–triangular Cholesky–factor of Σ. For
the details of this method see, for instance, Ripley (1987).

Thus, each realization r̂k, k = 1, . . . , N has an equal probability
pk = 1

N
to occur. This is clearly not a highly sophisticated scenario gen-

eration method and is not suitable for prediction purposes. For the compu-
tational experiments, the sample size N is chosen to be 500, 1’000, 3’000,
5’000, 10’000, and 20’000.

Let us note that, under our assumption of having a multivariate normal
distribution, the CVaR term in the objective function can be computed as

vC(x, α) = −r̄Tx + γ ·
√

xTΣx, (20)

with an appropriately chosen constant γ, see Rockafellar and Uryasev (2000).
Thus, (19) can also be directly solved by general–purpose nonlinear program-
ming (NLP) solvers.
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Test runs #1. Portfolio optimization: base case

The test problem battery for these tests consists of 7 test problems. By
random sampling, we generated 6 test problems, corresponding to the sample
sizes N = 500, 1′000, 3′000, 5′000, 10′000, and 20′000. Besides these, we
also took the nonlinear programming formulation according to (20). The
reliability level was chosen as α = 0.9.

First, we solved the nonlinear programming formulation of (19), with
the CVaR objective function term (20). For this we used GAMS/Conopt,
GAMS/Minos, and GAMS/Snopt. The optimal objective value turned out
to be 0.0058959347 with vC(x∗, α) = 0.0102071578 and z∗ = 0.0062906177,
where (x∗, z∗) denotes an optimal solution, see also the equivalent formulation
(6). It is well–known that z∗ provides an upper bound to the optimal CVaR
value, see Rockafellar and Uryasev (2000). The computation time varied
between 0.06 and 0.09 seconds across the different solvers.

Next, we performed comparative test runs with the problems correspond-
ing to different sample sizes. Besides CVaRMin, we also solved the test prob-
lems with general–purpose LP solvers, where these solvers were used to solve
the LP–equivalent (11). Additionally, we also solved the problems in their
two–stage recourse form, by employing the solver QDECOM. The elapsed
time values are summarized in Table 3.

N BPMPD Cplex S Cplex IP CVaRMin OSL1 S QDECOM
500 0.03 0.05 0.09 0.01 0.23 0.19

1000 0.08 0.13 0.09 0.01 0.72 0.34
3000 0.30 0.69 0.59 0.02 6.40 4.34
5000 0.45 2.52 1.45 0.05 17.88 8.70

10000 1.17 12.31 5.86 0.08 74.59 41.62
20000 2.42 55.23 30.33 0.19 273.13 137.22

Table 3: Test runs #1. Elapsed time summary (sec)

In Table 3, Cplex S and Cplex IP stand for the dual simplex method and
for the barrier method of Cplex, respectively. OSL1 S denotes the primal
simplex method of OSL. OSL also has several built–in interior point methods.
The corresponding entries are missing in Table 3, because the solver has
crashed with the test problems with all the interior point options (error
message: “more space is needed for the adjacency matrix”).

Considering the above computing times, for the larger test problems
CVaRMin clearly outperforms the other solvers by at least one order of mag-
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nitude. Second best was the interior–point solver BPMPD, with much better
computing times than the rest of the solvers.

With CVaRMin, the number of cuts was between 25 and 49 for the test
problems considered above.

For a proper interpretation of the results in Table 3, we have to discuss
the selection of the solver parameters. By choosing them carefully for each
test problem separately, it would most probably be possible to achieve signifi-
cant improvements in the computing time (“tuning”). Let us remark that all
general–purpose LP solvers have several parameters, typically including be-
sides stopping tolerances also feasibility tolerances, see, for instance, Maros
(2003). In fact, tuning means to look for appropriate parameter settings
jointly for the solver parameters. Consequently, just prescribing a smaller
stopping tolerance does not automatically lead to more precise results. For
properly tuning solvers, detailed knowledge of the algorithm is needed in
general.

Having in mind users who are not especially acquainted with the algo-
rithms, the usual methodology in comparative testing of solvers is to perform
the tests with a fixed choice of parameters. This is the case in our tests, too.

For the commercial GAMS solvers we have kept the default parameters.
Our experimental solver CVaRMin has a single parameter, the stopping tol-
erance ε, see (18). This has been fixed as ε = 10−10. BPMPD being a
primal–dual interior point solver, the stopping rule includes testing the rel-
ative duality gap; therefore, we took for this parameter the same stopping
tolerance ε = 10−10 as for CVaRMin. For the other parameters of this solver,
we kept the default values. Finally, the solver QDECOM has a single pa-
rameter, the cut tightness tolerance, for which we kept the default value
10−8.

We now turn our attention to the objective values returned by the var-
ious solvers at termination, interpreted as optimal values. For the sake of
simplicity, we will call them the optimal values returned by the solvers. From
the purely mathematical point of view it is clear that, due to finite–precision
arithmetic, these are, in general, merely approximations to the true optimal
value.

Due to the fact that GAMS delivers results with at most 10 decimals, we
compared the objective values rounded to this precision. A comparison with
a higher relative precision can be found in the next section, where we discuss
the results with randomly generated test problems.

The general–purpose LP solvers BPMPD, Cplex S, Cplex IP, and
OSL1 S delivered the same objective value for each of the test problems,
with a sole exception: the objective value for BPMPD and for sample size
5’000 differs by 4 · 10−10 from the optimal objective value obtained from the
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rest of the LP solvers. Considering CVaRMin, the optimal objective values
are the same as those of the LP solvers, with one exception: for the test
problem with N = 10′000 the difference is 10−10. Finally, for QDECOM the
objective values were the same as those of the LP solvers for sample sizes
500 and 1’000; for the larger sample sizes the deviation varied between 10−8

and 10−7.
Table 4 shows the optimal objective values obtained via CVaRMin. Be-

sides the stopping tolerance ε = 10−10, which was used throughout in the
computations, we have also included results with a higher stopping tolerance
ε = 10−8 for the purpose of giving an impression on the influence of the
stopping tolerance on the solution. The fourth column (∆LP ) in the table
displays the relative deviation of the values in the third column (ε = 10−10),
with respect to the objective value delivered by the majority of the LP solvers.
The fifth column (∆NLP ) shows the relative deviation with respect to the
objective value from the NLP formulation. For the sake of completeness:
the relative deviation of an approximate value fapprox with respect to a base

value f ∗ 6= 0 is computed throughout according to
|fapprox − f ∗|

|f ∗|
.

N ε = 10−8 ε = 10−10 ∆LP ∆NLP

500 0.0061163484 0.0061163484 0 0.037

1000 0.0062614463 0.0062614463 0 0.062

3000 0.0059029578 0.0059029616 0 0.001

5000 0.0059944576 0.0059944594 0 0.017

10000 0.0059716694 0.0059716704 10−8 0.013

20000 0.0058584314 0.0058584365 0 0.006

Table 4: Test runs #1. Comparing optimal objective values, computed by
CVaRMin, with those of the LP and NLP solvers

The optimal objective values of the six test–problems are displayed in
Figure 2. The points corresponding to the five values have been connected
by straight line segments; the horizontal dotted line corresponds to the opti-
mal objective value 0.0058959347 of the NLP problem.

Test runs #2. Portfolio optimization: several generated samples

In the runs so far, for each one of the selected sample sizes we have gener-
ated a single sample and used this for setting up a corresponding test prob-
lem. The question arises, whether the favorable running times for CVaRMin
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Figure 2: Optimal objective values corresponding to different sample sizes.

are due to blind chance, by having obtained test problems, which are espe-
cially favorable for the algorithm.

N=500 N=5’000 N=10’000 N=20’000
min (sec) 0.009 0.032 0.067 0.122
max (sec) 0.043 0.051 0.105 0.191
mean (sec) 0.015 0.045 0.088 0.162
stdev (sec) 0.010 0.007 0.013 0.027
min (ov) 0.004512 0.005546 0.005673 0.005739
max (ov) 0.006246 0.006557 0.006135 0.006059
mean (ov) 0.005230 0.005978 0.005859 0.005893
stdev (ov) 0.000591 0.000344 0.000133 0.000124
mrd (ov) 23.5% 11.2% 4.1% 2.8%

Table 5: Test runs #2. Basic statistics for results from runs with different
samples (varying seeds for the generator), computed by the solver CVaRMin;
the optimal NLP value is 0.005896.

For testing this, we generated a test problem battery as follows: for each
of the sample sizes 500, 5’000, 10’000, and 20’000, respectively, we generated
10 different samples by choosing different seeds for the random number gen-
erator (altogether 40 different seeds). The sample generation method was
the same as for the base case. The samples generated this way have then
been utilized for setting up the test problems for the portfolio optimization
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N=500 N=5’000 N=10’000 N=20’000
min (VaR) 0.004864 0.006128 0.006095 0.006093
max (VaR) 0.006664 0.006744 0.006472 0.006423
mean (VaR) 0.005709 0.006397 0.006267 0.006261
stdev (VaR) 0.000635 0.000224 0.000129 0.000086
mrd (VaR) 22.7% 7.2% 3.1% 3.1%

Table 6: Test runs #2. VaR corresponding to the optimal solutions, com-
puted by the solver CVaRMin; the VaR value in the optimal NLP solution
is 0.006291.

N=500 N=5’000 N=10’000 N=20’000
min (CVaR) 0.008813 0.009871 0.009992 0.010056
max (CVaR) 0.010592 0.010878 0.010445 0.010369
mean (CVaR) 0.009545 0.010296 0.010173 0.010207
stdev (CVaR) 0.000595 0.000347 0.000131 0.000121
mrd (CVaR) 13.7% 6.6% 2.3% 1.6%

Table 7: Test runs #2. CVaR corresponding to the optimal solutions, com-
puted by the solver CVaRMin; the CVaR value in the optimal NLP solution
is 0.010207.

problem. Consequently, this test problem battery consists of 40 test prob-
lems.

We let CVaRMin run on these test problems; a basic statistics concern-
ing elapsed time (sec) is given in Table 5, where (stdev) abbreviates stan-
dard deviation. The results clearly indicate that the computing times for
CVaRMin, used for comparison in Table 3, are most likely typical for the
solver.

As a byproduct of these runs, we can also get an impression concern-
ing the impact of varying samples on the optimal objective value. Table 5
also shows a basic statistics concerning the optimal objective values (ov) ob-
tained in the runs. The last row in this table displays the maximal relative
deviations (mrd) between the objective values corresponding to the sampled
problems and the optimal objective value of the exact NLP problem. Tables
6 and 7 show basic statistics corresponding to the VaR and CVaR values,
corresponding to the optimal solutions. The maximal relative deviations for
the sample sizes N = 500 and N = 5′000 are quite high and the deviations
become smaller with increasing sample sizes, as intuitively expected. This
indicates the following: when solving (19) with a continuous distribution via
sampling and by solving the sampled problem, one must be cautious; just
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solving one such approximating problem is quite dangerous. Either statisti-
cal analysis is needed, or at least a large sample size should be chosen. In
any case, a fast solver can be well–utilized for carrying out the necessary
computations.

Test runs #3. Portfolio optimization: parametric results

In these tests, we have carried out computations with varying the key
problem parameter α. The results from such computations are of primary
interest in financial portfolio optimization. From the algorithmic point of
view, this means solving a sequence of CVaR optimization problems, with
varying values of a problem parameter.

We considered the portfolio optimization problem (19) for different values
of the probability level α. For this reason, we took an equidistant subdivi-
sion of the interval [0.6, 0.999] into 99 sub–intervals, and solved the sampled
version of (19) for the 100 different values of α ∈ [0.6, 0.999]. The sample size
was N = 20′000, and we utilized our solver CVaRMin for the computations.
Figure 3 shows the CVaR values corresponding to the optimal solution, in
dependency on the probability level α.
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Figure 3: Optimal CVaR value versus α, N = 20′000

When solving a sequence of closely related optimization problems, the
computations can usually be speeded up, by utilizing results from the pre-
vious run for providing appropriate start–data for the current run (“warm
start”). In our case, we tested two different strategies. First, we have carried
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out the computations according to the basic description of the method in
Section 3, that is, in the initialization Step 0 we started with a single cut,
corresponding to the expected value (“cold start”). In a second version, for
ν > 1, we modified the initialization in Step 0 as follows. As a starting set of
cuts, we kept all cuts from the previous optimization, for which the optimal
Lagrange multiplier in the relaxed master problem (13) was non–zero (“warm
start”). This set of cuts is clearly a subset of all active cuts at the optimal
solution of (13). With a cold start, the overall computing time for the 100
problems was 20.48 sec, whereas with the above described warm start the
computing time was reduced to 16.32 sec, a saving of ∼ 20% in elapsed time.
Of course, this has to be tested on a large number of test problems, before
definitive conclusions can be drawn concerning the efficiency of the warm
start described above. Although not directly related to the performance of
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Figure 4: Asset weights in the portfolio versus α

CVaRMin, for readers interested in financial portfolio optimization, we also
present Figure 4, which displays the dependency of the asset weights in the
portfolio on α. For all α–values considered, wealth is diversified over the
three asset classes Swiss equities, Swiss franc bonds, and global bonds, that
is, the asset classes European equities and world equities have zero weight
and therefore they do not appear in Figure 4. On the one hand, this shows
that CVaR minimization resulted in a diversified portfolio. On the other
hand, the results are in accordance with financial intuition, the asset classes
with zero weight are the most risky among the asset classes considered here.

Note that the general formulation of (19) in finance also involves a weight-
ing factor for the risk term in the objective function. This is interpreted as
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a risk–aversion parameter; varying this parameter leads to the risk–return
frontier. The parametric computations were performed in the same manner
as for varying α and it turned out that the same three asset classes appear
with positive weights throughout.

4.2 Randomly generated test problems

The computational results reported above are all with respect to the portfolio
optimization problem (19). The special structure of this problem and our
assumption concerning normal distribution may imply that our test problems
are biased in favor of our algorithm. For further testing the performance of
CVaRMin, we took randomly generated test problems.

The sole purpose of this section is to illustrate the performance of
CVaRMin on larger test problems as in the tests so far. We generated in-
stances of the prototype problem (5), with P = {x | Ax = b, x ≥ 0 }, where
A is an (m × n) matrix and b, c have compatible dimensions. In the test
problems, we chose m = 10 and n = 50. Thus, the random variable η is
50–dimensional; ξ was chosen as constant ξ ≡ 0.

The elements of the matrix A were randomly generated, according to the
uniform distribution over the range [−2, 2]; the density of non–zeros is 50%.
The right–hand–side vector b has been chosen such that P 6= ∅ holds and,
finally, the choice of the objective vector c ensures the existence of an optimal
solution.

For the probability distribution of η, we took a multivariate shifted log-
normal distribution. First, the parameters of the underlying multivariate
normal distribution were computed. The expected values were generated ac-
cording to a uniform distribution over [−2, 2]. The standard deviations were
computed by multiplying the expected values with some factors. These fac-
tors were generated according to the uniform distribution over [1.2, 1.6]. The
correlation matrices were generated by employing the method of Marsaglia
and Olkin (1984). For the reliability level α = 0.9 was chosen.

The parameters of 10 different CVaR minimization problems were com-
puted according to the above scheme first.

The test problem batteries themselves resulted via sampling from the
lognormal distribution. The random variates y for the multivariate nor-
mal distribution were generated by employing the same sampling method,
based on the factorization of the covariance matrix, as described in Sec-
tion 4.1. These were subsequently transformed component–wise according to
ŷi := eyi and finally shifted to the left by eµ

i , with µ being the expected value
of the underlying normal distribution. The sole purpose of this shift was
to achieve both positive and negative realization values. Considering the
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goal of this test, namely just testing solver efficiency, we did not care for a
statistically meaningful shift.

We generated two test problem batteries, each consisting of 10 test prob-
lems, corresponding to the sample sizes N = 10′000 and N = 20′000, respec-
tively.

Test runs #4. Randomly generated test problems

We run the solvers with the same parameter settings as before, in par-
ticular, we employed the same stopping tolerances. The computing times
are displayed in Tables 8 and 9 and show the clear superiority of the solver
CVaRMin. The number of cuts (iterations) varied between 24 and 106.

BPMPD Cplex S Cplex IP CVaRMin OSL1 S
T1a 6.22 21.50 15.59 0.70 409.14
T2a 6.80 20.89 21.89 0.46 376.23
T3a 8.89 24.77 24.20 1.16 374.35
T4a 8.03 19.98 13.51 0.55 360.50
T5a 7.11 17.52 17.91 0.26 384.24
T6a 6.17 19.33 14.83 0.59 372.61
T7a 6.52 22.55 13.47 0.50 353.61
T8a 16.52 22.59 16.16 0.48 345.34
T9a 37.25 20.64 18.55 0.46 452.37
T10a 8.94 20.20 15.16 0.37 311.88

Table 8: Test runs #4. Elapsed time summary (sec) for N = 10′000

BPMPD Cplex S Cplex IP CVaRMin OSL1 S
T1b 14.45 84.09 89.61 1.33 1826.58
T2b 13.97 82.27 97.92 0.95 1803.64
T3b 19.59 96.31 65.20 2.26 1673.38
T4b 23.92 82.16 64.19 1.11 1782.70
T5b 21.33 71.94 99.28 0.59 1749.61
T6b 14.44 75.08 59.38 1.08 1691.39
T7b 127.84 85.25 54.61 0.86 1694.31
T8b 15.08 88.17 96.30 0.74 1680.39
T9b 160.14 81.23 59.78 0.54 2174.45
T10b 25.12 82.70 51.95 0.96 1418.35

Table 9: Test runs #4. Elapsed time summary (sec) for N = 20′000
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Notice that the tables do not contain results with QDECOM. The reason
is this. For the battery with N = 10′000, the solver could just solve 4
problems out of 10, for the rest it seemed to be cycling and the run was
terminated at a time limit of 10 minutes.

The question arises, whether the excellent elapsed times for CVaRMin are
perhaps due to imprecise results, in comparison with the general–purpose LP
solvers. We, therefore, chose one of the LP solvers as a basis; we decided to
choose a commercial solver for this purpose and took OSL1 S. Table 10 shows
the results. The second and third columns display the objective values from
OSL1 S, rounded to 10 decimals, and corresponding to N = 10′000 and
N = 20′000, respectively. The other columns show the absolute deviation
for the objective values. The columns labelled as δBP, δCP, and δCV show
the absolute deviation in objective value, with respect to OSL/20’000, for
BPMPD, CPlex and CVaRMin, respectively. The two Cplex–variants re-
turned the same values, most probably due to a crossover to the simplex
method after the barrier iterations. Thus, the heading for this solvers is just
CP. The last two rows contain the maximal absolute deviation mad and
the maximal relative deviation mrd, respectively. Finally, we employed the
notation kEd for k · 10d, which is quite common in numerical analysis.

Notice that the difference in objective values is in general not zero for dif-
ferent solvers, even if comparing two commercial LP solvers like Cplex and
OSL1. The deviations of our solver CVaRMin are in the same range, as the
deviations for the general LP solvers.

OSL/10’000 OSL/20’000 δBP δCP δCV
T1 2968.0109913872 2975.1675789166 4E-06 4E-06 4E-06
T2 3146.0517148887 3148.2881231466 2E-05 3E-10 1E-08
T3 2969.4916454730 2957.0655695859 2E-05 6E-07 6E-07
T4 2738.8821014082 2710.4796681820 4E-05 8E-09 7E-08
T5 3157.1759883929 3128.5835564060 9E-06 1E-08 9E-08
T6 2979.6663741827 2977.2050961986 1E-05 3E-08 3E-08
T7 3384.0469230574 3394.8485933748 4E-06 2E-08 1E-08
T8 4024.0331972310 4023.5791142508 8E-06 9E-09 6E-08
T9 4649.6235981131 4640.9993879112 7E-07 3E-08 5E-08
T10 1929.0589768021 1929.9903118863 5E-06 5E-08 3E-08
mad 4E-05 4E-06 4E-06
mrd 2E-08 1E-09 1E-09

Table 10: Test runs #4. Objective values at termination.
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VaR CVaR
N=10’000 N=20’000 N=10’000 N=20’000

T1 21.88434826 21.95929614 39.36418733 40.21091779
T2 100.5792225 103.0989976 203.3362016 216.0753651
T3 22.44757551 23.16114409 43.40589616 48.02231380
T4 140.2811143 130.6140219 331.1002864 320.4621292
T5 83.83469693 82.71418787 250.0047524 221.4707731
T6 56.56713751 56.34636143 177.8957344 151.8069357
T7 106.5288299 105.3095169 284.980382 285.3766506
T8 87.62664073 81.94289543 206.2328227 183.2997216
T9 100.5652372 102.1352692 191.5017004 190.8160874
T10 214.0252573 208.8072385 581.8434328 606.7061161

Table 11: Test runs #4. VaR and CVaR corresponding to optimal solutions
at termination, computed by OSL.

Let us point out that the deviations in the table can by no means be inter-
preted as errors, by mistaking the objective values delivered by
OSL1 S as the true values (with zero error), rounded to 10 decimal places.
Due to finite precision arithmetic, none of the LP solvers is capable to com-
pute the mathematically exact solution for all LP’s, in general (see also the
discussion regarding solver parameters and various tolerances above). Let us
note that the relative difference between the objective values, returned by the
different LP–solvers, is quite acceptable for most applications. Recall that
we have performed our tests with the default setting of the solver parameters.
By tuning these parameters to the specific problems, higher precision can be
achieved, which results in reducing the relative differences in the returned
objective values.

For the sake of completeness, we also present in Table 11 the VaR and
CVaR values corresponding to the optimal solutions, computed by OSL.

Observe the significant differences between the objective values with N =
10′000 and N = 20′000. The same phenomenon can be observed regarding
the VaR and CVaR values in Table 11. This is again an indication for the need
of large sample–sizes, consequently, the results also indicate the potential
usefulness of a fast solver.
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5 Conclusions

In this paper, we considered one–stage optimization problems involving the
minimization of conditional value–at–risk (CVaR) in the objective. We pro-
posed to solve these problems via reformulating them as two–stage stochas-
tic optimization problems with recourse and presented an algorithm. The
method was derived by adapting the L–shaped method for two–stage re-
course problems, to the special structure of CVaR minimization problems.

We have implemented our solution approach as the solver CVaRMin. In
the paper we presented comparative computational results with several test
problems.

First we considered a portfolio optimization problem of the CVaR mini-
mization type, with 5 random variables and assumed a multivariate normal
distribution. Due to our assumptions, an equivalent NLP formulation exists,
which can also be solved by general–purpose NLP solvers, thus providing an
optimal value for comparison purposes.

We generated several test problems by sampling and compared the per-
formance of our solver with general–purpose LP solvers. In our experiments,
CVaRMin outperformed all LP solvers involved in the comparison; for the
largest test–problem the elapsed time for CVaRMin was at least by one order
of magnitude better than the elapsed time for the rest. The solution time
for CVaRMin had the same order of magnitude as the solution times for the
NLP problem formulation.

For testing the effect of sampling on the solution times of CVaRMin, we
generated portfolio optimization test problems by sampling with 40 differ-
ent seeds. The results indicate that the performance of CVaRMin does not
significantly depend on choosing different samples. Concerning optimal val-
ues across different samples, the obtained results suggest that, even for 5
random variables, a sample size of N = 5′000 may lead to quite inaccurate
results. Thus it is likely that for larger numbers of random variables quite
high sample sizes are needed for obtaining acceptable results.

We also presented computational results for varying α and proposed a
“warm start” strategy for solving a sequence of CVaR minimization problems
with varying parameter. According to this test, the strategy appears to lead
to a significant reduction in computing time.

Finally, we presented our computational results with 20 randomly gener-
ated test problems involving 50 random variables and a shifted multivariate
lognormal distribution. In these tests, CVaRMin outperformed again all gen-
eral purpose LP solvers by at least one order of magnitude in the solution
time. The deviations in optimal objective values were in the same range, as
the deviations across the different LP solvers.
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The computational results indicate that our algorithm is quite promising.
These results are, however, by no means conclusive in this respect; for this
much more extensive tests would be needed.

It is clear that for CVaR minimization problems with random–variable
dimensions employed in our computations, the approach via solving the LP–
equivalent is in many practical cases quite satisfactory from the point of
view of computing time. Under the assumption of a multivariate normal
distribution, solving the NLP formulation via general–purpose NLP solvers
may be a competitive alternative. This was so in our tests with 5 random
variables, where the NLP solvers outperformed all LP solvers, for the larger
sample sizes. Let us shortly discuss application areas where a fast solution
method can be of direct practical interest.

In portfolio optimization, one such area could be the optimization of large
hedge portfolios with possibly thousands of assets (see, for instance, Rock-
afellar and Uryasev (2000)). Another important application area, where a
fast solver could help, is parametric computation related to CVaR minimiza-
tion (in financial terms this means computing “frontiers”), especially for large
numbers of random variables and large sample sizes.

CVaR minimization problems can also be used as building blocks for
algorithms aiming at minimizing VaR, see Larsen, Mausser, and Uryasev
(2002). Thus, an efficient method for solving the CVaR subproblems may
lead to significantly increased performance of the overall method. For a
recent different sequential approach for minimizing VaR see Pang and Leyffer
(2004). Besides finance, minimizing VaR and CVaR gets increasing attention
also in other application areas, see Chen, Daskin, Shen, and Uryasev (2005).
This may lead to large–scale CVaR minimization problems for which efficient
special–purpose solvers might be needed.

Our future research plans include testing the algorithm with financial
optimization problems involving larger amounts of assets and realizations,
extending the scope of CVaRMin for optimization under CVaR constraints,
and refining the warm start strategy for computing frontiers.
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