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Abstract We develop an algorithm to compute asset allocations for Kahneman
and Tversky’s (Econometrica, 47(2), 263–291, 1979) prospect theory. An appli-
cation to benchmark data as in Fama and French (Journal of Financial Eco-

nomics, 47(2),427–465, 1992) shows that the equity premium puzzle is resolved
for parameter values similar to those found in the laboratory experiments of
Kahneman and Tversky (Econometrica, 47(2), 263–291, 1979). While previous
studies like Benartzi and Thaler (The Quarterly Journal of Economics, 110(1),
73–92, 1995), Barberis, Huang and Santos (The Quarterly Journal of Economics,

116(1), 1–53, 2001), and Grüne and Semmler (Asset prices and loss aversion,
Germany, Mimeo Bielefeld University, 2005) focussed on dynamic aspects of
asset pricing but only used loss aversion to explain the equity premium puz-
zle our paper explains the unconditional moments of asset pricing by a static
two-period optimization problem. However, we incorporate asymmetric risk
aversion. Our approach allows reducing the degree of loss aversion from 2.353
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to 2.25, which is the value found by Tversky and Kahneman (Journal of Risk and

Uncertainty, 5, 297–323, 1992) while increasing the risk aversion from 1 to 0.894,
which is a slightly higher value than the 0.88 found by Tversky and Kahneman
(Journal of Risk and Uncertainty, 5, 297–323, 1992). The equivalence of these
parameter settings is robust to incorporating the size and the value portfolios of
Fama and French (Journal of Finance, 47(2), 427–465, 1992). However, the opti-
mal prospect theory portfolios found on this larger set of assets differ drastically
from the optimal mean-variance portfolio.

Keywords Prospect theory · Asset pricing · Equity premium puzzle · Global
optimization · Non–smooth problems · Numerical algorithms

1 Introduction

Kahneman and Tversky’s (1979) prospect theory has been suggested to explain
decisions under risk observed in laboratory experiments. This path breaking
observation has led researchers to rethink many areas in economics and in
particular in finance. However, applying prospect theory to finance is quite a
challenge at least numerically since the value function suggested by Tversky
and Kahneman (1992) is non-differentiable and non-concave. In this paper we
develop an algorithm to overcome these difficulties so that we can compute
prospect theory asset allocations. As a first application we reconsider the equity
premium puzzle from a prospect theory perspective.

A large equity premium is one of the more robust findings in financial
economics (Mehra & Prescott, 1985). On US-data, for example, over the period
of 1802 to 1998, Siegel (1998) reports an excess return of US Stocks over US
Bonds of about 7–8% p.a.. Similar results have been found for other periods and
across other countries. This empirical finding is puzzling because it is hard to
reconcile with plausible parameter values for agents’ risk aversion in the stan-
dard consumption based asset pricing model originating from Lucas (1978). In
the Lucas model asset prices are explained by the intertemporal optimization of
a representative agent. The equity premium puzzle is the observation that the
unconditional moments of asset returns cannot be explained by a low coefficient
of risk aversion. In this model the volatility of consumption, which, as Hansen
and Jagannathan (1991) have shown, is an upper bound for the equity premium,
is not found to be sufficiently high to allow for the large equity premium.

The huge number of solutions that have been suggested to resolve the
equity premium puzzle is another puzzling aspect of the equity premium. It
is impossible to review this literature in a few words without being accused for
serious omissions. Therefore, we only highlight a few suggested solutions that
relate most closely to our paper. For a recent comprehensive treatment of all
suggested solutions see the recent Handbook of Finance on this topic edited by
Mehra (2006). One line of research points out that the Hansen and Jagannathan
bound is increased by choosing more appropriate proxies for consumption that
include fluctuations in financial wealth (Lettau & Ludvigson, 2001), fluctuations



Comput Econ (2007) 29:267–281 269

in housing wealth (Piazzesi, Schneider, & Tuzel, 2007) or other such proxies.
Another line of research points out that introducing more links in the utility
function between consumption of different periods can also resolve the equity
premium puzzle (Constantinides, 1990; Constantinides, Donaldson, & Mehra
(2005)). Yet a different strategy is to generate extra fluctuations by including
behavioral aspects like myopic loss aversion (Barberis, Huang, & Santos, 2001;
Benartzi & Thaler, 1995; Grüne & Semmler, 2005).

Our paper follows the behavioral approach to the equity premium puzzle.
This explanation of the equity premium puzzle is based on two main ideas,
myopia and loss aversion. First, investors evaluate risky assets by the gains and
losses on a short horizon but not by the final wealth the investor achieves. For
this reason instead of applying a utility function to consumption data Benartzi
and Thaler (1995) apply a value function to asset return data describing the
gains and losses. Second, these papers use the fact that losses loom more than
gains, i.e., that the value function is kinked at the reference point which divides
returns into gains and losses. To this explanation we add a third aspect, asym-
metric risk aversion. Kahneman and Tversky (1979) found that agents are risk
averse in the gain region but risk seeking in the loss region.

The value function suggested by Tversky and Kahneman (1992) is the
following piecewise power function:

v(x) =

{

xα for x ≥ 0

−β(−x)α for x < 0,
where α ≈ 0.88 and β ≈ 2.25, (1)

which is concave for gains (x > 0) and convex for losses (x < 0). Moreover,
note that the value function is kinked at x = 0.

While the studies of Benartzi and Thaler (1995), Barberis et al. (2001), and
Grüne and Semmler (2005) only used myopic loss aversion to explain the equity
premium puzzle, i.e., they define the value function on changes in wealth and
they set α = 1, our paper incorporates the other important aspect of prospect
theory: asymmetric risk aversion, i.e., we allow for α < 1. A priori it is unclear
in which direction the inclusion of asymmetric risk aversion will drive the result
because the value function becomes more concave in some region and more
convex in the other region. Therefore, we analyze standard annual US asset
market data from 1927 to 2002 that has been grouped into benchmark portfo-
lios according to the methodology of Fama and French (1992, 1993).1 We set
the reference point for the net-return data of Fama and French (1993) equal
to 0, assuming that obtaining the risk free rate is already seen as a success of
the investment. Our extension to asymmetric risk aversion allows reducing the
degree of loss aversion from 2.353 to 2.25 while increasing the risk aversion
from 1 to 0.894. Hence, the parameter values we find are more similar to those
found by Tversky and Kahneman (1992), which were 2.25 for the loss aversion
and 0.88 for the risk aversion. The degree to which these parameter values

1 We are most grateful to Thierry Post for having made available this excellent data set.
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coincide with those found in the laboratory is amazing because the former are
determined on aggregate financial data while the latter have been determined
by investigating individual decision problems. However, as we explain below,
due to a robustness problem when maximizing prospect theory value functions
these specific values should also not be overemphasized.

Note however that in contrast to Barberis et al., (2001) we do only study a
static two-period problem. That is to say, we do not deal with changes of the
reference point or changes of risk aversion due to gains and losses. Neither we
do investigate whether successive gains and losses are integrated or separated.

One reason for the omission of asymmetric risk aversion in the previous
studies may be that prospect theory including this feature becomes much more
difficult to apply. Since the value function is then convex for losses the objec-
tive function is no longer quasi–concave and the first order condition may only
describe local optima. Indeed on our data we found local optima for prospect
theory with asymmetric risk aversion. The computational part of this paper
describes a fast, efficient and robust method to nevertheless compute optimal
prospect theory portfolios. Finally, we analyze the equivalence of the parameter
settings mentioned above on the complete data set now including the Fama and
French (1992) size and value sorted portfolios. It is found that the optimal pros-
pect theory portfolios are still quite similar and that they do differ drastically
from the optimal mean-variance portfolio.

The rest of the paper is organized as follows. Section 2 introduces the model
setup and the algorithm for determining prospect theory optimal allocations.
Section 3 presents an asset pricing application dealing with the equity premium
puzzle. Section 4 concludes.

2 Computational aspects of prospect theory

In this section we analyze the prospect theory of Kahneman and Tversky (1979)
from a computational point of view. One computational difficulty is loss aver-
sion which leads to a non-differentiability at the reference point. In the case
of a piecewise linear value function the differentiability problem can however
easily be dealt with because for α = 1 maximization of the prospect utility
amounts to solving a linear program. For the more general case we will evoke
some smoothing techniques to get around the non–differentiability. The next
problem that arises for α < 1 is that the objective function in not quasi–concave
since the value function is convex for losses and concave for gains. As an effect
local optima can arise. We solve this problem by choosing randomly selected
starting points for our algorithm.

2.1 The general computational problem

The Kahneman–Tversky value function (1) can also be formulated in the
following compact form

v(x) = (x+)α − β (x−)α (2)
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with x+ = max{0, x} and x− = max{0, −x} denoting the positive and negative
parts of the real number x, respectively. Figure 1 displays v(x) with the param-
eter selection α = 0.88 and β = 2.25. For formulating the asset allocation
problem we consider n assets with asset weights λj, j = 1, . . . , n, for which

we have the constraint

n
∑

j=1

λj = 1 and will focus on the case λj ≥ 0 ∀j, that

means, we assume that short sales are not allowed. Regarding data for the asset
returns, we presuppose that scenarios rs

j are given for the net return of asset j

in scenario s, j = 1, . . . , n, s = 1, . . . , S. The portfolio return in scenario s will

be xs :=

n
∑

j=1

rs
j λj = (rs)Tλ with rs standing for the vector of portfolio returns in

scenario s and λ denoting the vector of the asset weights. For the sake of sim-
plicity of presentation, we assume also that the return scenarios rs are equally
probable.2 Then, the prospect theory asset allocation problem consists of max-
imizing the objective function3

V(x1, . . . , xs) :=
1

S

S
∑

s=1

v(xs) =
1

S

S
∑

s=1

[ (

(xs)+
)α

− β
(

(xs)−
)α ]

(3)

subject to the constraints

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

xs −

n
∑

j=1

rs
j λj = 0, s = 1, . . . , S

n
∑

j=1

λj = 1

λj ≥ 0, j = 1, . . . , n.

(4)

2.2 Piecewise linear value function

In this subsection we consider the case when in the Kahneman–Tversky value-
function α = 1 holds. This is the value function discussed in Benartzi and Thaler
(1995), Barberis et al. (2001) and Grüne and Semmler (2005). In this case we
have

2 Prospect theory assumes that investors distort probabilities by means of subjective weighting
functions. When working with sample data, it is however natural to consider each sample as one
equally likely state. Under the assumption of equally probable states of nature, the distortions
will not affect optimal portfolio choices, thus the subjective weighting function is dropped in our
presentation.
3 In what follows, we also assume that investors evaluate gains and losses with respect to the zero
return.
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Fig. 1 The
Kahneman–Tversky value
function with α = 0.88 and
β = 2.25
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v(x) =

{

x for x ≥ 0

βx for x < 0
(5)

or in a compact form
v(x) = x+ − βx−.

This is a piecewise linear function with a kink at x = 0. If β ≥ 1 holds, which
we assume in the sequel then v(x) is a concave function. Figure 2 shows this
function for β = 2.25. The sum of concave functions being concave, it follows
that V(x1, . . . , xs) is a multivariate concave function. It is a non-linear function
which is non-differentiable at points where xs = 0 holds for some s. Figure 3
shows the graph and contour lines of V(x1, x2) = v(x1) + v(x2) with points of
non-differentiability along two lines. For a concave function the upper level
sets are concave. In the figure this means that the contour lines, viewed from
the south-west corner, are convex curves. Thus, our asset allocation problem
belongs to the class of convex optimization problems for which, theoretically,
several powerful algorithms exist. Nevertheless, the objective function is non-
smooth, which makes the problem difficult to solve numerically for problems
with a large number of assets. It is a well-known fact in nonlinear program-
ming that maximizing a piecewise linear concave function subject to linear
constraints can be reformulated as a linear programming problem. Thus, fortu-
nately, the asset allocation problem can be equivalently formulated in our case
as a linear optimization problem which enables solving large-scale asset alloca-
tion problems. For our problem the transformation is particularly simple. We
introduce auxiliary variables ys for representing (xs)+ and zs for representing
(xs)−, respectively. Utilizing the fact that xs = (xs)+ − (xs)− holds generally, we
obtain the following equivalent formulation as a linear programming problem
in the n + 2S variables (λ, y1, . . . , yS, z1, . . . , zS): Maximize the linear function

1
S

S
∑

s=1

(ys − βzs), subject to the following constraints: we replace the first con-

straint in the general formulation by ys − zs −
n
∑

j=1

rs
j λj = 0, s = 1, . . . , S, keep

the constraints solely involving λ and require ys ≥ 0 and zs ≥ 0 for s = 1, . . . , S.
Note that, besides having obtained a computationally attractive alternative
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Fig. 2 Piecewise linear value
function with β = 2.25
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Fig. 3 Graph and contour lines of the sum of two piecewise linear value functions

formulation, the transformation has also eliminated the inconvenient feature
of non-differentiability.

2.3 Computational difficulties in the general case

In the case α �= 1, the transformation outlined in the previous section does not
work. We will consider the general case with the Kahneman–Tversky param-
eter settings α = 0.88 and β = 2.25. In the general case, we face two kinds of
difficulties from the computational point of view.

On the one hand, the objective function is not differentiable at points where
xs = 0 holds for some s. Figure 4 displays V(x1, x2) = v(x1) + v(x2) where
we have, similarly to the piecewise linear case, points of non-differentiability
along two lines. Consequently, the problem belongs to the class of non–smooth
optimization problems. The size of problems that can be efficiently solved by
solvers (implemented algorithms) for this problem class is much smaller than
for the smooth case. In addition to this, available algorithms for non–smooth
problems essentially rely on the assumption that the objective function is con-
cave. This is not the case for our asset allocation problem. Thus, we arrive at
the second kind of numerical difficulty that we face regarding the asset allo-
cation problem. A glance at the graph of V(x1, x2) in Fig. 4 confirms that the
surface is now curved. Viewing the contour lines in the left-hand-side picture
from the south–west corner viewpoint it is clear that some of the contour lines
are no more convex curves. This implies that there are some upper level sets
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Fig. 4 Graph and contour lines of the sum of two Kahneman–Tversky value functions

Fig. 5 The value function V

along a line:

f (κ) = V(x1 + κu1, x2 + κu2)
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-4.2
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that are non–convex sets. Consequently, V(x1, x2) cannot be a concave function.
Moreover, V(x1, x2) is not even quasi-concave, quasi-concavity being defined
by the property that all upper level sets are convex sets. For quasi-concavity
and for further types of generalized concavity discussed below see, for instance,
Avriel, Diewert, Schaible, & Zang (1988).

To confirm the missing quasi-concavity, as suggested by Fig. 4, we pro-
ceed by considering the value function along a line, that means, we take
f (κ) := V(x1 + κu1, x2 + κu2). Supposing that V(x1, x2) is quasi–concave, f

would be a univariate quasi–concave function, for any choice of x1, x2, u1, u2.
Let us choose x1 = −1, x2 = −1, u1 = 1.1, and u2 = −1. Figure 5 displays f (κ)

for −2 ≤ κ ≤ 2. It is immediately clear that the function in the Figure is not
quasi–concave (we omit the obvious mathematical proof). Thus, we conclude
that V(x1, x2) is not a quasi-concave function. On the other hand, pseudo–con-
cavity implies quasi-concavity. Consequently, V(x1, x2) is not a pseudo–concave
function. This implies that our asset allocation problem may have several local
maxima which are not global solutions of the problem.

Let us remark that the value function v(x), being a strictly increasing function,
is obviously pseudo–concave. The point is that, unlike for concave functions,
summing up pseudo–concave functions does not preserve the pseudo–concavity
property. As our example shows, this may even happen in the case when we
construct multivariate functions by addition, based on the same univariate
pseudo–concave function as in our case V(x1, x2) = v(x1) + v(x2).

For smaller values of α, the missing quasi-concavity appears more markedly
as it can be seen in Fig. 6 which displays V with α = 0.7.
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Fig. 6 Graph and contour lines of V(x1, x2) with β = 2.25 and α = 0.7

2.4 Overcoming the numerical difficulties

For dealing with non–smoothness we have applied smoothing to the value func-
tion in the vicinity of 0, by employing cubic splines. More closely we proceed as
follows.

Let δ > 0 and p(x) = ax3+bx2+cx+d be a cubic polynomial. The four coeffi-
cients of the polynomial are computed from the four equations p(−δ) = v(−δ),
p′(−δ) = v′(−δ), p(δ) = v(δ), p′(δ) = v′(δ), thus ensuring that both the function
values and the first derivatives of p and v are equal, at both endpoints of the
interval [−δ, δ]. The value function is subsequently replaced by the smoothed
value function

vδ(x) :=

{

p(x) if x ∈ [−δ, δ]
v(x) otherwise

(6)

leading to the following approximation of the objective function of the asset
allocation problem

Vδ(x
1, . . . , xs) :=

1

S

S
∑

s=1

vδ(x
s). (7)

Denoting the maximal approximation error over the interval [−δ, δ] by ε, we
have

Vδ(x
1, . . . , xs) ≤

1

S

S
∑

s=1

(v(xs) + ε) =
1

S

S
∑

s=1

v(xs) + ε = V(x1, . . . , xs) + ε

and similarly we get Vδ(x
1, . . . , xs) ≥ V(x1, . . . , xs)−ε. Thus, replacing our objec-

tive function with Vδ(x
1, . . . , xs) results in an ε–optimal solution, with respect to

the true optimal objective function value. Choosing δ > 0 small enough, ε > 0
can be made arbitrarily small in theory. In practice, δ = 0.00001 turned out to
be small enough.

For solving the smoothed problems we have employed the general-purpose
solver Minos 5.4 (Murtagh & Saunders, 1978, 1995), designed for smooth non-
linear programming problems.

The second difficulty, the possible presence of several local optima, has been
dealt with as follows. First N starting points have been randomly generated on
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the unit simplex {λ |

n
∑

j=1

λj = 1, λj ≥ 0 ∀j}, according to the uniform distribution

over the unit simplex. For this we employed an algorithm of Rubinstein (1982).
The following procedure has been repeated N times:

• n pseudo–random numbers z1, . . . , zn are generated according to the uniform
distribution on [0, 1].

• These are transformed as yj = − log(zj) ∀j, corresponding to the exponential
distribution with parameter 1.

• Finally, the normalization λj =
yj

ŷ
with ŷ :=

n
∑

j=1

yj results in a random vector

λ, corresponding to the uniform distribution over the unit simplex.

Subsequently, the solver Minos has been started up from the N starting points
in turn, resulting in N (locally optimal) asset allocations with corresponding
optimal objective values Ṽ1, . . . , ṼN . The allocation with the highest Ṽj value
has been chosen as the solution of the problem. The optimization algorithm
outlined above belongs to the class of multistart random search methods, see
Törn and Zilinskas (1989).

Obviously, the quality of the solution largely depends on the proper choice
of N. In practice, we took an initial N and started up the solver. This has been
repeated with increased N till the solution did not change.

2.5 Outlook on planned developments of the method

The next step in the algorithm development, still based on the general-purpose
solver Minos, will be the inclusion of adaptive elements into the procedure for
selecting starting points. This procedure we plan to design in the spirit of the
adaptive grid method of Grüne and Semmler (2003). On the long range we plan
to develop a special–purpose algorithm for finding the global optimum, based
on the structure of the problem.

3 Asset pricing applications

Replacing the piecewise linear value function with the piecewise power function
is important because it does incorporate risk taking for losses and risk aversion
for gains, as it is robustly observed in laboratory findings. However, due to the
loss in quasi-concavity it is not clear a priori which asset pricing implications
are introduced this way. In this section we check whether the approximation
of the piecewise power value function by a piecewise linear function can be
justified. On standard data for a broad stock and a broad bond index, as it
can be found on the homepage of Kenneth French, we find that introducing
asymmetric risk aversion does bring the parameter values of the representative
asset pricing model closer to those found in the laboratory. Hence by doing
so we gain on both sides: the representative agent has a richer behavior and
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its parameter values are closer to those observed in the laboratory. Thereafter,
we compare both the piecewise linear and the piecewise power function on a
richer set of assets including the standard Fama and French size and value port-
folios. It is found that the resulting asset allocations are still similar but they are
much different to the optimal mean-variance portfolio. The data we use has the
following summary statistics (See Appendix): The annual real equity premium
is about 6.4% but the equity index is also much more volatile than the bond
index. Both indices also differ in kurtosis and skewness. The size and the value
portfolios show the well known size and value effect, i.e., the high excess return
of small cap to large cap and of value to growth stocks. We set the reference
point for the net-return data we used equal to 0, assuming that obtaining the
risk free rate is already seen as a success of the investment.

To analyze the Equity Premium Puzzle we adopt the following methodology.
Working with the representative consumer model we cannot use the standard
Euler equation approach because due to the lack of quasi-concavity it may
not describe the sufficient condition for the optimal asset allocation. Instead
we use our algorithm to solve for globally optimal prospect theory portfolios
as described above. The task is to find the parameters α and β of the value
function such that the representative consumer holds the stock and the bond
index in proportion to their market capitalization. For the relative size of the
bond and the stock market we follow Bandourian and Winkelmann (2003) who
estimate the bond equity proportion to be approximately 50:50. First we inves-
tigate the piecewise linear value function on the bond and the stock market
index described above. After some iterations we find a loss aversion of about
2.353. Figure 7 shows that the optimal asset allocation is not perfectly robust
around this value but the bond stock split of the market portfolio is also only
an approximation. Then we investigate the piecewise power value function for
a loss aversion as found in the laboratory (2.25) and search for a risk aversion
in order to also get the 50:50 split. The value found is about 0.894 (see Fig. 8).
Again around this value the optimal asset allocation shows a jump. The size of
the jumps for the piecewise power value function are however not larger than
those for the piecewise linear function.

Finally, we fix these parameter values and compare the portfolio choice
of the two prospect theory functions with that of a mean-variance investor
maximizing the ratio of mean to variance. We find for the piecewise linear value
function4: ME1 = 38.19%, BM8 = 14.37%, BM9 = 47.44% and for the piece-
wise power: ME1 = 36.07%, BM8 = 12.63%, BM9 = 51.29% while we find the
optimal mean-variance portfolio (maximal ratio of mean to standard devia-
tion) to be: ME1 = 4.61%, BM5 = 4.71%, BM8 = 19.23% and Bond = 71.44%.
Hence the two prospect theory optimization problems lead to quite similar
results that are however quite different to the mean-variance portfolio.

4 ME denotes the size portfolios. It reads as market to equity portfolio. BM denotes the value
portfolios. It reads as book to market portfolio.
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Piecewise Linear: Bond Share as of Loss Aversion
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Fig. 7 Bond share as of loss aversion for the piecewise linear value function

Piecewise Power: Bond Share as of Risk Aversion
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Fig. 8 Bond share as of risk aversion for the piecewise power function

4 Conclusion

We developed an algorithm to compute asset allocations for Kahneman and
Tversky’s (1979) prospect theory. An application to benchmark data as in
Fama and French (1992) shows that the equity premium puzzle is resolved
for parameter values similar to those found in the laboratory experiments of
Tversky and Kahneman (1992). While previous studies like Benartzi and Thaler
(1995), Barberis et al. (2001), and Grüne and Semmler (2005) only used myo-
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pic loss aversion to explain the equity premium puzzle our paper extends this
explanation of the equity premium puzzle by incorporating asymmetric risk
aversion.

The introduction of asymmetric risk aversion bears some considerable cost
in terms of computational efforts but it comes at no cost for the economic result.
To the contrary: the values found are even more similar that those found in the
laboratory, however both value functions considered lead to jumps in the
optimal asset allocation– also in the area of the values found on the data.
The challenge for further research is to find value functions that account for
loss aversion and asymmetric risk aversion but that show more robustness
when optimized over realistic data. The piecewise exponential value function
by De Giorgi Hens and Levy (2004) may be a candidate also for this matter.
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Appendix

Table 1 shows descriptive statistics (average, standard deviation, skewness,
excess kurtosis and max and min) for the annual real returns of the value–
weighted CRSP all–share market portfolio, the intermediate government bond
index of Ibbotson and the size and value decile portfolios from Kenneth French’
data library. The sample period is from January 1927 to December 2002 (76
yearly observations).

Table 1 Descriptive statistics
Avg. Stdev. Skew. Kurt. Min Max

Equity 8.59 21.05 −0.19 −0.36 −40.13 57.22

Bond 2.20 6.91 0.20 0.59 −17.16 22.19

Small 16.90 41.91 0.92 1.34 −58.63 155.29

2 13.99 37.12 0.98 3.10 −56.49 169.71

3 13.12 32.31 0.69 2.13 −57.13 139.54

4 12.53 30.56 0.46 0.83 −51.48 115.32

5 11.91 28.49 0.44 1.60 −49.57 119.40

6 11.65 27.46 0.31 0.61 −49.69 102.17

7 11.09 25.99 0.30 1.14 −47.19 102.06

8 10.15 23.76 0.29 1.19 −42.68 94.12

9 9.63 22.33 0.02 0.46 −41.68 78.15

Large 8.06 20.04 −0.22 −0.52 −40.13 48.74
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Table 1 Continued
Avg. Stdev. Skew. Kurt. Min Max

Growth 7.84 23.60 0.02 −0.64 −44.92 60.35
2 8.77 20.41 −0.27 −0.27 −39.85 55.89

3 8.52 20.56 −0.10 −0.47 −38.00 51.90

4 8.25 22.49 0.49 2.39 −45.02 96.33

5 10.29 22.82 0.36 1.92 −51.55 93.77

6 10.05 23.04 0.19 0.63 −54.39 73.57

7 11.00 24.73 0.18 1.22 −51.13 97.91

8 12.82 27.01 0.67 1.95 −46.56 113.53

9 13.71 29.08 0.56 1.85 −47.42 123.72

Value 13.32 33.05 0.43 1.40 −59.78 134.46
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