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Although symmetric key primitives such as block ciphers are ubiquitously deployed throughout
all cryptosystems, they do not come with a formal proof of security. This makes a continuous
analysis and evaluation a necessity. In 2001, the block cipher Rijndael [2] has become the new
Advanced Encryption Standard (AES) by NIST. Therefore, it has been subjected to various modern
cryptanalytic techniques such as differential cryptanalysis [1, 6] and linear cryptanalysis [7].

In this talk we want to focus on the security of AES against differential cryptanalysis. Provable
security against differential cryptanalysis of so called Substitution-Permutation-Networks (SPNs)
(of which the AES is the most prominent example) has been investigated recently in [4, 5, 9, 10].

The goal of this talk is to show how to improve on the results achieved so far.

A differential (cf. [6]) of a function f : {0, 1}n → {0, 1}n is a pair (a, b) ∈ {0, 1}n×{0, 1}n such
that f(x) ⊕ f(x ⊕ a) = b for some x. We call a the input difference and b the output difference.
The differential probability DP (a, b) of a differential (a, b) (with respect to f) is defined as

DP (a, b) = 2−n ·#{x ∈ {0, 1}n | f(x⊕ a)⊕ f(x) = b}.

If f is a function parameterized by a key k, we can also define the differential probability
DP [k](a, b) in a straight-forward manner.

Then, the expected differential probability (EDP) of a differential (a, b) is defined as

EDP (a, b) = 2−|K|
∑
k∈K

(DP [k](a, b)),

that is, the mean over all keys k where we assume the keys to be uniformly distributed.
Finally, the maximum expected differential probability (MEDP) of a differential (a, e) is

max
a,e6=0

EDP (a, e)

In order to prove the security of an R-round block cipher against differential cryptanalysis, the
standard procedure is to show that the MEDP of T rounds is sufficiently small for certain values
of T ≤ R. It is known from [8] that the effort (the number of known plaintext/ciphertext pairs)
for a differential cryptanalytic attack to succeed is proportional to the inverse of the MEDP.
From [4, 10] we know that in the case of AES and related SPNs, if pu is an upper bound for the
MEDP of two rounds, p4

u is an upper bound for the MEDP of T ≥ 4 rounds.

Let B[k](x) denote a function composed of R steps f i[k](x) parameterized by a key k:

B[k](x) = (fR[k] ◦ · · · ◦ f1[k])(x)

A characteristic through B[k] is a vector Q = (a, b1, . . . , bR) with a, bi ∈ {0, 1}n for i = 1, . . . , R
such that

f1[k](x)⊕ f1[k](x⊕ a) = b1

...

(fR[k] ◦ · · · ◦ f1[k])(x)⊕ (fR[k] ◦ · · · ◦ f1[k])(x⊕ a) = bR.
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A characteristic Q = (a′, b1, . . . , bR) is in a differential (a, e) if a′ = a and bR = e. Then, it is
well known from [6] that

EDP (a, e) =
∑

Q∈(a,e)

EDP (Q)

and that for so called Markov ciphers, the EDP of a characteristic can be computed as the product
of the DPs of the underlying S-boxes. These S-boxes (“substitution boxes”) provide for the non-
linearity in the design of SPNs. The S-box employed in AES can be described as a mapping S(x)
from GF (28) to GF (28) where

S(x) = L−1(x−1) + q.

Here, x−1 means inversion in GF (28) (where additionally, 0 is mapped to 0), L is a GF (2)-linear
transformation and q is a constant. In the following, we will always consider 8-bit values to be
in GF (28) = GF (2)[θ]/(θ8 + θ4 + θ3 + θ + 1). For the remainder of this extended abstract, we
will make use of a slightly simplified function S(x), namely, we take S(x) = x−1 in GF (28) (with
S(0) = 0). This has the advantage of exhibiting a nice mathematical structure and is commonly
used as an approximation of the real S-box (cf. [3, 4, 10]).

In [3], the AES super box was introduced to investigate two rounds of AES. The super box maps
a = [a0, . . . , a3] ∈

(
{0, 1}8

)4 to e = [e0, . . . , e3] ∈
(
{0, 1}8

)4 via a sequence of four transformations:
• SubBytes bi = S(ai) for i = 0, . . . , 3
• MixColumns c = M · b with M ∈M(4× 4, GF (28))
• AddRoundKey d = c⊕ k with k a 4-byte round key
• SubBytes ei = S(di) for i = 0, . . . , 3

Two rounds of AES can be described by four parallel instances of such a super box and it can be
seen that the differential probabilities over this structure are equivalent to two rounds of AES.

In this talk, we want to extend the approach outlined in [3] in order to understand the EDP of
the simplified super box. Contrary to [4, 9, 10], we are not only interested in the MEDP of the
super box (that is, two rounds of AES) but we want to understand the intrinsic structure of the
EDP distribution in order to derive a tighter bound on the MEDP over 4 rounds.

Due to the diffusion properties of the matrix M it can be shown that for the super box, there
exist characteristics with 5,6,7, or 8 active S-boxes. Here, active S-box just means that the input
difference to the S-box is non-zero.

Let N32(a, e) be the number of 32-bit (simplified super box) characteristics Q in (a, e) having
EDP (Q) > 0. This number is closely related to the EDP32(a, e), the EDP of (a, e) over the
super box.

In the case of 5 active S-boxes, we were able to compute the complete distribution of EDP32(a, e)
for a = (a0, 0, 0, 0) and e = (e0, . . . , e3) via

N32(a, e) = 28−dim V − 1,

where V = {a0, (θe0)−1, e−1
1 , e−1

2 , ((1 + θ)e3)−1} is a vector space over GF (2).

In the case of 6 active S-boxes the problem becomes computationally quite involved, since we
get

N32(a, e) =
∑
t∈I

(
28−dim V (t) − 1

)
,

where the vector space V (t) is defined for a = (1, a1, 0, 0) and e = (e0, . . . , e3) by

V (t) = {1, (ta1)−1, ((θ + (1 + θ)t)e0)−1, ((1 + θt)e1)−1, ((1 + t)e2)−1, (((1 + θ) + t)e3)−1}

and t ∈ I = GF (28) \ {0, 1, 1 + θ, θ−1, θ(1 + θ)−1}. This additional parameter t comes into play
because of the sixth active S-box.
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We will show methods how to compute bounds for EDP32(a, e) for such a 6-box differential
(a, e) of the form:

1.60469 · 2−130 ≤
∑

e0,...,e3

(N32(a, e) · 2−42))5 ≤ 1.58991 · 2−124
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