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COMPUTATIONAL BARRIERS IN MINIMAX
SUBMATRIX DETECTION

BY ZONGMING MA1 AND YIHONG WU

University of Pennsylvania and University of Illinois at Urbana-Champaign

This paper studies the minimax detection of a small submatrix of elevated
mean in a large matrix contaminated by additive Gaussian noise. To investi-
gate the tradeoff between statistical performance and computational cost from
a complexity-theoretic perspective, we consider a sequence of discretized
models which are asymptotically equivalent to the Gaussian model. Under
the hypothesis that the planted clique detection problem cannot be solved in
randomized polynomial time when the clique size is of smaller order than the
square root of the graph size, the following phase transition phenomenon is
established: when the size of the large matrix p → ∞, if the submatrix size
k = �(pα) for any α ∈ (0,2/3), computational complexity constraints can
incur a severe penalty on the statistical performance in the sense that any ran-
domized polynomial-time test is minimax suboptimal by a polynomial factor
in p; if k = �(pα) for any α ∈ (2/3,1), minimax optimal detection can be
attained within constant factors in linear time. Using Schatten norm loss as a
representative example, we show that the hardness of attaining the minimax
estimation rate can crucially depend on the loss function. Implications on the
hardness of support recovery are also obtained.

1. Introduction. Statistical inference of structured large matrices lies at the
heart of many applications involving massive datasets, such as matrix comple-
tion, functional genomics, community detection and clustering; see, for instance,
[6, 13, 14, 38, 42] and the references therein. Many of these detection and estima-
tion problems have been investigated from a decision theoretic viewpoint, where
one first establishes a minimax lower bound for any test or estimator and then
constructs a specific procedure which attains the lower bound within a constant or
logarithmic factor.

An important element absent from the foregoing decision theoretic paradigm is
computational complexity. This aspect is especially relevant in the context of high-
dimensional statistical inference, where computationally efficient procedures (e.g.,
convex programming, iterative algorithms, etc.) are highly desirable. However, it
has been empirically observed in several basic detection and estimation problems

Received August 2014; revised December 2014.
1Supported in part by NSF Career Award DMS-13-52060 and the Claude Marion Endowed Faculty

Scholar Award of the Wharton School.
MSC2010 subject classifications. Primary 62H15; secondary 62C20.
Key words and phrases. Asymptotic equivalence, high-dimensional statistics, computational

complexity, minimax rate, planted clique, submatrix detection.

1089

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/14-AOS1300
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


1090 Z. MA AND Y. WU

that popular low-complexity algorithms fail to attain the minimax rates; see, for
example, [6, 8–10, 13, 30]. This invites the following question: how much do we
need to back off from the statistical optimality due to computational complexity
constraints? In this paper, we revisit the sparse submatrix detection problem that
has been studied in [8, 11, 13, 28, 38, 41], where the goal is to detect a small sub-
matrix with elevated mean in a large noisy matrix. Motivations for this detection
problem include biclustering for analyzing microarray data [38] and community
detection in social networks [6], etc.

1.1. Problem formulation. Let X = (Xij ) be a p ×p matrix with independent

Gaussian entries Xij
ind.∼ N(θij ,1). Denote the mean matrix by θ = (θij ) ∈ R

p×p

and the distribution of X by Pθ . The submatrix detection problem deals with the
following setup [13]: under the null hypothesis, the signal is absent, and θ is a
zero matrix. Under the alternative hypothesis, θ is zero except for a submatrix of
size at least k × k where all the entries exceed some positive value λ. In other
words, detecting the submatrix boils down to testing the following hypotheses on
the mean matrix:

H0 :X ∼ P0 versus H1 :X ∼ Pθ , θ ∈ M(p, k, λ),(1)

where P0 is standard Gaussian, and the parameter space for the alternative hypoth-
esis is

M(p, k, λ) = {
θ ∈ R

p×p :∃U,V ⊂ [p], s.t. |U |, |V | ≥ k,
(2)

θij ≥ λ, if (i, j) ∈ U × V, θij = 0 if (i, j) /∈ U × V
}
.

In this problem, the key parameters are the matrix dimension p, the block size k

and the signal magnitude λ. Clearly, it is easier to detect the submatrix if either k

or λ increases. Throughout the paper, we focus on the asymptotic setting where p

tends to infinity and both k = k(p) and λ = λ(p) are functions of p, though we
typically drop the explicit dependence on p for conciseness.

For any test φ :Rp×p → {0,1}, we denote its worst-case Type-I + II error prob-
ability of testing (1) by

E(φ) = P0
{
φ(X) = 1

} + sup
θ∈M(p,k,λ)

Pθ

{
φ(X) = 0

}
.(3)

The optimal total probability of error is denoted by

E∗ = inf
φ : Rp×p→{0,1}

E(φ).(4)

In the asymptotic regime of

p → ∞, k → ∞ and k/p → 0,(5)
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the necessary and sufficient condition for reliably detecting the submatrix has been
characterized by Butucea and Ingster ([13], Theorems 2.1 and 2.2): E∗ → 0 if

λ

p/k2 → ∞ or lim inf
p→∞

λ

2
√

(1/k) log(p/k)
> 1,(6)

and, conversely, E∗ → 1 if

λ

p/k2 → 0 and lim sup
p→∞

λ

2
√

(1/k) log(p/k)
< 1.(7)

From this point forward, we say reliable detection is statistically possible if E∗ → 0
and a sequence of tests {φp} reliably detects the submatrix if E(φp) → 0.

To reliably detect the submatrix under condition (6), Butucea and Ingster [13]
proposed a test involving enumerating all k ×k submatrices of X, which is asymp-
totically optimal but computationally intensive. It is unclear from first principles
whether statistically optimal detection can be achieved using computationally effi-
cient procedures. Thus an intriguing question is in order: under the optimal condi-
tion (6) so that E∗ → 0, is there a sequence of computationally efficient tests {φp}
such that E(φp) → 0?

1.2. The penalty incurred by complexity constraints. To approach the compu-
tational hardness of the submatrix detection problem rigorously, we need to inves-
tigate the computational cost of testing procedures in a complexity theoretic sense.
However, an immediate hurdle for the Gaussian model (1) is that computational
complexity is not well defined for all tests dealing with nondiscrete distributions
since the observation cannot be represented by finitely many bits almost surely. To
propose a paradigm for complexity-constrained hypotheses testing, we consider
a sequence of discretized Gaussian models which is asymptotically equivalent to
the original model in the sense of Le Cam [33] and hence preserves the statistical
difficulty of the problem. More importantly, the computational complexity of tests
on the discretized model can be appropriately defined. See Section 3 for details.

Next, we take the standard reduction approach in complexity theory: we show
that if the signal magnitude is smaller than a certain threshold, detecting the subma-
trix is computationally no easier than certain well-known intractable problems. In
other words, if an efficient method existed for submatrix detection, it would lead
to an efficient solution to this problem. In this paper, we use the planted clique
problem as the benchmark, which deals with detecting whether a given instance
of an Erdős–Rényi random graph of size N contains a planted clique of size κ .
It is widely believed that the detection problem cannot be solved in randomized
polynomial time when κ = o(

√
N), which we shall refer to as the planted clique

hypothesis. For the precise statement and further discussions, see Definition 1 and
Hypothesis 1 in Section 4.

Assuming the planted clique hypothesis, our main finding (Theorem 2 in Sec-
tion 4) characterizes when it is possible to achieve reliable detection using compu-
tationally efficient procedures and when it is impossible. The core of the arguments
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lies in a randomized polynomial-time reduction scheme which maps the N × N

adjacency matrix of the random graph in the planted clique problem to a p × p

random matrix in polynomial time. It is worth noting that when k ≥ pα for some
α ≥ 1

2 , the cardinality of the graph N is not equal to the size of the matrix p but
rather chosen to be p1+δ (omitting log factor), where δ > 0 depends on α. On the
other hand, κ can always be chosen as a constant multiple of k.

Our main result can be illustrated by focusing on the following asymptotic
regime, where the submatrix size grows according to k = �(pα), and the signal
magnitude decays as λ = �(p−β) for fixed constants α ∈ (0,1) and β ∈ [0,1]2

as p → ∞. For any two numbers a and b, let a ∧ b = min(a, b) and a ∨ b =
max(a, b). Define

β∗ � α

2
∨ (2α − 1) ≥ β
 � 0 ∨ (2α − 1).

The statistical and computational feasibility of the submatrix detection problem is
demonstrated in Figure 1, where the (α,β)-plane is divided into three regions:

(1) β > β∗ (top region): reliable detection of the submatrix is statistically im-
possible because the signal is too weak.

(2) β < β
 (right triangular region): reliable submatrix detection is achievable
by computationally efficient tests.

(3) β
 < β < β∗ (lower left triangular region): reliable detection is statistically
possible but computationally intractable, in the sense that it is at least as hard

FIG. 1. Detection boundary β∗ versus efficiently computable detection boundary β
.

2The regime of β > 1 is not interesting since the hypotheses are indistinguishable even if the
submatrix becomes the whole matrix (k = p).
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as solving the planted clique problem of a particular configuration, which is in-
tractable under the planted clique hypothesis.

Therefore, the tractability of the submatrix detection problem undergoes a sharp
transition: in the moderately sparse regime where α ∈ (2/3,1), computational con-
straints incur no penalty on the statistical performance. In contrast, in the highly
sparse regime where α ∈ (0,2/3), achieving the statistical optimal boundary re-
quires computational resources that are powerful enough to solve the planted
clique problem, and, consequently, computationally efficient procedures require
significantly higher signal-to-noise ratio to detect the submatrix.

The complexity-theoretic limits for the submatrix detection problem also lead
to interesting findings for the related support recovery problem when the signal
submatrix is present [8, 28, 38]. Moreover, it also sheds light on the statistical and
computational tradeoff in the problem of estimating block sparse matrices [34]. In
particular, we show the surprising result that the hardness of minimax estimation
can crucially depend on the loss function, in the sense that attaining the minimax
estimation rate can be computationally easy for one type of loss functions but hard
for the other.

1.3. Related works. Despite the vast body of literature on developing compu-
tationally efficient procedures with optimal statistical performance for problems
such as compressed sensing, rigorous results on inferential limits of statistical
problems under computational complexity constraints are comparatively limited.
A representative work is the investigation of the complexity of detecting sparse
principal components by Berthet and Rigollet [9], which is one of the motivations
of the present paper. Sparse principal component detection refers to the problem
of testing N(0, Ip) against N(0, Ip + avv′) for k-sparse unit vector v based on n

i.i.d. observations [10]. Since the model is not discrete, as previously mentioned,
the difficulty of ill-defined computational complexity is also present. In [9], the
authors relaxed the Gaussian detection problem to a composite testing problem
that includes discrete distributions, where the empirical projection variances of
the null and alternative hypotheses satisfy respective uniform χ2-tail type con-
centration inequalities. In the regime of pδ ≤ k ≤ pα for some absolute constants
0 < δ ≤ α < 1

2 and n ≤ p, they showed that the computable detection rate for the
deviation of the largest principal component from the rest of the spectrum is no

smaller than
√

kb

n
for any b < 2, which far exceeds the minimax detection rate of√

k
n

logp.
Although both the authors of current paper and Berthet and Rigollet [9] use the

planted clique hypothesis for studying complexity theoretic lower bounds, there
are a few important differences. First, Berthet and Rigollet [9] extend the original
“simple vs. composite” Gaussian sparse principal component detection problem
into a “composite versus composite” testing problem, and the data no longer needs
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to be Gaussian. As a consequence, more distributions are included in both the
null and alternative hypotheses, and thus constructing the reduction scheme be-
comes easier than for the original Gaussian hypotheses. In contrast, the current
paper considers an asymptotically equivalent discretized model which is faithful
to the original Gaussian submatrix detection problem in [13]. Second, the compu-
tational lower bounds in [9] are established only when the sparsity level satisfies
pδ ≤ k ≤ pα for 0 < δ ≤ α < 1

2 . In comparison, due to a new reduction scheme, the
current paper provides a more complete characterization of the computational lim-
its for all k ≥ pδ and any δ > 0. Last but not least, we propose an asymptotic equiv-
alence framework in the sense of Le Cam, which preserves the statistical nature of
the problem and, at the same time, allows rigorous statements of computational
complexity of testing procedures. The approach via asymptotically equivalent dis-
cretized experiments is potentially useful in future works dealing with nondiscrete
distributions.

In addition, some researchers have studied the minimax sub-optimality of cer-
tain computationally efficient methodologies, such as those based on convex re-
laxations, in an array of problems including estimating sparse eigenvectors [30],
support recovery for sparse submatrices [8], combinatorial testing [1], commu-
nity detection [6], etc. In some of the papers, the authors also conjecture that the
minimax rate optimality cannot be achieved by any computationally efficient algo-
rithms. From a different viewpoint, Chandrasekaran and Jordan [15] consider the
tradeoff between computation and statistical performance within a specific fam-
ily of algorithms parameterized by the level of convex relaxations in the classical
normal mean estimation problem. In contrast, the goal of the present paper is to
investigate the impact of complexity constraint on any statistical procedure for the
submatrix detection problem.

1.4. Organization of the paper. The rest of the paper is organized as follows.
In Section 2, we study test statistics for submatrix detection under Gaussian mod-
els. To incorporate computational complexity into the decision theoretic problem,
we introduce in Section 3 a sequence of asymptotically equivalent discretized mod-
els and show that the minimax detection results (6)–(7) remain unchanged under
these models. In Section 4, we state our main result in Theorem 2 under the planted
clique hypothesis and present its proof with a concrete randomized polynomial-
time procedure that reduces the planted clique problem to a Bayesian version of
the submatrix detection problem. We discuss some related problems in Section 5.
Section 6 presents additional proofs for results in earlier sections.

1.5. Notation. For any positive integer n, let [n] denote the set {1, . . . , n}. For
any a ∈ R, let a+ = a ∨ 0. For any square matrix A, Tr(A) = ∑

i Aii stands for
its trace. For any two matrices A and B of the same size, A ◦ B denotes their
component-wise product; that is, (A ◦ B)ij = AijBij , and 〈A,B〉 = Tr(A′B). Let
L(Y ) denote the law, that is, the probability distribution, of a random variable Y .
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Let L(Y |E) denote the distribution of Y conditioned on the event E. The total
variation distance between distributions P and Q is TV(P,Q)� 1 − ∫

(dP ∧ dQ).
For ease of notation, we also write TV(X,Y ) in place of TV(L(X),L(Y )) for ran-

dom variables X and Y . We write X
(d)= Y if L(X) = L(Y ). Let �, �� = 1 − �

and ϕ denote the distribution, survival and the probability density functions of the
standard Gaussian distribution. For any set I , |I | denotes its cardinality. For any
sequences {ap} and {bp}, we write ap � bp or ap = �(bp) if there is an absolute
constant C > 0 such that 1/C ≤ ap/bp ≤ C. We also write ap � bp and bp � ap

if ap = o(bp), and ap = �(bp) if bp = O(ap).

2. Test statistics for submatrix detection. To prepare for later investigation,
we first study three test statistics for the submatrix detection problem (1)–(2). The
first two are the linear and the scan test statistics proposed in [13],

Tlin = Tlin(X) � 1

p

p∑
i,j=1

Xij ,

(8)

Tscan = Tscan(X) � 1

k
max|S|=|T |=k

∑
i∈S,j∈T

Xij .

In addition, we also consider the maximum test statistic

Tmax = Tmax(X) � max
i,j∈[p]Xij .(9)

The following lemma gives nonasymptotic bounds on the Type-I+ II error prob-
abilities on tests based on these statistics. Recall the definition of M(p, k, λ) in (2).

LEMMA 1. Let M = M(p, k, λ) and c > 0 be any absolute constant. For Tlin

in (8), set τ = λk2

2p
. Then

P0{Tlin > τ } + sup
θ∈M

Pθ {Tlin ≤ τ } ≤ e−λ2k4/8p2
.(10)

For Tscan in (8), set τ ′ =
√

(4 + c) log
(p
k

)
. Then

P0
{
Tscan > τ ′} + sup

θ∈M
Pθ

{
Tscan ≤ τ ′} ≤

(
p

k

)−c/2
+ e−(1/2)(λk−τ ′)2+ .(11)

For Tmax in (9), set τ ′′ = √
(4 + c) logp. Then

P0
{
Tmax > τ ′′} + sup

θ∈M
Pθ

{
Tmax ≤ τ ′′} ≤ p−c/2 + e−(1/2)(λ−τ ′′)2+ .(12)

For the proof of Lemma 1, see Section 6.1. By Lemma 1, we have E(1{Tlin>τ }) →
0 when the first condition in (6) holds, while E(1{Tscan>τ ′}) → 0 when the second
condition in (6) holds if we pick the constant c in τ ′ to be sufficiently small such
that lim infp→∞ λk/τ ′ > 1. The error bounds on Tmax will be used later to establish
the achievability part of the main result.
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3. Asymptotically equivalent discretized model. Gaussian distributions
serve as good statistical models for many real-world datasets. However, as an ide-
alized approximation, Gaussian experiment does not capture the finite-precision
nature of statistical computing systems in reality. As mentioned in Section 1, it is
an ill-defined problem to investigate the computational complexity of testing the
Gaussian hypothesis (1) since the data do not admit any representation using finite
bits. Therefore a new paradigm is needed in order to make sense of hypothesis test-
ing with complexity constraints in general. There are two goals of the paradigm:

(a) to provide a rigorous framework for quantifying the complexity of statistical
inference involving continuous, for example, Gaussian, distributions and

(b) to preserve the statistical difficulty of the original problem in the sense of
Le Cam’s asymptotic equivalence.

In this section, we propose such a paradigm based on discretizing the original
Gaussian experiment, which achieves both of the above goals.

Discretized models. For any integer t ∈ N, define the function [·]t :R → 2−t
Z

by

[x]t = 2−t⌊2t x
⌋
.(13)

The function [·]t naturally extends to matrices componentwise: for A = (Aij ),
[A]t = ([Aij ]t ).

Recall the submatrix detection problem (1). To model statistical inference with
finite precision and complexity constraints, let us consider the same testing prob-
lem based on the discretized data [X]t . In other words, the hypotheses are

Ht
0 : [X]t ∼ P

t
0 versus Ht

1 : [X]t ∼ P
t
θ , θ ∈M(p, k, λ),(14)

where for X ∼ Pθ ,

P
t
θ � L

([X]t
)

is the discrete distribution induced by the quantization operation (13), which is
supported on (2−t

Z)p×p .
Now on the discretized data, any test for (14) is a (possibly randomized) func-

tion from the countable set (2−t
Z)p×p to {0,1}. Since there exists a one-to-one

mapping between the set (2−t
Z)p×p and the set of all finite length binary se-

quences
⋃

n∈N{0,1}n, each observed [X]t can be represented by a finite number of
bits, and hence the computational complexity of any test of interest is well defined;
see, for example, [7], Chapter 7. Thus the first goal of the paradigm is achieved. As
an aside, we note that though each coordinate of the discretized data matrix [X]t
has countably infinite support, its Shannon entropy is finite and behaves according
to H([Xij ]t ) = t + O(1) as t → ∞ [36]. Therefore, if we choose t = �(logp),
then [X]t can be represented on average using variable-length lossless codes with
O(p2 logp) number of bits [16].
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Given any test φ = φ([X]t ) for (14), we can analogously define the worst-case
Type-I + II error probability E(φ) as in (3) but with P0 and Pθ replaced by P

t
0

and P
t
θ . Consequently, E∗ can also be defined as in (4).

Asymptotic equivalence. Now we show that as long as we quantize each coor-
dinate with accuracy p−c for some constant c > 0, that is, t = �(logp), the result-
ing family of discretized distributions {Pt

θ : θ ∈ R
p×p} is asymptotically equivalent

to the original Gaussian experiment in the sense of Le Cam. Therefore any infer-
ence problem, in particular, submatrix detection, performed on the discretized data
is asymptotically equally difficult as the original problem as p → ∞, and hence
we also achieve the second goal of the paradigm.

To state the equivalence result, recall the definition of Le Cam distance be-
tween statistical experiments. Let P be a probability measure on a standard Borel
space (X,F), and let K denote a probability transition kernel (Markov kernel)
from (X,F) to a standard Borel space (Y,G). Denote by KP the pushforward
of P under K , that is, KP(dy) = ∫

X K(dy|x)P (dx). Given two experiments
P = {Pθ : θ ∈ �} on (X,F) and Q = {Qθ : θ ∈ �} on (Y,G) with common pa-
rameter space �, the Le Cam deficiency of P with respect to Q is defined by

δ(P,Q)� inf
T

sup
θ∈�

TV(T Pθ ,Qθ),

where the infimum is over all probability transition kernels from (X,F) to (Y,G)

[39], Theorem 1.7, page 29. The Le Cam distance between P and Q is

�(P,Q)� δ(P,Q) ∨ δ(Q,P).

Two sequences of experiments {P(p)}p∈N and {Q(p)}p∈N are asymptotically
equivalent if their Le Cam distance vanishes [33], Section 2.3, that is, if
�(P(p),Q(p)) → 0 as p → ∞.

The following theorem, proved in the supplement [35], gives a nonasymptotic
upper bound on the Le Cam distance between the Gaussian experiments P(p) =
{Pθ : θ ∈ R

p×p} and its discretized version P(p,t) = {Pt
θ : θ ∈ R

p×p}. Therefore, as
long as t grows at a logarithmical rate with p, the discretized model is asymptoti-
cally equivalent to the original Gaussian model.

THEOREM 1. For any t, p ∈ N, �(P(p),P(p,t)) ≤ 2p22−2t/3. Consequently,
if t = t (p) ≥ (3 + ε) log2 p for any ε > 0, then {P(p)}p∈N and {P(p,t (p))}p∈N are
asymptotically equivalent as p → ∞.

For the proof of Theorem 1, see the supplement [35]. An immediate conse-
quence of Theorem 1 on submatrix detection is the following: Since the differ-
ence between the optimal Type-I + II error probabilities for the Gaussian hypothe-
ses and the discretized hypotheses is upper bounded by their Le Cam distance
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[33], Theorem 2.2, which vanishes as p → ∞, we conclude that testing on dis-
cretized data has no impact on the statistical performance asymptotically in the
high-dimensional setting. In particular, conclusion (6)–(7) continues to hold for
testing (14).

REMARK 1. For the discretized model, when either condition in (6) holds, re-
liable detection can be attained by applying the linear or the scan test to the quan-
tized data. To see this, note that the statistics Tlin, Tscan and Tmax defined in (8)–(9)
are all p-Lipschitz with respect to the entrywise �∞-norm of X. Using Lemma 1,
it is straightforward to verify that if we compute Tlin and Tscan based on the quan-
tized data [X]t with t ≥ (3 + ε) logp, then E(1{Tlin>τ }) [resp., E(1{Tscan>τ ′})] van-
ishes when the first (resp., second) condition in (6) holds. Here, the thresholds τ

and τ ′ are defined in Lemma 1.

REMARK 2. From an alternative viewpoint, for appropriately chosen t =
t (p) ∈ N, one can restrict the attention to all tests that are measurable with respect
to the σ -algebra on R

p×p generated by Ft = {∏p
i,j=1[xij 2−t , (xij + 1)2−t ), xij ∈

Z} rather than the usual Borel σ -algebra generated by all open sets. Thus any such
test ψ remains constant on any set in Ft . Moreover, ψ(X) = ψ([X]t ), and its
computational complexity is well defined. Last but not least, the hypothesis testing
problems (1) and (14) become equivalent on this smaller σ -algebra.

4. Complexity theoretic limits. In this section, we investigate complexity
theoretic limits of the submatrix detection problem by drawing its connection to
the planted clique problem. Let N ∈ N and κ ∈ [N ]. We denote by G(N,1/2)

the Erdős–Rényi random graph on N vertices, where each edge is drawn in-
dependently at random with probability 1/2. In addition, following [3, 24], we
use G(N,1/2, κ) to denote the random graph generated by first sampling from
G(N,1/2), then picking κ vertices uniformly at random and connecting all edges
in-between to form a clique of size κ . Distinguishing these two ensembles is known
as the planted clique problem, formally defined as follows:

DEFINITION 1. Let A ∈ {0,1}N×N be the adjacency matrix of a random graph
drawn from either G(N,1/2) or G(N,1/2, κ). The planted clique problem of pa-
rameters (N, κ), denoted by PC(N, κ), refers to the hypothesis testing problem
of

HG
0 :A ∼ G(N,1/2) vs. HG

1 :A ∼ G(N,1/2, κ).(15)

The planted clique problem has a long history in the theoretical computer sci-
ence literature. It is known that finding the clique is statistically impossible when
κ = o(logN). Moreover, a greedy algorithm succeeds if κ ≥ c

√
N logN for some

constant c > 0 [32]. Using spectral methods, Alon, Krivelevich and Sudakov [3]
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provided the first polynomial time detection algorithm when κ = c
√

N , with later
improvements obtained in, for example, [4, 18–21]. However, it is widely believed
that the detection problem cannot be solved in randomized polynomial time when
κ = o(

√
N), which can be summarized as the following planted clique hypothesis.

This version is similar to [2], Conjecture 4.13, and [9], Hypothesis BPC.

HYPOTHESIS 1. For any sequence {κN } such that lim supN→∞
logκN

logN
< 1/2

and any sequence of randomized polynomial-time tests3 {ψN },
lim inf
N→∞

(
PHG

0

{
ψN(A) = 1

} + PHG
1

{
ψN(A) = 0

}) ≥ 2

3
.

Various hardness results in theoretical computer science have been established
based on the planted clique hypothesis, for example, approximating the Nash equi-
librium [23], independence testing [2], certifying the restricted isometry property
for compressed sensing measurement matrices [27], etc. Also, several crypto-
graphic schemes have been proposed assuming the intractability of finding planted
cliques [25, 31] or bicliques [5]. Recently, the average-case hardness of planted
clique has been established under certain computation models; see, for example,
[22, 37].

The main result of the current paper is the following.

THEOREM 2. Assume that Hypothesis 1 holds. Consider testing the discrete
hypotheses (14) with t = t (p) = 4�log2 p� in the asymptotic regime (5). If, for
some absolute constant δ > 0,

λ

p/k2+δ
→ 0 and lim sup

p→∞
λ
√

logp ≤ 1

6
,(16)

there exists no sequence of randomized polynomial-time tests {φp} such that
lim infp→∞ E(φp) < 2/3 for testing (14). Conversely, if

λ

p/k2 → ∞ or lim inf
p→∞

λ

2
√

logp
> 1,(17)

there is a sequence of linear-time tests {φp} such that E(φp) → 0.

As shown later in the proof of Theorem 2, one can use Tlin([X]t ) (resp.,
Tmax([X]t )) as the test statistic when the first (resp., second) condition in (17)
holds. It is straightforward to see that both Tlin and Tmax are of linear complexity.

3Formally, randomized polynomial-time tests belong to the BPP complexity class. Interested read-
ers are referred to standard textbooks on computational complexity theory (e.g., [7], Chapter 7) for
the formal definitions and discussions. Intuitively speaking, randomized polynomial-time tests refer
to algorithms with output space {0,1}, which have access to external random numbers and whose
running time is bounded by a polynomial of the input length regardless of the random numbers.
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Contrasting the statistical limit (6)–(7) with the computational limit (16)–(17),
we obtain the following implication of Theorem 2 on the complexity of sub-
matrix detection: suppose that k ≤ pα for some absolute constant α ∈ (0,2/3).

Then λ �
√

1
k

log p
k

implies λ
p/k2 → 0. Consequently, conditions (6)–(7) and

Theorem 1 imply that reliable detection is statistically possible if and only if

λ = �(
√

1
k

log p
k
). In contrast, condition (16) in Theorem 2 asserts that, to accom-

plish the same task using randomized polynomial-time algorithms, it is necessary

to have λ = �( 1√
logp

∧ p

k2+δ ) for all δ > 0, which far exceeds
√

1
k

log p
k

when-

ever k � (logp)2. Therefore, computationally efficient procedures require signif-
icantly larger signal level λ to reliably detect the submatrix than the statistical
optimum. More precisely, if k = �(pα) for some α ∈ (0,2/3), then the minimal λ

for any randomized polynomial-time test to succeed is at least λ = �( 1√
logp

) when

α ∈ (0,1/2) and �(p1−2α−δ) for any δ > 0 when α ∈ [1/2,2/3), which exceeds
the statistical optimal level λ = �(p−α/2√logp) by a polynomial factor in p.
Thus, in this regime, computational complexity constraints severely limit the best
possible statistical performance in the submatrix detection problem. On the other
hand, when k ≥ pα for some α > 2/3, λ

p/k2 → ∞ is the dominating condition in
both (6) and (17), and a computationally efficient test based on Tlin achieves statis-
tically optimal detection in this regime. Figure 1 in Section 1 provides a graphical
illustration of the above discussion.

It should be noted that the sub-polynomial factor difference, that is, p/k2+δ ver-
sus p/k2, in the first part of (16) and (17) is a direct consequence of Hypothesis 1.
In contrast, the logarithmic factor difference in the second part of (16) and (17)
can potentially be closed by employing better reduction argument and/or more so-
phisticated testing procedures such as those based on spectral methods, which we
leave as a future direction.

The remainder of this section is devoted to proving Theorem 2, with auxiliary
lemmas proved in Section 6. First, in Section 4.1 we provide some intuition on how
the planted clique problem is related to the submatrix detection problem (1) under
the Gaussian model. Next, in Section 4.2 we prove that under the asymptotically
equivalent discretized model, every randomized polynomial time submatrix detec-
tor for (14) leads to a randomized polynomial time solver for the planted clique
problem of appropriate parameters with almost identical performance. Finally, a
proof of Theorem 2 is presented in Section 4.3.

4.1. Planted clique and submatrix detection. We first explain how the subma-
trix detection problem can be reduced from the planted clique problem under the
original Gaussian model. These results are presented as the precursor of the ran-
domized polynomial time reduction for the discretized model in Section 4.2, as
well as to provide insights into the hardness of the submatrix detection problem.
A connection between the two problems has also been previously hinted at in [1].
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Recall the Gaussian submatrix detection problem in (1) with parameter
(p, k, λ). For some � ∈ N to be chosen depending on p,k and λ, let

N = 2p�.(18)

We construct a reduction scheme which maps any adjacency matrix A ∈ {0,1}N×N

to a random matrix X ∈ R
p×p in O(N2) number of flops, such that the follow-

ing holds: if A is drawn from G(N,1/2) under HG
0 , then the distribution of X

is close in total variation distance to the null distribution P0; if A is drawn from
G(N,1/2, κ) under HG

1 , then the law of X is close in total variation distance to a
mixture of distributions in the alternative H1, where the clique size κ is a constant
multiple of k.

Randomized reduction. An important step in the following reduction scheme
is to map any random edge to an N(0,1) random variable and any edge in the
clique to an N(μ,1) random variable with some positive mean value μ. Although
this goal might not be achievable exactly, we describe below a strategy to achieve
it approximately.

To this end, for any M ≥ 3 and 0 < μ ≤ 1
2M

, let c0 = (1 − 2��(M))−1 and
c1 = [1− ��(M −μ)− ��(M +μ)]−1. We define two distributions F1 and F0 with
the respective density functions

f1(x) = c1ϕ(x − μ)1{|x|≤M},
(19)

f0(x) = [
2c0ϕ(x) − c1ϕ(x − μ)

]
1{|x|≤M}.

Here both f0 and f1 are well-defined probability density functions. In particular,
the conditions M ≥ 3 and 0 ≤ μ ≤ 1

2M
ensure that f0 ≥ 0. In what follows, both M

and μ, and thereby F0 and F1, depend on N , though we suppress the dependence
for notational convenience.

The randomized mapping from A to X is as follows. By (18), N is even, and let
N2 = N/2 = p� and [N ] \ [N2] = {N2 + 1, . . . ,N}:

(1) (Gaussianization). Let A0 = A[N]\[N2],[N2] ∈ R
N2×N2 be the lower-left

quarter of the matrix A. Independent of A, we generate two N2 × N2 matrices
B0 and B1, whose entries are sampled independently from F0 and F1 with density
functions given in (19), respectively. Define an N2 × N2 matrix B by

Bij = (B0)ij
(
1 − (A0)ij

) + (B1)ij (A0)ij .(20)

In other words, L(Bij |(A0)ij = 0) = F0 and L(Bij |(A0)ij = 1) = F1.
(2) (Partitioning). Partition B into �2 consecutive p×p blocks. In other words,

for i, j ∈ [�], the (i, j)th block is B(i,j) = (B
(i,j)
a,b ) ∈ R

p×p where

B
(i,j)
a,b = B(i−1)p+a,(j−1)p+b ∀a, b ∈ [p].(21)
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(3) (Averaging). Define X ∈ R
p×p by summing up all �2 blocks and scaling

by �:

X = 1

�

�∑
i=1

�∑
j=1

B(i,j).(22)

Therefore, (20), (21) and (22) collectively define a deterministic function

g : {0,1}N×N ×R
N2×N2 ×R

N2×N2 → R
p×p,

(23)
(A,B0,B1) �→ X

which can be computed in O(N2) number of flops. The reason that we call the
first step “Gaussianization” is due to the following lemma, which ensures that for
appropriately chosen M and μ, the marginal distribution of Bij is close to the
Gaussian distribution of unit variance and mean zero (resp., μ) if (A0)ij corre-
sponds to a random edge (resp., an edge in the clique).

LEMMA 2. Let N ≥ 6. Let ξ be a Bernoulli random variable. Let W be a
random variable such that for i ∈ {0,1}, the conditional distribution of W |ξ = i

follows fi in (19) where M ≥ 3 and μ ≤ 1
2M

. Then:

(1) if P{ξ = 1} = 1, then TV(L(W),N(μ,1)) ≤ e(1−M2)/2;
(2) if ξ ∼ Bernoulli(1/2), then TV(L(W),N(0,1)) ≤ e−M2/2.

The following two lemmas characterize the law of X = g(A,B0,B1) when ei-
ther HG

0 or HG
1 in (15) holds.

LEMMA 3. Suppose HG
0 holds and N ≥ 2p ≥ 6. Let M ≥ √

6 logN . Then

TV
(
L(X),P0

) ≤ 1

p
.(24)

LEMMA 4. Suppose HG
1 holds with N ≥ 2p, p ≥ 2κ and κ ≥ 20. Let k =

�κ/20�. Let M ≥ √
6 logN and μ ≤ 1

2M
in (19). Then there exists a prior π on

M = M(p, k,
2μp
N

) such that for Pπ(·) = ∫
M Pθ (·)π(dθ),

TV
(
L(X),Pπ

) ≤ 1

p
+ 40k

(
e

4

)5k

+ 2k exp
(
−4k log

p

20k

)
.(25)

REMARK 3. A careful examination of the proof of Lemma 4 in Section 6.4
reveals that the prior π is in fact supported on a subset M̃(p, k, λ) ⊂ M(p, k, λ)

where

M̃(p, k, λ) �
{
θ ∈R

p×p :∃U,V ⊂ [p], s.t. k ≤ |U |, |V | ≤ 20k,
(26)

θij ≥ λ, if (i, j) ∈ U × V, θij = 0 if (i, j) /∈ U × V
}
,
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and λ = 2μp
N

. In other words, any matrix in M̃(p, k, λ) contains a nonzero rectan-
gular submatrix whose row and column support sizes are between k and 20k. This
observation will be useful for studying the hardness of estimation in Section 5.2.

Combining Lemmas 3 and 4, the following theorem shows that any submatrix
detector leads to a test with almost identical error probability for a planted clique
problem, whose parameters (N, κ) depend on the parameters (p, k, λ) of the sub-
matrix detection problem.

THEOREM 3. Assume that p ≥ 40k and λ ≤ 1
2
√

6 log(2p)
. Suppose φ :Rp×p →

{0,1} is a test for distinguishing H0 and H1 in (1) with Type-I+ II error probability
upper bounded by ε, that is,

Pθ0

{
φ(X) = 1

} + sup
θ∈M(p,k,λ)

Pθ

{
φ(X) = 0

} ≤ ε.(27)

Let κ = 20k, N = 2p� and N2 = N/2, where � is the largest positive inte-
ger such that N

√
6 logN ≤ p/λ. Let B0,B1 ∈ R

N2×N2 have i.i.d. entries drawn
from F0 and F1, respectively, with M = √

6 logN and μ = 1
2M

. Then ψ(·) =
φ(g(·,B0,B1)) is a test for the planted clique detection problem (15) whose
Type-I + II error probability is upper bounded by

PHG
0

{
ψ(A) = 1

} + PHG
1

{
ψ(A) = 0

} ≤ ε + β,(28)

where β = 2
p

+ 40k( e
4 )5k + 2k exp(−4k log p

20k
).

PROOF. Let A denote the adjacency matrix of G. By definition, we have M =√
6 logN , while the definition of � ensures that 2μp

N
≥ λ, and the constraint λ ≤

1
2
√

6 log(2p)
guarantees � ≥ 1.

By the definition of the total variation distance, Lemma 3 implies that un-
der HG

0 , ∣∣PHG
0

{
φ

(
g(A,B0,B1)

) = 1
} − P0

{
φ(X) = 1

}∣∣
(29)

≤ TV
(
L

(
g(A,B0,B1)

)
,P0

) ≤ 1

p
� β0.

On the other hand, since 2μp
N

≥ λ, we have M(p, k,
2μp
N

) ⊂ M(p, k, λ). So any
location mixture Pπ of the former can be viewed as a mixture of the latter. Hence,
Lemma 4 implies that under HG

1 ,∣∣PHG
1

{
φ

(
g(A,B0,B1)

) = 0
} − Pπ

{
φ(X) = 0

}∣∣
≤ TV

(
L

(
g(A,B0,B1)

)
,Pπ

)
(30)

≤ 1

p
+ 40k

(
e

4

)5k

+ 2k exp
(
−4k log

p

20k

)
� β1.
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Since β = β0 + β1, the desired error bound (28) follows from

PHG
0

{
φ

(
g(A,A0,W)

) = 1
} + PHG

1

{
φ

(
g(A,A0,W)

) = 0
}

≤ Pθ0

{
φ(X) = 1

} + Pπ

{
φ(X) = 1

} + β0 + β1

≤ Pθ0

{
φ(X) = 1

} + sup
θ∈M(p,k,λ)

Pθ

{
φ(X) = 1

} + β

≤ ε + β,

where the last inequality is due to assumption (27) on φ. �

REMARK 4. Although the reduction scheme g can be implemented in O(N2)

flops, its computational complexity is ill defined since it involves computing sums
of continuous random variables and processing infinitely many bits. This issue will
be addressed by a quantization argument in the next subsection when we deal with
the discretized models.

4.2. Randomized polynomial-time reduction for discretized models. In this
section, we show that with slight modifications, the scheme introduced in Sec-
tion 4.1 can be made into a randomized polynomial-time reduction from the
planted clique problem to the submatrix detection problem under discretized mod-
els in rigorous complexity-theoretic sense.

For the discretized model P(p,t) introduced in Section 3, the reduction scheme
from the planted clique model follows the same steps in Section 4.1, except that
both the input (B0,B1) and the output X are now discretized.

To this end, we first define discrete approximations, denoted by Q0 and Q1, to
the densities f0 and f1 defined in (19). Let w,T be integers to be chosen based on
t,M and N . Recall the quantization operator defined in (13) and that B0 and B1
consist of i.i.d. entries drawn from densities f0 and f1, respectively, which are sup-
ported on [−M,M] by definition. Note that each [(B0)ij ]w is drawn from a distri-
bution with atoms xi and probability mass function (p.m.f.) pi for i ∈ [M2w+1]. To
find a dyadic approximation for the p.m.f., let qi = �pi2T �2−T for i = 2, . . . ,M2w

and q1 = �p12T �2−T + 1 − ∑
i≥2 qi , where

T = �log2 M� + w + 3 log2 N.(31)

Denote by Q0 the discrete distribution with atoms xi and probability masses qi .
Similarly, define Q1 as the dyadic approximation for the distribution of [(B1)ij ]w .

The reduction scheme operates as follows: first, generate B̆i consisting of i.i.d.
entries drawn from Qi for i = 0,1. Next, replace the matrices B0 and B1 in (20)
by their discretized version B̆0 and B̆1, and denote the resulting matrix by B̆ . Ap-
plying (21)–(22) to B̆ , we obtain X̆ and output its quantized version [X̆]t . Imple-
menting the above steps yields a deterministic function

ğ : {0,1}N×N × ([−M,M]w)N2×N2 × ([−M,M]w)N2×N2 → (
2−t

Z
)p×p

,
(32)

(A, B̆0, B̆1) �→ [X̆]t ,
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where [−M,M]w = [−M,M] ∩ 2−w
Z is the quantized interval.

REMARK 5 (Computational complexity of reduction). First we discuss the
complexity for generating the auxiliary random variables used in the reduction
scheme. Note that each (B̆0)ij is drawn from Q0 whose atoms xi can be repre-
sented by �log2 M� + w bits and the p.m.f. qi is a dyadic rational with T bits.
Therefore sampling from the distribution Q0 can be done using the inverse CDF4

by outputting xJ , where J = min{j :
∑j

i=1 qi ≤ U2−T } and U is a random in-
teger uniformly distributed on [2T ]. Consequently, sampling from Q0 requires
O(M2wT ) preprocessing time to compute the CDF, and T fair coin flips and
O(logM +w) time per sample (via binary search). Furthermore, discretizing each
entry X̆ij to [X̆ij ]t involves keeping the first t bits after the binary point, which can
be computed in O(t) time. Therefore we conclude that ğ can be computed using
O((�log2 M� + w + t)N2) number of binary operations.

To summarize, the randomized reduction scheme requires O(N2T ) random bits
and O(M2wT +N2(logM +w + t)) computation, where T is defined in (31). As
we will show in Section 4.3, for all cases of interest in this paper, we can set
N = O(p2) and M,w, t = O(log2 p) = O(log2 N). Therefore, our reduction for
discretized models A �→ ğ(A, B̆0, B̆1) is a randomized polynomial-time reduction.

We now investigate the distributions of [X̆]t under HG
0 and HG

1 , respectively.
The following lemmas are counterparts of Lemmas 3 and 4 for discretized mod-
els. Comparing with the total variation bound (24) and (25), we show that, upon
suitable choices of w depending on (t,N), replacing B0 and B1 with the discrete
versions B̆0 and B̆1 only introduces an extra term of 4/p in the total variation of
L([X̆]t ) to P

t
0 under HG

0 , and to a mixture of the alternative distributions P
t
θ un-

der HG
1 , respectively. This objective is accomplished by putting the support of Q0

and Q1 on a finer grid than that of the output X̆, that is, choosing w > t , which is
essential for controlling the approximation error in the output distribution incurred
by quantizing the input.

LEMMA 5. Let N ≥ 2p ≥ 6. Let w ∈ N satisfy

w ≥ t + 6 log2 N.(33)

Then under HG
0 ,

TV
(
L

([X̆]t
)
,Pt

0
) ≤ 5

p
.(34)

4More sophisticated random number generators for discrete distributions (such as Walker’s alias
method which requires linear time for preprocessing and constant time per sample) can be found
in [26], Section 3.4.1.
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LEMMA 6. Suppose HG
1 holds with N ≥ 2p, p ≥ 2κ , κ ≥ 20, k = �κ/20�.

Let M ≥ √
6 logN and μ ≤ 1

2M
. Let w satisfy (33). Then there exists a prior π on

M(p, k,
2μp
N

), such that for Pt
π (·) = ∫

M P
t
θ (·)π(dθ),

TV
(
L

([X̆]t
)
,Pt

π

) ≤ 5

p
+ 40k

(
e

4

)5k

+ 2k exp
(
−4k log

p

20k

)
.(35)

Combining the two lemmas, we obtain the following result analogously to The-
orem 3.

THEOREM 4. Assume that p ≥ 40k and λ ≤ 1
2
√

6 log(2p)
. Suppose φ :

(2−t
Z)p×p → {0,1} is a test for distinguishing Ht

0 and Ht
1 in (14) with Type-I + II

error probability upper bounded by ε, that is,

P
t
0
{
φ

([X]t
) = 1

} + sup
θ∈M(p,k,λ)

P
t
θ

{
φ

([X]t
) = 0

} ≤ ε.(36)

Let κ,N,N2 ∈ N be chosen as in Theorem 3. Let w ∈ N satisfy (33) and
ğ : {0,1}N×N × ([−M,M]w)N2×N2 × ([−M,M]w)N2×N2 → (2−t

Z)p×p be de-
fined in (32). Then ψ(·) = φ(ğ(·, B̆0, B̆1)) is a test for the planted clique detection
problem (15) whose Type-I + II error probability is upper bounded by

PHG
0

{
ψ(A) = 1

} + PHG
1

{
ψ(A) = 0

} ≤ ε + β,(37)

where β = 10
p

+ 40k( e
4 )5k + 2k exp(−4k log p

20k
).

PROOF. In view of the analogy between Lemmas 3–4 and 5–6, the proof fol-
lows the same argument as that in the proof of Theorem 3, except that P0 and Pπ

are replaced by P
t
0 and P

t
π , respectively, g(A,B0,B1) is replaced by ğ(A, B̆0, B̆1),

β0 and β1 in (29) and (30) are both increased by 4/p. �

4.3. Proof of Theorem 2. We start with the lower bound. Without loss of gen-
erality, we can assume that λ ≥ 1/p since when λ < 1/p, both conditions in (7)
hold in the asymptotic regime (5), and the problem is statistically impossible. Let
the sequence {(k(p), λ(p))} satisfy (5) and (16). Let {φp} be a sequence of ran-
domized polynomial time tests. For conciseness we drop the indices in k(p), λ(p)

and φp . Suppose for the sake of contradiction that

lim inf
p→∞

(
P

t
0
{
φ

([X]t
) = 1

} + sup
θ∈M(p,k,λ)

P
t
θ

{
φ

([X]t
) = 0

})
<

2

3
.(38)

Choose κ and N as in Theorems 3–4, that is, κ = 20k and N = 2p� where
� is the largest integer such that N

√
6 logN ≤ p/λ. Since the first condition

in (16) implies that λ ≤ Cp/k2+δ for some constant C and all sufficiently large p,
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we have 2κ2+δ/2
√

6 log(2κ2+δ/2) ≤ p/λ and hence � ≥ �κ2+δ/2/p� for all suffi-

ciently large p. Similarly, the second condition in (16) implies that λ ≤ 1
2
√

6 log(2p)

for all sufficiently large p and consequently, � ≥ 1. Using the simple fact that
x�y/x�∨ x ≥ y/2 for all x, y > 0, we conclude that N = 2p� ≥ κ2+δ/2 ∨ (2p) for
all sufficiently large p, hence

lim inf
p→∞

logκ

logN
≤ 1

2 + δ/2
<

1

2
.(39)

On the other hand, we have N ≤ p/λ ≤ p2, where the last inequality holds
since we have assumed λ ≥ 1/p. Applying Theorem 4 with w = 16�log2 p� ≥
t + 12 log2 p ≥ t + 6 log2 N , we conclude from (38) that the randomized test
ψ(·) = φ(ğ(·, B̆0, B̆1)) satisfies

lim inf
p→∞

(
PHG

0

{
ψ(A) = 1

} + PHG
1

{
ψ(A) = 0

})
<

2

3
.(40)

In view of Remark 5, A �→ ğ(A, B̆0, B̆1) is a randomized polynomial-time reduc-
tion. By the assumption on φ, ψ as a composition of φ and ğ is a randomized
polynomial-time test for PC(N, κ). Therefore, (40) contradicts Hypothesis 1 in
view of (39).

It remains to show the upper bound. Denote the linear and maximum test statis-
tics computed on the discretized matrix [X]t by Tlin and Tmax, respectively. If the
first condition in (17) holds, that is, λk2/p → ∞, in view of Lemma 1 and Re-
mark 1, we have E(1{Tlin>τ }) → 0 where τ is defined in Lemma 1. If the second
condition in (17) holds, recall τ ′′ = √

(4 + c) logp defined in Lemma 1. If the
constant c is sufficiently small such that lim infp→∞ λ/τ ′′ > 1, then following the
reasoning in Remark 1, it is straightforward to verify that E(1{Tmax>τ ′′}) → 0. This
completes the proof.

5. Discussion. In this paper, assuming the planted clique hypothesis, we have
demonstrated a phase transition phenomenon on gaps between the optimal statis-
tical performance with and without computational complexity constraints for the
submatrix detection problem. The hardness result in Theorem 2 has important con-
sequences on the hardness of two related problems, namely, support recovery and
matrix estimation under submatrix sparsity, both of which are more difficult than
detection and require stronger signal level. To discuss computational complexity of
statistical procedures, we focus on the discretized models introduced in Section 3
throughout the current section.

5.1. Support recovery. As previously studied in [28], the goal of support re-
covery is to identify the minimum λ such that, under the alternative hypothesis H1
in (1), the submatrix can be consistently located. According to Theorems 1 and 2
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of [28], for all k ≤ p/2, one needs λ = �(
√

log(p)/k) to recover the support con-
sistently under the parameter space (2). Compared with (6)–(7), this coincides with
the minimum signal strength required for detecting the submatrix when k = O(pα)

for α < 2/3, but is much larger when k = �(pα) for α > 2/3.
Intuitively, locating the submatrix is more difficult than detecting the mere ex-

istence thereof. Therefore, the complexity theoretic limit for support recovery
should also exceed that of detection. This claim, however, does not follow im-
mediately since support recovery only deals with the alternative hypothesis (2),
and the null hypothesis is excluded from the parameter set. To provide a rigor-
ous argument, for λ = �(

√
log(p)/k), given a support estimator (Û , V̂ ) such that

supθ∈M Pθ {(Û , V̂ ) �= (U,V )} ≤ ε, we can construct a test for (1) which rejects if
T = ∑

i∈Û ,j∈V̂ Xij exceeds τ ′ defined in Lemma 1. Since T is at most Tscan, the
same argument in the proof of Lemma 1 shows that the Type-I + II error proba-
bility for this test is upper bounded by ε plus the right-hand side of (11), which
vanishes when p,k → ∞. This implies that the minimal λ achievable by compu-
tationally efficient support estimators is at least a constant factor of that required
by computationally efficient submatrix detectors. Therefore, Theorem 2 implies
that no randomized polynomial-time algorithm can achieve consistent support re-
covery when condition (16) holds. This resolves in the negative the open question
raised in [8], Section 5, on the existence of computationally efficient minimax pro-
cedures in the regime of k = O(pα) for any α < 2/3. It remains open to determine
whether the statistically optimal support recovery can be achieved computationally
efficiently when k = �(pα) for α > 2/3.

5.2. Hardness of estimation depends on norm. We now consider the computa-
tional aspect of the related problem of estimating the mean matrix with submatrix
sparsity under squared norm losses. Denote the set of k × k-sparse matrices by

F(p, k) = {
θ ∈R

p×p :∃U,V ⊂ [p], s.t. |U |, |V | ≤ k,
(41)

θij = 0 if (i, j) /∈ U × V
}
,

which includes both the zero matrix and the set M̃(p, �k/20�, λ) [defined in (26)]
for any λ > 0.

Given the noisy observation X = θ +Z, where Z consists of standard Gaussian
entries, the minimax risk

�‖·‖(p, k)� inf
θ̃

sup
θ∈F(p,k)

E‖θ̃ − θ‖2(42)

has been obtained in [34], Section 4, within universal constant factors using convex
geometry and information-theoretic arguments for all unitarily invariant norms,5

5To be precise, note that the minimax rates in [34] are obtained for the Gaussian model. Since
the loss function is unbounded, one cannot directly conclude from asymptotic equivalence that the
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in particular, satisfies

k‖Ik‖2 � �‖·‖(p, k)� k‖Ik‖2 log
ep

k
.

Capitalizing on the hardness result of detecting submatrices in Theorem 2, we
show that the minimax estimation rates corresponding to certain norm losses can-
not be attained by computationally efficient methods. For conciseness, let us focus
on the class of Schatten-q norms ‖ · ‖Sq , defined as the �q -norm of singular values
for q ∈ [1,∞]. The minimax rate is given by (see [34], Example 1)

�Sq (p, k) � k2/q+1 + k(2/q)∨1 log
ep

k
,(43)

which is within a logarithmic term of k2/q+1. Next we discuss the computational
cost of estimation by focusing on the asymptotic regime where k = �(pα) for
some α ∈ (0,1). In view of the relationship between testing and estimation, we
can use the construction in Lemmas 3–4 for the detection problem

H0 : θ = 0 versus H1 : θ ∈ M̃
(
p, �k/20�, λ)

as a two-point lower bound. Note that for any θ ∈ M̃(p, �k/20�, λ) and any
q ∈ [1,∞], ‖θ‖Sq ≥ ‖θ‖S∞ = �(kλ). Assuming Hypothesis 1, we conclude that
the squared Schatten-q norm risk achievable by any randomized polynomial-time
estimator is at least �(k2λ2) for any λ satisfying (16). Thus, for any constant

δ > 0, the worst-case risk is at least �(k−δ(k2 ∧ p2

k2 )). Note that this lower bound
is not monotonic in k and can be easily improved to

�
(
k−δ(k2 ∧ p

))
(44)

since the risk is clearly nondecreasing in k.
On the constructive side, an estimation error of

O

(
k(2/q+1)∨2 log

ep

k
∧ p2/q+1

)
(45)

in squared Schatten-q norm can be achieved in polynomial time. To see this, first
note that treating a k × k-sparse matrix as a k2-sparse vector in p2-dimensional
space and applying entrywise hard thresholding yields an estimator θ̂ whose mean-
square error (i.e., squared Frobenius or Schatten-2 norm) is at most O(k2 log ep

k
).

Then we project θ̂ into the space of row-sparse matrices to obtain θ̃ by choosing
the k rows of θ̂ of the largest �2-norm and set the remaining rows to zero. Since the
estimand θ also has k nonzero rows, applying the triangle inequality yields E‖θ̃ −

same rate applies to the discretized model. Nevertheless, it is straightforward to extend the arguments
in [34], Section 4.1, to show that the rate of �‖·‖(p, k) applies to the discretized model in Section 3
as long as t = �(

√
logp), independent of the unitarily invariant norm. In particular, the lower bound

in [34], Section 4.1.1, applies verbatim due to the data processing inequality of the KL divergence,
which is attained by the same estimator defined in [34], Section 4.1.2, if 2−t ≤ 1/

√
p.
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θ‖2
S2

= O(k2 log ep
k

), which implies E‖θ̃ − θ‖2
Sq

= O(k(2/q+1)∨2 log ep
k

), since

‖ · ‖Sq ≤ (1 ∨ k1/q−1/2)‖ · ‖S2 for all rank-k matrices. Finally, simply estimating θ

by the observation X achieves O(p2/q+1).
Comparing the minimax rate (43) with the computationally lower and upper

bounds (44)–(45), we obtain the following result, assuming Hypothesis 1:

• For q ∈ [1,2], using the entrywise thresholding estimator defined above, the
minimax rate is attained within a logarithmic factor simultaneously for all k;

• For q ∈ (2,∞], the minimax rate �Sq (p, k) cannot be attained by computa-
tionally efficient estimator if k = �(pα) for all α ∈ (0,

q
2+q

). In this regime,
entrywise thresholding is optimal within a sub-polynomial factor among all ran-
domized polynomial-time procedures.

More generally, one can show that for all quadratic norms (see [12], page 95),
entrywise thresholding is near optimal (within a sub-polynomial factor) among
all computationally efficient estimators. This extends the above result since
Schatten-q norm is quadratic if and only if q ∈ [2,∞].

6. Proofs. We present below the proofs of Lemmas 1–4. The proofs of Theo-
rem 1 and Lemmas 5 and 6 are deferred to the supplement [35].

6.1. Proof of Lemma 1. Under P0, Tlin ∼ N(0,1), hence P0{Tlin > τ } = ��(τ).
Under Pθ for any θ ∈ M, Tlin ∼ N(θ̄,1), where θ̄ � 1

p

∑
θij ≥ k2λ

p
by the def-

inition of M. Therefore Pθ {Tlin ≤ τ } ≤ ��(τ). Then (10) follows in view of the
Chernoff bound ��(τ) ≤ 1

2 exp(−τ 2/2).

By the union bound, P0{Tscan > τ ′} ≤ (p
k

)2
P0{∑k

i,j=1 Xij > kτ ′} ≤(p
k

)2 exp(−τ ′2/2) ≤ exp(− c
2 log

(p
k

)
). For any θ ∈ M, denote by U ×V the support

of θ . Then |U |, |V | ≥ k. Let I, J be independently and uniformly drawn at random
from all subsets of cardinality k of U and V , respectively. Then E[∑i∈I,j∈J θij ] ≥∑

i∈U,j∈V θijE[1{i∈I }1{j∈J }] = k2

|U ||V |
∑

i∈U,j∈V θij ≥ λk2. Therefore there ex-

ist S ⊂ U and T ⊂ V , such that |S| = |T | = k and
∑

i∈S,j∈T θij ≥ λk2.
Then

∑
i∈S,j∈T Xij ∼ N(μ,k2), where μ ≥ λk2. Therefore Pθ {Tscan ≤ τ ′} ≤

Pθ {∑i∈S,j∈T Xij ≤ kτ ′} ≤ exp(− (μ−kτ ′)2+
2k

) ≤ exp(−1
2(λk − τ ′)2+).

The desired bound (12) on Tmax follows from analogous arguments since Tmax
coincides with Tscan with parameter k = 1.

6.2. Proof of Lemma 2. For the first claim, the marginal density function of
W is f1 in (19). So by definition,

TV
(
L(W),N(μ,1)

) = 1

2

∫
R

∣∣f1(x) − ϕ(x − μ)
∣∣ dx = ��(M − μ) + ��(M + μ)

≤ 2��(M − μ) ≤ exp
(−(M − μ)2/2

) ≤ exp
(−(

M2 − 1
)
/2

)
,
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were the last inequality is due to the fact that for any 0 < μ ≤ 1
2M

, (M − μ)2 ≥
(M − 1

2M
)2 ≥ M2 − 1. For the second claim, the marginal density function of W

is f = 1
2(f0 + f1) = c0ϕ(x)1{|x|≤M}. Thus

TV
(
L(W),N(0,1)

) = 1

2

∫
R

∣∣c0ϕ(x)1{|x|≤M} − ϕ(x)
∣∣ dx = 2��(M)

≤ exp
(−M2/2

)
.

This completes the proof.

6.3. Proof of Lemma 3. We need the following result on the total variation
between product distributions.

LEMMA 7. TV(
∏n

i=1 Pi,
∏n

i=1 Qi) ≤ ∑n
i=1 TV(Pi,Qi).

PROOF. Recall the dual representation of the total variation [40],

TV(P,Q) = min
PAB

{
P{A �= B} :PA = P,PB = Q

}
(46)

with infimum over all couplings of P and Q. Denote by PAiBi
the optimal coupling

of Pi and Qi so that P{Ai �= Bi} = TV(Pi,Qi). Then
∏n

i=1 PAiBi
is a coupling

between the product measures, and the conclusion follows from the union bound.
�

PROOF OF LEMMA 3. Let B̃ ∈ R
N2×N2 have i.i.d. N(0,1) entries and be in-

dependent of A. Let X̃ ∈ R
p×p be obtained by applying operations (21) and (22)

to B̃ instead of B . Then it is straightforward to verify that X̃ has i.i.d. N(0,1)

entries, that is, L(X̃) = P0. Hence

TV
(
L(X),L(X̃)

) ≤ TV
(
L(B),L(B̃)

)
= TV

(
N2∏

i,j=1

L(Bij ),

N2∏
i,j=1

N(0,1)

)
(47)

≤
N2∑

i,j=1

TV
(
L(Bij ),N(0,1)

) ≤ N2
2 e−M2/2 = 1

4N
.

Here, the first inequality is due to the data processing inequality for the total vari-
ation [17], the second last inequality is due to Lemma 7 and the last inequality is
due to Lemma 2. �
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6.4. Proof of Lemma 4. Recall that N is even with N2 = N/2. When A ∼
G(N,1/2, κ), let V ⊂ [N ] denote the vertex subset of size κ on which the planted
clique in A is supported. For any subset S ⊂ {N2 + 1, . . . ,N}, we have S − N2 ⊂
[N2]. Further define

V1 = (
V ∩ {N2 + 1, . . . ,N}) − N2, V2 = V ∩ [N2].(48)

Then |V1| + |V2| = κ , and the A0 matrix has all ones on V1 × V2 and i.i.d.
Bernoulli(1/2) entries elsewhere. Define h : [N2] → [p] by

h(x) = 1 + (x − 1)modp.(49)

For i = 1,2, let

Ui = h(Vi).(50)

By the definition of X, for each a, b ∈ [p], we can define sets

Nab �
[
h−1(a) × h−1(b)

] \ (V1 × V2),(51)

Tab �
[
h−1(a) × h−1(b)

] ∩ (V1 × V2).(52)

1◦ We first show that the event

E = {|U1| ≥ k
} ∩ {|U2| ≥ k

}
(53)

occurs with high probability. To this end, first note that

P
{|V1| < κ/4

} ≤
κ/4∑
j=1

(N2
j

)( N2
κ−j

)
(N
κ

) ≤ κ

4

(N2
κ/4

)( N2
3κ/4

)
(N
κ

) = κ

4

( κ
κ/4

)( N−κ
N2−κ/4

)
(N
N2

)
(54)

≤ κ

4

(
e

4

)κ/4
√

2N

N − κ
≤ κ

2
√

2

(
e

4

)κ/4

,

where the second inequality is due to the fact that j �→ (N2
j

)( N2
κ−j

)
is increasing

for j ≤ (κ − 1)/2, the third inequality is by the bound on the central binomial
coefficient 22n√

4n
≤ (2n

n

) ≤ 22n√
2n

[29], equation (2.12), and
(n
k

) ≤ ( en
k

)k and the last

inequality is due to N ≥ 2κ . By symmetry, since |V1| (d)= |V2| and |V1| + |V2| = κ ,
P{|V2| < κ/4} = P{|V1| > 3κ/4} also satisfies the upper bound (54).

Note that conditioning on the size |V1| = κ1, the set V1 is chosen uniformly at
random among all κ1 subsets of [N2]. Thus, for any κ1 ∈ [κ/4,3κ/4] and c0 =
1/20,

P
{|U1| < c0κ||V1| = κ1

} ≤
c0κ∑

j=�κ1/��

(p
j

)(j�
κ1

)
(N2
κ1

) ≤ c0κ

( p
c0κ

)(c0κ�
κ1

)
(N2
κ1

)
≤ c0κ

(
ep

c0κ

)c0κ(
ec0κ�

κ1

)κ1( κ1

N2 − κ1

)κ1
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≤ c0κ exp
(
c0κ log

ep

c0κ
− κ

4
log

N2 − κ

ec0κ�

)
≤ κ

20
exp

(
−κ

5
log

p

κ

)
.

Here the first inequality is because j �→ (p
j

)(j�
κ1

)
is increasing for j ≤ (p − 1)/2,

the last inequality holds under the assumption that κ ≥ 20 and p ≥ 2κ . Since k =
�κ/20�, the last two displays together lead to

P
{|U1| < k

} ≤
κ∑

κ1=0

P
{|U1| < κ/20||V1| = κ1

}
P

{|V1| = κ1
}

≤ P
{|V1| < κ/4

} + P
{|V1| > 3κ/4

}
+ max

κ1∈[κ/4,3κ/4]P
{|U1| < κ/20||V1| = κ1

}
≤ κ

(
e

4

)κ/4

+ κ

20
exp

(
−κ

5
log

p

κ

)
,

and the union bound further leads to

P
{
Ec} ≤ 2P

{|U1| < k
} ≤ 2κ

(
e

4

)κ/4

+ κ

10
exp

(
−κ

5
log

p

κ

)

≤ 40k

(
e

4

)5k

+ 2k exp
(
−4k log

p

20k

)
.

(55)

2◦ Conditioned on V , we generate a random matrix B̃ = (B̃ij ) ∈ R
N2×N2 with

independent entries where

B̃ij ∼ N(μ,1) if (i, j) ∈ V1 × V2, B̃ij ∼ N(0,1) otherwise.(56)

Then we apply (21) and (22) to B̃ instead of B to obtain a p × p random ma-
trix X̃. The intuition is that B̃ and X̃ correspond to the ideal input and output of
the reduction scheme, in the sense that the L(X̃) is, as we show next, close to a
desired mixture on the alternative hypotheses. Our choice of the distribution F0
and F1 ensures that B is close to the ideal case B̃ in total variation, and the data
processing inequality guarantees that the output X is also close to X̃.

To this end, note that conditioned on V , for each a, b ∈ [p], we have

X̃ab = 1

�

∑
i∈h−1(a),j∈h−1(b)

B̃ij = 1

�

( ∑
(i,j)∈Nab

B̃ij + ∑
(i,j)∈Tab

B̃ij

)
,(57)

where the sets Nab and Tab are defined in (51) and (52), respectively. The last
two displays together imply that X̃ab follows the Gaussian distribution with unit
variance and mean E[X̃ab] = μ|Tab|

�
. Since for any (a, b) ∈ (U1,U2), |Tab| ≥ 1,

we have E[X̃ab] ≥ μ
�

= 2μp
N

. Last but not the least, since the entries of X̃ are
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sums of mutually independent random variables, they are mutually independent
themselves. Note that for each fixed V [and hence fixed (V1,V2) and (U1,U2)],
1E is deterministic. Therefore, for any V such that 1E = 1, there exists some θ =
θ(V ) ∈ M(p, k,

2μp
N

) such that L(X̃|V ) = Pθ . Define the probability distribution

π = L(θ(V )|E), which is supported on the set M(p, k,
2μp
N

). Then L(X̃|E) = Pπ ,

which is a mixture of distributions of {Pθ : θ ∈ M(p, k,
2μp
N

)} with respect to the
prior π .

It remains to show that the law of X is close to the mixture Pπ . By the convexity
of the (P,Q) �→ TV(P,Q), we have

TV
(
L(X),L(X̃)

) ≤ EV

[
TV

(
L(X|V ),L(X̃|V )

)]
≤ EV

[
TV

(
L(B|V ),L(B̃|V )

)]
(58)

≤
N2∑

i,j=1

TV
(
L(Bij |V ),L(B̃ij |V )

)

≤ N2
2 e(M2−1)/2 ≤ e1/2

4N
≤ 1

p
,

where the second inequality is by the data processing inequality, the third inequal-
ity is due to Lemma 7 since conditioned on V both B and B̃ have independent en-
tries, and the fourth inequality is by Lemma 2, and the last inequality follows from
the assumption that M ≥ √

6 logN . Finally, using TV(L(X̃),L(X̃|E)) = P{Ec},
we obtain

TV
(
L(X),Pπ

) ≤ TV
(
L(X),L(X̃)

) + TV
(
L(X̃),L(X̃|E)

)
(59)

≤ 1

p
+ P

{
Ec},

where the last inequality is due to (58). In view of (55), this completes the proof.

SUPPLEMENTARY MATERIAL

Supplement to “Computational barriers in minimax submatrix detection”
(DOI: 10.1214/14-AOS1300SUPP; .pdf). We provide proofs of Theorem 1 and
Lemmas 5 and 6.
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