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Deep learning is the trendiest tool in a computational biologist’s toolbox. This exciting

class of methods, based on artificial neural networks, quickly became popular due to its

competitive performance in prediction problems. In pioneering early work, applying

simple network architectures to abundant data already provided gains over traditional

counterparts in functional genomics, image analysis, and medical diagnostics. Now,

ideas for constructing and training networks and even off-the-shelf models have been

adapted from the rapidly developing machine learning subfield to improve performance in

a range of computational biology tasks. Here, we review some of these advances in the

last 2 years.

Introduction
In 2017, it is impossible to avoid the buzz around deep learning. Deep neural networks appear to be a
hammer that can crack any nut put in its way, and are thus applied in nearly all areas of research and
industry. Originally inspired by models of brain function, neural networks comprise layers of inter-
connected compute units (neurons), each calculating a simple output function from weighted incom-
ing information (Box 1 and references therein). Given a well-chosen number of neurons and their
connectivity pattern, these networks have a seemingly magical ability to learn the features of input
that discriminate between classes or capture structure in the data. All that is required is plenty of
training examples for learning.
There are two main reasons why deep learning is appealing to computational biologists. First, this

powerful class of models can, in principle, approximate nearly any input to output mapping if pro-
vided enough data [1]. For example, if the goal is to predict where a transcription factor binds, there
is no need to restrict the expressivity of the model to only consider a single sequence motif. Second,
deep neural networks can learn directly from raw input data, such as bases of DNA sequence or pixel
intensities of a microscopy image. Contrary to the traditional machine learning approaches, this obvi-
ates the need for laborious feature crafting and extraction and, in principle, allows using the networks
as off-the-shelf black box tools. As large-scale biological data are available from high-throughput
assays, and methods for learning the thousands of network parameters have matured, the time is now
ripe for taking advantage of these powerful models.
Here, we present the advances in applications of deep learning to computational biology problems

in 2016 and in the first quarter of 2017. There are several reviews that broadly cover the content and
history of deep learning [2,3], as well as the early applications in various domains of biology [4]. We
do not attempt to replicate them here, but rather highlight interesting ideas, and recent notable
studies that have applied deep neural networks on genomic, image, and medical data.

Genomics
The main focus of deep learning applications in computational biology has been functional genomics
data. Three pioneering papers [5–7] generalized the traditional position weight matrix model to a con-
volutional neural network (Box 1, reviewed in ref. [4]), and demonstrated the utility for a range of
readouts. All these studies used a multilayer network structure to combine base instances into
sequence motifs, and motif instances into more complex signatures, followed by fully connected layers
to learn the informative combinations of the signatures.
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New applications to functional genomics data
After demonstrations that deep learning models can outperform traditional approaches in functional genomics,
they were widely adopted. Similar convolutional architectures have been applied to predict DNA sequence con-
servation [8], identify promoters [9] and enhancers [10], detect genetic variants influencing DNA methylation
[11], find translation initiation sites [12], map enhancer–promoter interactions [13], and predict transcription
factor binding [14]. We present a list of recent studies in the Appendix to this article.
The applications of deep neural networks are not limited to genomic sequences. For example, CODA [15]

applies a convolutional neural network to paired noisy and high-quality ChiP-seq datasets to learn a generaliz-
able model that reduces the noise caused by low cell input, low sequencing depth, and low signal-to-noise ratio.
Convolutional neural networks have also been used to predict genome-wide locations of transcription start sites
from DNA sequence, RNA polymerase binding, nucleosome positioning and transcriptional data [16], as well
as gene expression from histone modifications [17], 3D chromatin interactions from DNA sequence and chro-
matin accessibility [18], DNA methylation from single-cell bisulfite sequencing data [19], and protein binding
to RNA from the primary, secondary, and tertiary structures [20] or other features [21].
Fully connected neural networks (Box 1) are often used for standard feature-based classification tasks. In genom-

ics, they have been applied to predict the expression of all genes from a carefully selected subset of landmark genes
[22], predict enhancers, [23] and to distinguish active enhancers and promoters from background sequences [24].
An early study also applied an architecture with three hidden layers and 60 neurons to estimate historical effective
population size and selection for a genomic segment with reasonable results [25]. However, carefully chosen
summary statistics were used as input, so there were limited gains from the traditional benefit of a network being
able to figure out relevant features from raw data. While demonstrating good performance, these applications do
not make use of the recent advances in neural network methodologies, and we do not describe them further.

Variant calling from DNA sequencing
With the development of high-throughput sequencing technology, models for the produced data and errors
were created in parallel [26,27] and calibrated on huge datasets [28]. Perhaps surprisingly, deep neural networks
provided with plenty of data can achieve high accuracies for variant calling without explicitly modeling sources
of errors. A four-layer dense network considering only information at the candidate site can achieve reasonable
performance [29,30]. Poplin and colleagues further converted the read pileup at a potential variable site into a
221 × 100-pixel RGB image, and then used Inception-v2 [31], a network architecture normally applied in
image analysis tasks, to call mutation status [32]. Base identity, base quality, and strand information were
encoded in the color channels, and no additional data were used. This approach won one of the categories of
the Food and Drug Administration administered variant calling challenge; the authors ascribe its performance
to the ability to model complex dependencies between reads that other methods do not account for.
The advantage of deep neural network models also seems to hold for other sequencing modalities. Nanopore

sequencing calls convert currents across a membrane with an embedded 5-mer containing pore into bases. One
would, thus, expect that a hidden Markov model with four-base memory describes the data adequately, but a
recurrent neural network (Box 1) with arbitrary length memory performs even better [33].

Recent improvements to convolutional models
Building on the successes mentioned above, the basic convolutional model has been improved for accuracy,
learning rate, and interpretability by incorporating additional intuition from data and ideas from machine
learning literature.

Incorporating elements of recurrent neural networks
Three convolutional layers could capture the effects of multiple nearby regulatory elements such as transcrip-
tion factor binding sites [7]. DanQ [34] replaced the second and third convolutional layers with a recurrent
neural network (Box 1), leading to a better performance. In principle, using a recurrent neural network allows
extracting information from sequences of arbitrary length, thus better accounting for long-range dependencies
in the data. While the DanQ model consisted of convolutional, pooling, recurrent, and dense layers,
DeeperBind [35] omitted the pooling layers, thus allowing them to retain complete positional information in
the intermediate layers. SPEID [13] further proposed an elegant way to modify the DanQ network by taking
sequence pairs, rather than single-DNA sequences, as input, to predict enhancer–promoter interactions. In an

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY).

258

Emerging Topics in Life Sciences (2017) 1 257–274

https://doi.org/10.1042/ETLS20160025

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

o
rtla

n
d
p
re

s
s
.c

o
m

/e
m

e
rg

to
p
life

s
c
i/a

rtic
le

-p
d
f/1

/3
/2

5
7
/4

8
1
5
1
1
/e

tls
-2

0
1
6
-0

0
2
5
c
.p

d
f b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Box 1. Common neural network models

Neuron, activation function, and neural network

Synopsis: A neuron (left) is the basic compute unit of a neural network. Given the values x1…

xN of all N inputs, it calculates its total input signal by weighting them with the learned weights

w1…wN. The total input w1x1 + ··· +wNxN is then passed to an activation function [e.g. rectified

linear unit, pictured, y =max(0, w1x1 + ··· +wNxN) or sigmoid, y = 1/(1 + exp(−w1x1− ··· −wNxN)]

that calculates the neuron output, propagated to be the input for the next layer of neurons. In a

dense, multilayer network (right), the data are fed as input to the first layer, and the output is

recorded from the final layer activations (green).

Useful for: general purpose function estimation. Fully connected neurons are often employed in

final layer(s) to tune the network to the required task from features calculated in previous layers.

Classical analogy: hierarchical models, generalized linear models

In-depth review: ref. [2].

Convolutional Neural Networks
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Synopsis: These networks harbor special convolutional neurons (‘filters’, different colors in A,

F) that are applied one by one to different parts of the input (B–E for four example image parts)

with the same weights. This allows the same pattern to be matched regardless of its position

in the data (different image patches in example) and therefore reduces the number of para-

meters that need to be learned. Convolutional networks have one or more layers of convolu-

tional neurons that are typically followed by deeper fully connected layers to produce the

output (bottom).

Useful for: learning and detecting patterns. Convolutional neurons are usually added in lower-

level layers to learn location-independent patterns and pattern combinations from data.

Classical analogy: position weight matrix (DNA sequence), Gabor filters (images)

In-depth review: ref. [4]

Recurrent Neural Networks

Synopsis: Recurrent neural networks typically take sequential data as input (bottom) and

harbor connections between neurons that form a cycle. This way, a ‘memory’ can form as an

activation state (darkness of neuron) and be retained over the input sequence thanks to its cyc-

lical propagation.

Useful for: modeling distant dependencies in sequential data.

Classical analogy: Hidden Markov Models

In-depth review: ref. [36].

Autoencoders
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interesting application, DeepCpG [19] combined a nucleotide-level convolutional neural network with a bidir-
ectional recurrent neural network to predict binary DNA methylation states from single-cell bisulfite sequen-
cing data. An important caveat to the general applicability of recurrent neural networks is that they can be
difficult to train, even with the recent improvements in methodology [8,36].

Reverse complement parameter sharing
Shrikumar et al. [37] noted that convolutional networks for DNA learn separate representations for the
forward and reverse complement sequences. This led to more complicated and less stable models that some-
times produced different predictions from the two strands of the same sequence. To overcome these limitations,
they implemented new convolutional layers that explicitly share parameters between the forward and reverse
complement strands. This improved model accuracy, increased learning rate, and led to a more interpretable
internal motif representation.

Incorporating prior information
A key advantage of neural networks is that, given sufficient data, they learn relevant features directly. However,
this also means that it is not straightforward to incorporate prior information into the models. For example,
the binding preferences for many RNA- and DNA-binding proteins are already known and cataloged [38,39].
To take advantage of this information, the authors of OrbWeaver [40] fixed the first layer convolutional filters
to 1320 known transcription factor motifs and found that on their small dataset of three cell types, this

Synopsis: Autoencoders are a special case of a neural network, in which input information is

compressed into a limited number of neurons in a middle layer, and the target output is the

reconstruction of the input itself.

Useful for: unsupervised feature extraction

Classical analogy: independent components analysis

In-depth review: ref. [100].

Generative Adversarial Networks

Synopsis: a two-part model that trains both a generative model of the data and a discrimina-

tive model to distinguish synthetic data from real. The two parts compete against each other,

the generator tries to generate images that are passed as real, and the discriminator attempts

to correctly classify them as synthetic.

Useful for: building a generative model of the data

Classical analogy: generative probabilistic models

Proposing paper: ref. [81]
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configuration outperformed a classical network that tried to learn motifs from the data. Furthermore, the fixed
motifs were easier to interpret with DeepLIFT [41]. Similarly, the authors of DanQ [34] increased the accuracy
of the model by initializing 50% of the convolutional filters in the first layer with known transcription factor
motifs, but allowing them to change during training.

Biological image analysis
As some of the most impressive feats of deep neural networks have been in image analysis tasks, the expecta-
tions are high for their utility in bioimage analyses. Microscopy images are processed with manufacturer’s soft-
ware (e.g. PerkinElmer Acapella) or community-driven tools such as CellProfiler [42], EBImage [43], or Fiji
[44] that have evolved to user demands over many years. What capabilities have neural networks recently
added to this rich existing toolbox?

Image segmentation
Segmentation identifies regions of interest, such as cells or nuclei, within a microscopy image, a task equivalent
to classifying each pixel as being inside or outside of the region. The early neural network applications trained
a convolutional network on square image patches centered on labeled pixels [45] and performed well in open
challenges [46]. Recently, Van Valen et al. adopted this approach in a high-content screening setting and used
it to segment both mammalian and bacterial cells [47]. Perhaps most importantly, they identified the optimal
input size to the neural network to be similar to the typical size of the region of interest.
An alternative to classifying the focal pixel within its surrounding region is to perform end-to-end image

segmentation. U-net [48] achieved this with a fully convolutional design, where image patch features are calcu-
lated at a range of resolutions by convolution and pooling, and then combined across the resolutions to
produce a prediction for each pixel. The architecture of the network, therefore, included links that feed the
early layer outputs forward to deeper layers in order to retain the localization information. Segmentation
approaches have since been extended to handle 3D images by applying U-net to 2D slices from the same
volume [49], and by performing 3D convolutions [50].
Recent applications of deep neural networks to segment medical imaging data have been thoroughly reviewed

elsewhere [51–53]; we cover some histopathology studies in the Appendix to this article.

Cell and image phenotyping
Segmenting regions of interest is the starting point of biological image analysis. One desired end product is a
cell phenotype, which captures cell state either qualitatively or quantitatively [54]. Previous methods for obtain-
ing phenotypes have ranged from low-level image processing transforms that can be applied to any image
(Gabor or Zernicke filters, Haralick features, a range of signal processing tools, [55]), to bespoke crafting of fea-
tures that precisely capture the desired image characteristic in a given dataset [56,57] and unsupervised cluster-
ing of full images [58]. An important intermediate approach is to learn informative features from a given
dataset de novo, a task that deep neural networks excel at.
A recurring phenotyping problem is to identify the subcellular localization of a fluorescent protein.

Pärnamaa and Parts used convolutional neural networks with a popular design (e.g. also applied for plant phe-
notyping, [59]) to solve this task with high accuracy for images of single yeast cells [60] obtained in a high-
content screen [56]. They employed eight convolutional layers of 3 × 3 filters interspersed with pooling steps,
which were followed by three fully connected layers that learn the feature combinations that discriminate orga-
nelles. The learned features were interpretable, capturing organelle characteristics, and robust, allowing us to
predict previously unseen organelles after training on a few examples. The authors further combined cell-level
predictions into a single, highly accurate, protein classification. A team from Toronto demonstrated on the
same unsegmented data that are possible to identify a localization label within a region and an image-level
label with convolutional neural networks in a single step [61]. This has the advantage that only image-level
labels are used, precluding the need to perform cell segmentation first. The output of the model, thus, also pro-
vides a per-pixel localization probability that could further be processed to perform segmentation.
Much of the recent effort has been in obtaining qualitative descriptions of individual cells. Convolutional

neural networks could accurately detect phototoxicity [62] and cell-cycle states [63] from images. An interesting
architecture predicts lineage choice from brightfield timecourse imaging of differentiating primary hematopoi-
etic progenitors by combining convolution for individual micrographs with recurrent connections between

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY).

262

Emerging Topics in Life Sciences (2017) 1 257–274

https://doi.org/10.1042/ETLS20160025

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://p

o
rtla

n
d
p
re

s
s
.c

o
m

/e
m

e
rg

to
p
life

s
c
i/a

rtic
le

-p
d
f/1

/3
/2

5
7
/4

8
1
5
1
1
/e

tls
-2

0
1
6
-0

0
2
5
c
.p

d
f b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


timepoints [64]. Markedly, the lineage commitment can be predicted up to three generations before conven-
tional molecular markers are observed.
Instead of a discrete label, a vector of quantitative features describing the cell or image can be useful in

downstream applications. One approach to calculate this representation is to re-use a network trained on colos-
sal datasets as a feature extractor. For example, cellular microscopy images can be phenotyped using the fea-
tures obtained from such pre-trained networks [65]. Alternatively, autoencoders (Box 1) attempt to reconstruct
the input by a neural network with a limited number of neurons in one of the layers, similar to an independent
component analysis model. Neuron activations in the smallest layer can then be used as features for other
machine learning methods; importantly, these are learned from data each time. This approach has been used to aid
diagnoses for schizophrenia [66], brain tumors [67], lesions in the breast tissue [68,69], and atherosclerosis [70].

Medical diagnostics
The ultimate goal of much of biomedical research is to help diagnose, treat, and monitor patients. The popular-
ity of deep learning has, thus, naturally led to public–private partnerships in diagnostics, with IBM’s Watson
tackling cancer and Google’s DeepMind Health teaming up with the National Health Service in the U.K. While
the models are being industrialized, many interesting advances in applications occurred over the last year.

Self-diagnosis with deep learning
Neural networks have become universally available through mobile applications and web services. Provided
useful pre-trained models, this could allow everyone to self-diagnose on their phone and only refer to the hos-
pital for the required treatments. As a first step toward this vision, the GoogLeNet convolutional neural
network [71] was re-trained on ∼130 000 images of skin lesions, each labeled with a malignancy indicator from
a predefined taxonomy [72]. The classification performance on held-out data was on par with that of profes-
sionally trained dermatologists. Thus, this network could be capable of instantly analyzing and diagnosing
birthmark images taken from regular smartphones, allowing us to detect skin cancer cases earlier and hence
increase survival rates.
The problem, however, is that any one image with a malignant lesion could be marked as benign. A natural

resolution to this issue is to further endow the convolutional neural network with an uncertainty estimate of its
output [73]. This estimate is obtained by applying the model on the same image many times over, but with a
different set of random neurons switched off each time (‘dropout’, [74]). The larger the changes in output in
response to the randomization, the higher the model uncertainty, and importantly, the larger the observed pre-
diction error. Images with large classification uncertainty could then be sent to human experts for further
inspection, or simply re-photographed.
More than images can be captured using a phone. Chamberlain et al. [75] recorded 11 627 lung sounds from

284 patients using a mobile phone application and an electronic stethoscope, and trained an autoencoder (Box
1) to learn a useful representation of the data. Using the extracted features, and 890 labels obtained via a labori-
ous process, two support vector machine classifiers were trained to accurately recognize wheezes and crackles,
important clinical markers of pulmonary disease. As a stand-alone mobile application, these models could help
doctors from around the world to recognize signs of the disease. In a similar vein, deep neural networks have
been applied to diagnose Parkinson disease from voice recordings [76] and to classify infant cries into ‘hunger’,
‘sleep’, and ‘pain’ classes [77].
Other clinical assays that are relatively easy to perform independently could be analyzed automatically. For

example, the heart rate and QT interval of 15 children with type 1 diabetes were monitored overnight and used
to accurately predict low blood glucose with a deep neural network model [78]. Aging.ai, which uses an ensem-
ble of deep neural networks on 41 standardized blood test measurements, has been trained to predict an indivi-
dual’s chronological age [79].

Using other medical data modalities
Computer tomography (CT) is a precise, but costly and risky procedure, while magnetic resonance imaging
(MRI) is safer, but noisier. Nie et al. [80] trained a model to generate CT scan images from MRI data. To do
so, they employed a two-part model, where one convolutional neural network was trained to generate CT
images from MRI information, while the other was trained to distinguish between true and generated ones. As
a result, the MRI images could be converted to CT scans that qualitatively and quantitatively resembled the
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true versions. This is the first application of generative adversarial networks (Box 1) [81], a recently popularized
method, for medical data.
Electronic health records are a prime target for medical data models. In Doctor AI, past diagnoses, medica-

tion, and procedure codes were inputted to a recurrent neural network to predict diagnoses and medication cat-
egories for subsequent visits, beating several baselines [82]. Three layers of autoencoders were used to capture
hierarchical dependencies in aggregated electronic health records of 700 000 patients from the Mount Sinai
data warehouse [83]. This gave a quantitative latent description of patients which improved classification accur-
acy, and provided a compact data representation.
A range of other medical input signals has been usefully modeled with neural networks. Al Rahhal et al. [84]

trained autoencoders to learn features from electrocardiogram signals and used them to detect various heart-
related disorders. As a completely different input, a video recording of a patient’s face could be used to auto-
matically estimate pain intensity with a recurrent convolutional neural network [85]. Just over the last year,
there have been reports of applying convolutional neural networks in image-based diagnostics of age-related
macular degeneration [86], diabetic retinopathy [87], breast cancer [88–90], brain tumors [91,92], cardiovascu-
lar disease [93], Alzheimer’s disease [94], and many more diseases (Appendix to this article).

Discussion
Deep learning has already permeated computational biology research. Yet its models remain opaque, as the
inner workings of the deep networks are difficult to interpret. The layers of convolutional neural networks can
be visualized in various ways to understand input features they capture, either by finding real inputs that maxi-
mize the neuron outputs, e.g. [60], generating synthetic inputs that maximize the neuron output [95], or
mapping inputs that the neuron output is most sensitive to (saliency map, [96]; or alternative [97]). In this
manner, neurons operating on sequences could be interpreted as detecting motifs and their combinations, or
neurons in image analysis networks as pattern finders. All these descriptions are necessarily qualitative, so con-
clusive causal claims about network performance due to capturing a particular type of signal are to be taken
with a grain of salt.
Computer performance in image recognition has reached human levels, owing to the volume of available

high-quality training datasets [98]. The same scale of labeled biological data is usually not obtainable, so deep
learning models trained on a single new experiment are bound to suffer from overfitting. However, one can use
networks pre-trained on larger datasets in another domain to solve the problem in hand. This transfer learning
can be used both as a means to extract features known to be informative in other applications and as a starting
point for model fine-tuning. Repositories of pre-trained models are already emerging (e.g. Caffe Model Zoo)
and first examples of transfer learning have been successful [72,99], so we expect many more projects to make
use of this idea in the near future.
Will deep learning make all other models obsolete? Neural networks harbor hundreds of parameters to be

learned from the data. Even if sufficient training data exist to make a model that can reliably estimate them, the
issues with interpretability and generalization to data gathered in other laboratories under other conditions
remain. While deep learning can produce exquisitely accurate predictors, the ultimate goal of research is under-
standing, which requires a mechanistic model of the world.

Summary

• Deep learning methods have penetrated computational biology research.

• Their applications have been fruitful across functional genomics, image analysis, and medical

informatics.

• While trendy at the moment, they will eventually take a place in a list of possible tools to

apply, and complement, not supplement, existing approaches.

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons
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Appendix

Short overview of computational biology deep learning papers published until the first quarter of 2017 Part 1 of 7

Name Title Architecture Input Output Highlight Category

FUNCTIONAL GENOMICS

DeepBind Predicting the sequence

specificities of DNA- and

RNA-binding proteins by

deep learning [5]

CNN DNA sequence TF binding Arbitrary length

sequences

DNA binding

DeeperBind DeeperBind: enhancing

prediction of sequence

specificities of DNA

binding proteins [35]

CNN-RNN DNA sequence TF binding Sequences of arbitrary

length. Adds LSTM to

DeepBind model.

DNA binding

DeepSEA Predicting effects of

noncoding variants with

deep learning-based

sequence model [7]

CNN DNA sequence TF binding 3-layer CNN DNA binding

DanQ DanQ: a hybrid

convolutional and

recurrent deep neural

network for quantifying

the function of DNA

sequences [34]

CNN-RNN DNA sequence TF binding Adds LSTM layer to

DeepSEA model

DNA binding

TFImpute Imputation for

transcription factor

binding predictions based

on deep learning [14]

CNN DNA sequence;

ChIP-seq

TF binding Impute TF binding in

unmeasured cell types

DNA binding

Basset Basset: learning the

regulatory code of the

accessible genome with

deep convolutional neural

networks [6]

CNN DNA sequence Chromatin

accessibility

Uses DNAse-seq data

from 164 cell types

DNA binding

OrbWeaver Impact of regulatory

variation across human

iPSCs and differentiated

cells [40]

CNN DNA sequence Chromatin

accessibility

Uses known TF motifs

as fixed filters in the

CNN

DNA binding

CODA Denoising genome-wide

histone ChIP-seq with

convolutional neural

networks [15]

CNN ChIP-seq ChIP-seq Denoise ChiP-seq

data

DNA binding

DeepEnhancer DeepEnhancer: predicting

enhancers by

convolutional neural

networks [10]

CNN DNA sequence Enhancer prediction Convert convolutional

filters to PWMs,

compare to motif

databases

DNA binding

TIDE TIDE: predicting

translation initiation sites

by deep learning [12]

CNN-RNN RNA sequence Translation initiation

sites (QTI-seq)

DanQ model RNA binding

ROSE ROSE: a deep learning

based framework for

predicting ribosome

stalling [101]

CNN RNA sequence Ribosome stalling

(ribosome profiling)

Parallel convolutions RNA binding

iDeep RNA-protein binding

motifs mining with a new

hybrid deep learning

CNN-DBN RNA sequence; RNA binding proteins

(CLiP-seq)

Integrate multiple

diverse data sources

RNA binding

Known motifs

Continued
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Short overview of computational biology deep learning papers published until the first quarter of 2017 Part 2 of 7

Name Title Architecture Input Output Highlight Category

based cross-domain

knowledge integration

approach [21]

Secondary

structure

co-binding

transcript region

Deepnet-rbp A deep learning

framework for modeling

structural features of

RNA-binding protein

targets [20]

DBN RNA sequence RNA binding proteins

(CLiP-seq)

Uses k-mer counts

instead of a CNN to

capture RNA

sequence features

RNA binding

secondary

structure

tertiary structure

SPEID Predicting

enhancer-promoter

interaction from genomic

sequence with deep

neural networks [13]

CNN-RNN DNA sequence Promoter-enhancer

interactions

Inspired by DanQ 3D interactions

Rambutan Nucleotide sequence and

DNaseI sensitivity are

predictive of 3D chromatin

architecture [18]

CNN DNA sequence Hi-C interactions Binarised input signal 3D interactions

DNAse-seq

Genomic distance

DeepChrome A deep learning

framework for modeling

structural features of

RNA-binding protein

targets [20]

CNN Histone

modification

(ChIP-seq)

Gene expression Binary decision:

expressed or not

expressed

Transcription

FIDDLE FIDDLE: An integrative

deep learning framework

for functional genomic

data inference [16]

CNN DNA sequence Transcription start

sites (TSS-seq)

DNA sequences alone

not sufficient for

prediction, other data

helps

Transcription

RNA-seq

NET-seq

MNAse-seq

ChIP-seq

CNNProm Recognition of prokaryotic

and eukaryotic promoters

using convolutional deep

learning neural networks [9]

CNN DNA sequence Promoter predictions Predicts promoters

from DNA sequnce

features

Transcription

DeepCpG DeepCpG: accurate

prediction of single-cell

DNA methylation states

using deep learning [19]

CNN-GRU DNA sequence DNA methylation state

(binary)

Predict DNA

methylation state in

single cells based on

sequence content

(CNN) and noisy

measurement (GRU)

DNA methylation

scRRBS-seq

CpGenie Predicting the impact of

non-coding variants on

DNA methylation [11]

CNN DNA sequence DNA methylation state

(binary)

Predict genetic

variants that regulate

DNA methyaltion

DNA methylation

DNN-HMM De novo identification of

replication-timing domains

in the human genome by

deep learning [102]

Hidden markov

model (HMM)

combinded with

deep belief

network (DBN)

Replicated DNA

sequencing

(Repli-seq)

Replication timing Predict replication

timing domains from

Repli-seq data

Other

DeepCons Understanding sequence

conservation with deep

learning [8]

CNN DNA sequence Sequence

conservation

Works on noncoding

sequences only

Other

GMFR-CNN GMFR-CNN: an

integration of gapped

motif feature

representation and deep

learning approach for

enhancer prediction [103]

CNN DNA sequence TF binding Uses data from the

DeepBind paper.

Integrates gapped DNA

motifs (as introduced

by gkm-SVM) with a

convolutional neural

network

DNA binding

Continued
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Short overview of computational biology deep learning papers published until the first quarter of 2017 Part 3 of 7

Name Title Architecture Input Output Highlight Category

SEQUENCE DATA ANALYSIS

DeepVariant Creating a universal SNP

and small indel variant

caller with deep neural

networks [32]

CNN Image Assignment of low

confidence variant call

(Illumina sequencing)

Turns sequence, base

quality, and strand

information into image

Basecalling

Goby Compression of

structured

high-throughput

sequencing data [104]

Dense Features Base call (Illumina

sequencing)

Part of wider variant

calling framework

Basecalling

DeepNano DeepNano: Deep

Recurrent Neural

Networks for Base Calling

in MinION Nanopore

Reads [33]

RNN Current Base call (nanopore

sequencing)

Uses raw nanopore

sequencing signal

Basecalling

- Deep learning for

population genetic

inference [25]

Dense Features Effective population

size; selection

coefficient

Estimate multiple

population genetic

parameters in one

model

Population genetics

MEDICAL DIAGNOSTICS

Leveraging uncertainty

information from deep

neural networks for

disease detection [73]

BCNN Image (retina) Disease probability For each image

estimates an

uncertainty of the

network, if this

uncertainty is too high,

discards image

Medical diagnostics

DRIU Deep retinal image

understanding [105]

CNN Image (retina) Segmentation Super-human

performance, task

customised layers

Retinal

segmentation

IDx-DR X2.1 Improved automated

detection of diabetic

retinopathy on a publicly

available dataset through

integration of deep

learning [87]

CNN Image (retina) DR stages Added DL component

into the algorithm and

reported its superior

performance

DR detection

Deep learning is effective

for classifying normal

versus age-related

macular degeneration

OCT images [86]

CNN (VGG16) Image (OCT) Normal versus

Age-related macular

degeneration

Visualised salience

maps to confirm that

areas of high interest

for the network match

pathology areas

Age-related macular

degeneration

classification

Medical image synthesis

with context-aware

generative adversarial

networks [80]

GAN Image (MR patch) CT patch Predicts CT image

from 3D MRI, could

also be used for

super-resolution,

image denoising etc

Medical image

synthesis

DeepAD DeepAD: Alzheimer’s

disease classification via

deep convolutional neural

networks using MRI and

fMRI [94]

CNN Image (fMRI and

MRI)

AD vs NC 99.9% accuracy for

LeNet architecture,

fishy

Alzheimer’s disease

classification

Brain tumor segmentation

with deep neural

networks [91]

CNN Image (MRI) Segmentation of the

brain

Stacked CNNs, fast

implementation

Glioblastoma

Continued
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Short overview of computational biology deep learning papers published until the first quarter of 2017 Part 4 of 7

Name Title Architecture Input Output Highlight Category

Brain tumor segmentation

using convolutional neural

networks in MRI images

[92]

CNN Image (MRI) Segmentation of the

brain

A deep learning-based

segmentation method for

brain tumor in MR images

[67]

SDAE + DNN Image (MRI) Segmentation of the

brain

Classification of

schizophrenia versus

normal subjects using

deep learning [66]

SAE + SVM Image (3D fMRI

volume)

Disease probability Works on directly on

active voxel time

series without

conversion

Schizophrenia

classification

Predicting brain age with

deep learning from raw

imaging data results in a

reliable and heritable

biomarker [106]

3D CNN Image (minimally

preprocessed raw

T1-weighted MRI

data)

Age Almost no

preprocessing, brain

age was shown to be

heritable

Age prediction

Mass detection in digital

breast tomosynthesis:

deep convolutional neural

network with transfer

learning from

mammography [107]

CNN Image

(mammography +

DBT)

Disease probability Network was first

trained on

mammography

images, then first three

conv. layers were fixed

while other layers were

initialised and trained

again on DBT

(Transfer Learning)

Medical diagnostics

+ Transfer Learning

Large scale deep learning

for computer aided

detection of

mammographic lesions [90]

CNN + RF Image

(mammography

patch)

Disease probability Combines handcrafted

features with learned

by CNN to train RF

Mammography

lesions classification

DeepMammo Breast mass classification

from mammograms using

deep convolutional neural

networks [89]

CNN Image

(mammography

patch)

Disease probability Transfer learning from

pre-trained CNNs

Mammography

lesions classification

Unsupervised deep

learning applied to breast

density segmentation and

mammographic risk

scoring [68]

CSAE Image

(mammogram)

Segmentation and

classification of

lesions

Developed a novel

regularisor

Mammography

segmentation and

classification

A deep learning approach

for the analysis of masses

in mammograms with

minimal user intervention

[88]

CNN + DBN Image

(mammogram)

Benign vs malignant

class

End to end approach

with minimal user

intervention, some

small tech innovation

at each stage

Mammography

segmentation and

classification

Detecting cardiovascular

disease from

mammograms with deep

learning [93]

CNN Image

(mammogram

patch)

BAC vs normal Using mammograms

for cardiovascular

disease diagnosis

Breast arterial

calcifications

detection

Lung pattern classification

for interstitial lung disease

using a deep

convolutional neural

network [108]

CNN Image (CT patch) 7 ILD classes Maybe the first

attempt to

characterize lung

tissue with deep CNN

tailored for the

problem

Medical diagnostics

Continued
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Short overview of computational biology deep learning papers published until the first quarter of 2017 Part 5 of 7

Name Title Architecture Input Output Highlight Category

Multi-source transfer

learning with convolutional

neural networks for lung

pattern analysis [109]

CNN Image (CT patch) 7 ILD classes Transfer learning +

ensemble

Deep convolutional neural

networks for

computer-aided

detection: CNN

architectures, dataset

characteristics and

transfer learning [110]

CNN Image (CT) ILD classes and Lung

Node detection

Transfer learning,

many architectures,

IDL and LN detection

Computer-aided

diagnosis with deep

learning architecture:

applications to breast

lesions in us images and

pulmonary nodules in CT

scans [69]

SDAE Image (US and

CT ROI)

Benign vs malignant

class

Used the same SDAE

for both breast lesions

in US images and

pulmonary nodules in

CT scans,

concatenated

handcrafted features

to original ROI pixels

CAD

Dermatologist-level

classification of skin

cancer with deep neural

networks [72]

CNN Image (Skin) Disease classes Could be potentially

used on a server side

to power

self-diagnosis of skin

cancer

Medical diagnostics

Early-stage

atherosclerosis detection

using deep learning over

carotid ultrasound images

[70]

AE Image (US) Segmentation and

classification of

arterial layers

Fully automatic US

segmentation

Intima-media

thickness

measurement

Fusing deep learned and

hand-crafted features of

appearance, shape, and

dynamics for automatic

pain estimation [111]

CNN + LR Image (Face) Pain intensity Combines handcrafted

features with learned

by CNN to train Linear

regressor

Pain intensity

estimation

Recurrent convolutional

neural network regression

for continuous pain

intensity estimation in

video [85]

RCNN Video frames Pain intensity Pain intensity

estimation

Efficient diagnosis system

for Parkinson’s disease

using deep belief network

[76]

DBN Sound (Speech) Parkinson vs normal Parkinson diagnosis

Application of

semi-supervised deep

learning to lung sound

analysis [75]

DA + 2 SVM Sound (Lung

sounds)

Sound scores Handling small data

sets with DA +

potential application

Pulmonary disease

diagnosis

Application of deep

learning for recognizing

infant cries [77]

CNN Sound (Infant cry) Class scores Sound classification

Deep learning framework

for detection of

hypoglycemic episodes in

children with type 1

diabetes [78]

DBN ECG Hypoglycemic

episode onset

Real-time episodes

detection

Hypoglycemic

episodes detection

Continued
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Short overview of computational biology deep learning papers published until the first quarter of 2017 Part 6 of 7

Name Title Architecture Input Output Highlight Category

Deep learning approach

for active classification of

electrocardiogram signals

[84]

SDAE ECG AAMI classes Uses raw ECG Classification of

electrocardiogram

signals

AgingAI Deep biomarkers of

human aging: application

of deep neural networks

to biomarker

development [79]

21 DNN Blood test

measurements

Age Online tool which

could be used to

collect training data, 5

biomarkers for aging

Age prediction

BIOMEDICAL IMAGE ANALYSIS

Image segmentation

DeepCell Deep learning automates

the quantitative analysis of

individual cells in live-cell

imaging experiments [47]

CNN Microscopy

images

Cell segmentations Able to segment both

mammalian and

bacterial cells

Segmentation

U-Net U-Net: convolutional

networks for biomedical

image segmentation [48]

CNN Biomedical

images

Segmentations Won the ISBI 2015

EM segmentation

challenge

Segmentation

3D U-Net 3D U-Net: learning dense

volumetric segmentation

from sparse annotation [49]

CNN Volumetic images 3D Segmentations Able to quickly

volumetric images

Segmentation

V-Net V-Net: Fully convolutional

neural networks for

volumetric medical image

segmentation [50]

CNN Volumetic images 3D Segmentations Performs 3D

convolutions

Segmentation

Cell and image phenotyping

DeepYeast Accurate classification of

protein subcellular

localization from high

throughput microscopy

images using deep

learning [60]

CNN Microscopy

images

Yeast protein

localisation

classification

Automatic

Phenotyping

Deep machine learning

provides state-of-the-art

performance in

image-based plant

phenotyping [59]

CNN Plant images Plant section

phenotyping

Automatic

Phenotyping

Classifying and

segmenting microscopy

images with deep multiple

instance learning [61]

CNN Microscopy

images

Yeast protein

localisation

classification

Performs

multi-instance

localisation

Automatic

Phenotyping

DeadNet DeadNet: identifying

phototoxicity from

label-free microscopy

images of cells using

Deep ConvNets [62]

CNN Microscopy

images

Phototoxicity

identification

Automatic

Phenotyping

Deep learning for imaging

flow cytometry: cell cycle

analysis of Jurkat cells [63]

CNN Single cell

microscopy

images

Cell-cycle prediction Automatic

Phenotyping

Prospective identification

of hematopoietic lineage

choice by deep learning

[64]

CNN Brightfield time

course imaging

Hematopoitic lineage

choice

Lineage choice can be

detected up to three

generations before

conventional molecular

markers are observable

Automatic

Phenotyping

Continued
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Abbreviations

CT, computer tomography; MRI, magnetic resonance imaging.
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While we have tried to be comprehensive, some papers may have been missed due to the rapid development of the field. Acronyms used: AE, autoencoder; BCNN,

bayesian convolutional neural network; CNN, convolutional neural network; CSAE, convolutional sparse autoencoder; DA, denoising autoencoder; DBN, deep belief network;

GAN, generative adversarial network; GRU, gated recurrent unit; LR, linear regression; RCNN, recurrent convolutional neural network; RF, random forest; RNN, recurrent

neural network; SAE, stacked autoencoder; SDAE, stacked denoising auto-encoder; SVM, support vector machines.
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