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Abstract
Bayesian parameter estimation provides a systematic approach to compare heavy-
ion collision models with measurements, leading to constraints on the properties of
nuclear matter with proper accounting of experimental and theoretical uncertainties.
Aside from statistical and systematic model uncertainties, interpolation uncertainties
can also play a role in Bayesian inference, if the model’s predictions can only be
calculated at a limited set of model parameters. This uncertainty originates from
using an emulator to interpolate the model’s prediction across a continuous space
of parameters. In this work, we study the trade-offs between the emulator
(interpolation) and statistical uncertainties. We perform the analysis using spatial
eccentricities from the TRENTo model of initial conditions for nuclear collisions.
Given a fixed computational budget, we study the optimal compromise between the
number of parameter samples and the number of collisions simulated per parameter
sample. For the observables and parameters used in the present study, we find that
the best constraints are achieved when the number of parameter samples is slightly
smaller than the number of collisions simulated per parameter sample.
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1. Introduction

One of the main goals of the heavy-ion program pursued at the relativistic heavy-ion collider
(RHIC) and the large Hadron collider (LHC) is a quantitative understanding of the properties
of nuclear matter under extreme conditions as described by Quantum Chromodynamics
(QCD). At sufficiently high temperatures and densities accessible during these nuclear col-
lisions, a transient state of matter, the quark-gluon plasma (QGP), is formed but decays again
as the collision system cools down and disintegrates. Collisions of heavy ions leading to QGP
formation are multistage processes: the initial impact of the nuclei, the formation and
expansion of the QGP, reconfinement into hadrons, and subsequent hadronic interactions
[1–4]. A wide range of properties of nuclear matter enters numerical simulations of heavy-ion
collisions. Some of these properties are constrained by external means, for example, lattice
QCD calculations of the equation of state of nuclear matter [5]. Other properties, such as
transport coefficients or parameters entering the description of the early stage of the collision,
are often parametrized and constrained by comparison with data.

Measurements from the RHIC and the LHC can constrain these physical parameters.
Because of the heterogeneity and a large number of measurements and model parameters, it is
beneficial to perform model-to-data comparisons using statistical techniques such as Bayesian
parameter estimation: this allows for a systematic propagation of uncertainties from exper-
imental measurements to physical parameters. A number of such studies have been performed
over the past decade [6–20].

A key ingredient of Bayesian parameter estimation as used in heavy-ion collisions is
emulation: given the model’s prediction at a discrete sample of parameters, an emulator will
interpolate the model’s prediction over a continuous range of parameters. Furthermore,
emulators such as Gaussian processes provide an estimate of their own interpolation uncer-
tainty; in effect, this allows emulation to be used in model-to-data comparisons even if the
emulator’s interpolation uncertainty is not negligible compared to the other uncertainties in
the problem—a situation that is often unavoidable in simulations with a large number of
parameters. In Bayesian parameter estimation, this emulator uncertainty is included into the
physical parameter’s final uncertainty determination, alongside experimental, statistical and
other theoretical uncertainties.

The most straightforward approach to reducing emulator uncertainty is to increase the
number of parameter samples at which the model observables are evaluated; these parameter
samples are generally referred to as the emulator’s ‘design points’. Evidently, this increase in
the number of design points must be balanced with other demands on the available com-
putational budget. In particular, simulations of heavy-ion collisions are stochastic: there are
event-by-event fluctuations in the outcome of the collisions. Comparisons with measurements
require simulating and averaging over a large number of collisions. At a fixed computational
budget, one must determine the proper trade-off between reducing emulator interpolation
uncertainties or statistical ones. In this work, we use the TRENTo model of initial conditions
for heavy-ion collisions [21] to study this trade-off between statistical and emulator
uncertainties.

2. Methodology

We use the model TRENTo as a proxy for observables in heavy-ion collisions; this is based
on the known correlation [22] between (i) initial spatial anisotropies of models like TRENTo,
and (ii) measurable momentum anisotropies of final state hadrons. To interpolate the output of
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the TRENTo model, we use Gaussian process emulators, which have been the standard
emulation technique used for model-to-data comparisons in heavy-ion physics [6–8, 10]. To
quantify the optimal trade-off between statistical and emulator uncertainty, we use ‘closure
tests’, which apply Bayesian parameter inference to model calculations. We summarize the
overall approach and methods below.

2.1. TRENTo

TRENTo (‘Reduced Thickness Event-by-event Nuclear Topology’) is a model that para-
metrizes the energy or entropy deposition resulting from the impact of nuclei at high energy
[21]. Its primary input is the distribution of nucleons inside the different species of nuclei.
Given this distribution of nucleons, it uses the inelastic nucleon–nucleon cross-section to
determine the nucleons that participate in the collision, and infers the energy deposition from
it. Three parameters of the TRENTo model, which we study in this work, are the effective
nucleon size w, the fluctuation parameter k and the reduced thickness p. The effective nucleon
size w is related to the area over which the energy is distributed for a given participant
nucleon. The fluctuation parameter k allows for variation in the amount of energy carried by
each nucleon, while the reduced thickness p parametrizes how the energy density is con-
structed from the profile of nucleons sampled from each nucleus. The output of TRENTo is a
density profile in the plane transverse to the collision axis. We interpret TRENToʼs output as
an energy density profile ò(r, f) with arbitrary normalization. From this density profile ò(r, f),
we compute single-event spatial anisotropies εn [22]:
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Although these anisotropies can be related to the momentum anisotropy of hadrons
measured at the end of the collision [23–27], in this work, we focus on the initial spatial
eccentricities themselves.

We compute the average of an ensemble of TRENTo events with an arithmetic average:

⟨ ⟩ { } ( )
M

j
1

event , 2n
j

M

n
ev 1

ev

åe e=
=

where Mev is the number of TRENTo events used to evaluate the initial spatial eccentricity.
We used up to four harmonics in this work, n= 2 to 5. The variable sensitivity of the spatial
eccentricities to the model parameters as well as the dependence on n of the statistical
uncertainty of 〈εn〉 makes the spatial eccentricities a good choice of observable to study the
interplay of interpolation and statistical uncertainties.

We studied minimum bias Pb–Pb collisions with Woods–Saxon nucleon distributions. We
used an inelastic nucleon–nucleon cross-section of 64 mb, corresponding approximately to

s 2.76NN = TeV collisions.

2.2. Bayesian parameter estimation

We note yth,j(p) the model’s prediction for the ‘j’th observables of interest, evaluated when
the model’s parameters are set to p. At p, we compute ( ) ⟨ ⟩( )y p pj nth, je= , where the index j
runs over all the observables of interest, which in our case are the different ‘n’ in equation (2).

In general, given this information, we want to find the probability that parameters p are
consistent with the data { }y jexp, and with the experimental and theoretical uncertainties { }jexp,s
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and {σth,j(p)}. The first step is to define a metric to quantify the level of model-to-data
agreement: the likelihood function. We make the typical choice of a Gaussian likelihood
function:
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We assumed a diagonal covariance matrix. In this work, instead of comparing the model with
data, we will use closure tests: we will replace y jexp, by model calculations, as discussed later.
These model calculations do stand for experimental data, and consequently we keep the label
‘exp’ to denote these quantities.

Given our model of the collision, the probability that the parameter set p is consistent with
the data and the uncertainties is given by the posterior distribution of model parameters,

( ∣({ }) yp exp :
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where Prior(p) is the prior distribution. In this work, we take the prior to be constant over a
finite parameter range, for all the parameters.

The posterior distribution ( ∣({ }) yp exp is a probability distribution whose dimensionality is
equal to the number of model parameters. Different projections of the posterior distribution
summarize the constraints on the model parameters. As long as the number of parameters is
small and the model is relatively fast computationally, it is straightforward to sample and
marginalize the posterior ( ∣({ }) yp exp . When the number of parameters increases or if the
model is expensive, it can become overly burdensome to evaluate a model’s prediction at a
large number of values of the parameter p to compute ( ∣({ }) yp exp . A solution is to prepare a
fast proxy, such as a Gaussian process [28], to emulate the model’s prediction. We review
Gaussian process emulators briefly in the next subsection. As far as the Bayesian inference is
concerned, the consequence of using Gaussian process emulators is substituting the model’s
prediction by the emulator’s prediction

( ) ( ) ( )y yp p , 5j jth, emul,

as well as adding the emulator interpolation uncertainty into the sum of uncertainties
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2.3. Emulation with Gaussian processes

The idea behind emulation is to first sample the parameter space of the model, {pk}; the
parameter samples are the design points. The model’s predictions are then calculated for all
design points: {yth,j(pk)}. The emulator then interpolates the model’s predictions over a
continuous range of model parameters p.

To sample the parameter space, we use a low discrepancy sequence generator [29, 30].
Figure 1 shows an example for 16 design points within a two-dimensional parameter space.

For each observable (〈òn〉), a Gaussian process is trained on the set of values of 〈òn〉(p)
calculated at the design points {pk}. Gaussian process emulators are probabilistic
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interpolators, which assume that each point in parameter space is a probability distribution. At
the design points, the width of the probability distribution should include the statistical
uncertainty of the observables. Between the design points, the width of the probability dis-
tribution should increase to account for the interpolation uncertainty. To handle stochastic
simulations, Gaussian process emulators must be set up such that variations between para-
meter samples are divided into (i) statistical uncertainty, and (ii) the actual variation from the
parameter dependence of the model. A mathematical description of the approach can be found
in [15], section V-B-2. In short, a white noise kernel accounts for the uncorrelated (‘short
range’) fluctuations originating from the statistical uncertainty, and a squared-exponential
kernel accounts for the longer-range parameter dependence. The parameters of these kernels,
for example, the relative size of the kernels, are determined by numerical optimization. This
approach is used in most applications of Bayesian parameter inference in heavy-ion physics
[6–8, 10–12, 14–20, 31–37]. The result of this implementation is that the emulator uncertainty
accounts for both the statistical and interpolation uncertainties.

Figure 2 shows the mean-value predictions of the emulator for 〈ò2〉 and 〈ò3〉 compared to
the actual value of these observables. The points all lie close to the line yemul,j(p) = yth,j(p),
which suggests that the emulator does indeed interpolate well, although this should not be
seen as strong validation: one would need to compare the emulator with calculations not used
to train the emulator to perform proper validation. Nevertheless, the use of design points
rather than validation points in figure 2 allows us to illustrate clearly that emulator uncertainty
originates both from the statistical uncertainty of each design point and the interpolation
uncertainty across the parameter space. The observable shown on the right, 〈ò3〉, intrinsically
has a larger statistical uncertainty than 〈ò2〉 at an equal number of averaged events Mev. The
left panel of figure 2 shows a scenario where the spread around the yemul,j(p) = yth,j(p) line is
small, but with a small number of samples in the parameter space: this illustrates a scenario
where the total emulator uncertainty is likely dominated by the interpolation uncertainty,
rather than the statistical uncertainty at each design point. On the other hand, the right panel of
figure 2 illustrates the case where statistical uncertainties would dominate over the

Figure 1. 16 design points in a two-dimensional parameter space (reduced thickness on
the x-axis and nucleon width on the y-axis), as sampled with a low discrepancy
sequence generator [29, 30].
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interpolation uncertainties: the spread around yemul,j(p) = yth,j(p) is large, and cannot be
reduced by increasing the number of design points. The focus of the present work is to study
this trade-off and find how to optimize interpolation and statistical uncertainties so as to avoid
these two substandard scenarios.

2.4. Closure tests

Closure tests are a straightforward application of Bayesian parameter inference, with
experimental data replaced by calculations from the model itself. It is a self-consistency check
made non-trivial by (i) the presence of uncertainties, as well as (ii) loss of information from
the model to the observables. A longer discussion of closure tests, in the context of heavy-ion
collisions, can be found in section VI of [15]. We describe it briefly here, with a focus on
metrics to quantify the success of closure tests.

In closure tests, we first select a set of parameters that are considered the reference parameter
for the closure test; we refer to these parameters as the ‘reference’ or ‘truth’ parameters, ptruth.
We then compute event-averaged eccentricities ⟨ ⟩ ⟨ ⟩( ) pn n

truth truthe= , which have a statistical
uncertainty ⟨ ⟩ n

truthD . While these uncertainties are purely statistical, they are meant to mimic
statistical and systematic uncertainties found in measurements. This uncertainty can be dialed by
changing the number of TRENTo events Mev

truth used to compute ⟨ ⟩ n
truth .

Separately, we train Gaussian process emulators for 〈εn〉(p) over a chosen range of model
parameters, as described in the previous section. The two sources of uncertainties in the
emulator are the number of design points (parameter samples) Nd, which controls the inter-
polation uncertainty, and the number of TRENTo events per design point,Mev, which controls
the statistical uncertainty of 〈εn〉(p) at each design point.

Using the Gaussian process emulators as a proxy for TRENTo, we then perform Bayesian
parameter estimation to attempt to recover the parameters ptruth from the values of the
observables ⟨ ⟩ ⟨ ⟩ n n

truth truth D . The result of the Bayesian inference is the posterior
( ∣{⟨ ⟩}) p n

truth (equation (4)). This posterior distribution depends on three sources of
uncertainties: the uncertainty on the reference observables ( ⟨ ⟩ n

truthD ), which mimics exper-
imental uncertainty, and the statistical and interpolation uncertainty in the emulator. If all
uncertainties were small, one would expect the posterior to be a narrow peak at the parameter
truth ptruth. In practice, some of these uncertainties are significant, and the posterior

Figure 2. (Left) Value for 〈ε2〉 as predicted by a Gaussian process emulator trained with
16 design points (y-axis), compared to the actual value of the model at the design points
(x-axis); (right) same as left, for 〈ε3〉 with 256 design points. The red line
corresponding to perfect emulation, yemul,j(p)= yth,j(p), is shown for reference.
Statistical uncertainties on each sample are not shown for clarity.
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distribution thus has some finite width in parameter space. If closure is successful, the
posterior should enclose the parameter set ptruth.

To quantify the degree of agreement of the posterior— ( ∣{⟨ ⟩}) p n
truth —with the known

true value ptruth of the parameters used in the closure test, we use two different metrics. The
first one is the value of the posterior at the parameter truth, ( ∣{⟨ ⟩}) p n

truth truth . The posterior
at the parameter truth balances accuracy and precision. As illustrated in figure 3, an increase
in accuracy (shift towards the true value of the parameter) will increase the posterior value.
An increase in precision (narrower posterior) will also increase the posterior at the parameter
truth, but only to a certain extent: the posterior at the truth will actually start to decrease if the
results get too confident about the incorrect value. The posterior at the truth has the benefit of
being simple to interpret and inexpensive to compute.

For completeness, we studied a second metric, the Akaike information criterion (AIC)
[38], given by:

( ) ( ) kAIC 2 ln 2 , 7maxº - +

where max is the maximum likelihood in the parameter space and k is the number of
parameters. The AIC is a metric used for model selection, to help determine how successful a
model is at describing measurements given its number of parameters [39, 40]. In the case of
closure tests, while we know that the emulator and the reference (truth) calculations originate
from the same model, the uncertainties in the problem can evidently obscure this fact. We will
see in this work the AIC’s success at quantifying closure. Note that the AIC is more expensive
to compute, as it requires identifying the maximum of likelihood.

3. Results

As discussed in section 2, the result of Bayesian parameter inference generally depends on the
experimental uncertainty as well as on the statistical and interpolation uncertainty of the
emulator. Additional theoretical uncertainties can also play a role [15].

Figure 3. Schematic comparison of 1-parameter posterior distributions (red solid, green
dashed and blue dotted Gaussians) with a single fixed ‘truth’ value of the parameter
(vertical teal line). The green dashed line shows how the posterior increases as
accuracy increases when compared to the blue dotted line, and the red solid line shows
how the posterior increases as precision increases when compared to the blue
dotted line.
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Because we use closure tests in this manuscript, the experimental uncertainty is replaced
by the statistical uncertainty of the reference (‘truth’) calculations, which is controlled by
changing the number Mev

truth of TRENTo events that are averaged over to compute the
reference observables. As for the emulator, its uncertainty is determined by the number of
samples of the model parameters Nd and the number of collisions simulated per parameter
sample Mev.

Tests are performed at a fixed computation budget: the product Ntot= NdMev is kept fixed.
The set of (Nd, Mev) pairs is chosen to vary by a factor of 2. We use nine different sets of (Nd,
Mev), resulting in nine different groups of emulators, each group having one Gaussian process
emulator per observable.

As a base case, we first used Ntot=NdMev= 216 total events for a Pb–Pb collision. We
used M 2ev

truth 16= collisions to compute the reference ‘truth’ observables. We begin with only
two TRENTo parameters at the time—nucleon width and reduced thickness in one case, and
nucleon width and fluctuation in the other. To test the robustness of the methodology, we later
vary the data uncertainty, and the number of parameters and of observables.

After performing Bayesian parameter inference in the framework described above, we
obtain a 2-parameter posterior distribution. By marginalizing over each parameter, we obtain
1-parameter marginalized posterior distributions, whose mode and width (variance) we cal-
culate and plot as a function of the ratio of the number of design points Nd to the number of
TRENTo simulations per design points Mev; this is shown in the left top two panels of
figure 4. The true (reference) value of the parameters used in the tests is shown as a red
horizontal line. We first see that, for any number of design points, the constraints from the

Figure 4. Closure tests with NdMev = 216 total events, M 2ev
truth 16= events to compute

the reference observables, two parameters (nucleon width and reduced thickness on the
left, and nucleon width and reduced fluctuation parameter on the right), and two
observables (〈ε2〉 and 〈ε3〉 in Pb–Pb collisions at s 2.76NN = TeV). Top two panels
show the mode and width of the one-parameter marginalized likelihood, while the
bottom panel shows the value of the posterior at the true value of the parameter as well
as the Akaike information criterion (AIC), all as a function of the ratio of the number of
design points Nd to the number of TRENTo simulations per design points Mev.
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posterior are consistent with the true value of the parameters. This is not a trivial observation:
it indicates that the emulator is quantifying properly the interpolation and statistical uncer-
tainties, however large or small these uncertainties are. In this sense, we see that Bayesian
parameter inference provides valid constraints for any set of design points Nd and number of
TRENTo events Mev. On the other hand, one can optimize the results of the Bayesian
inference by a careful compromise between emulator and statistical uncertainty. With large
numbers of design points (large Nd/Mev), the emulator uncertainty is expected to be small, but
large statistical uncertainties on the 〈òn〉 of each design point prevent accurate constraints on
the parameter. Using a large number of TRENTo events with a small number of design points
(small Nd/Mev) leads to similar sub-optimal results. To quantify this tension, we use the two
metrics discussed in section 2.4: the value of the posterior at the true value of the closure test
parameters, and the AIC. Both are plotted on the bottom left panel of figure 4, still as a
function of the ratio Nd/Mev. The maximum value of the posterior at the truth, and the
minimum value of the AIC, are observed around Nd/Mev= 0.25, which corresponds to
Nd= 27 design points. Overall, the different panels all indicate that certain apportionment of
the number of design points does result in significantly better constraints on the model
parameter for the same computational expense. The optimal number is found to be between
Nd/Mev= 0.1 and 1. This suggests that the optimal value of Nd is of the order of Ntot or
slightly smaller.

Repeating this exercise by swapping one of the TRENTo parameters (reduced thickness)
with another (fluctuation parameter) yields the right panels of figure 4. Because the fluctuation
parameter is more challenging to constrain from 〈ε2〉 and 〈ε3〉, the dependence on the number
of design points Nd of the top panel is modest. Yet this does not prevent the other parameter to
be better constrained (middle right panel), and the optimal number of design points remains in
the vicinity of Nd/Mev= 0.25.

To ensure the robustness of our conclusions, we repeat this same analysis varying the
uncertainty on the reference calculations (which are the proxiedfor data uncertainty) as well as
varying the number of parameters and observables.

3.1. Dependence on the uncertainty of the reference calculation (‘data’)

To compute the reference (‘truth’) observables, Mev
truth TRENTo events are averaged. Chan-

ging Mev
truth controls the uncertainty on the reference observables, ⟨ ⟩ n

truthD . In this section, we
vary Mev

truth to verify the effect on the optimal number of design points.
In the previous example, because Ntot= NdMev and Mev

truth were both equal to 216, the
interpolation and statistical uncertainty in the emulator (controlled by Ntot) were always large
compared to the uncertainty of the reference calculations that are stand-ins for measurements
(controlled by Mev

truth): at best, the statistical uncertainties for the calculations used in the
emulator could be equal to the statistical uncertainty from the reference calculations
(uncertainty 1 216µ ) when Nd= 1, which would evidently be a case with extreme inter-
polation uncertainty.

We first repeat the previous example with M 2ev
truth 14= events while keeping

Ntot=NdMev= 216. This means that when Nd= 22= 4, the statistical uncertainty of the
reference calculation is similar to that in the calculations used for the emulator; when
Nd= 24= 16, the statistical uncertainty in the emulator is approximately a factor 2 larger than
in that of the reference calculations, etc. The results of the closure tests are shown on the left
panel of figure 5. Overall, the results are similar: the constraints on the model parameters are
consistent with the true value of the parameters at any ratio Nd/Mev, but the range
Nd/Mev≈ 0.1–1 is found to be optimal.
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We repeat this test in the opposite direction, using M 2ev
truth 18= events to reduce the

uncertainty on the reference calculations while keeping the emulator budget the same
(Ntot= NdMev= 216). This is equivalent to a scenario where the emulator uncertainties are
always much larger than the data uncertainties. This yields the right panel of figure 5. Again,
the optimal range of design points remains Nd/Mev≈ 0.1–1.

3.2. Dependence on the observables and the parameters

Emulator performance depends on multiple factors, in particular the number of parameters,
and the complexity of the parameter dependence of the observables. The results of Bayesian
parameter inference evidently also depend on the factors just listed that impact emulator
performance, and further depend on the information carried by the different observables. We
repeat the closure test shown on figure 4 by adding new observables: we first add 〈ε4〉, and
then 〈ε5〉. The results are shown respectively on the left and right panels of figure 6. Again,
the results remain similar, with the optimal number of design points in the same range as
found in previous tests.

We repeat this test, this time with three TRENTo parameters instead of two, starting with
two observables (〈εn〉, n= 2, 3), then three (n= 2, 3, 4) and four (n= 2, 3, 4, 5) observables.
The results are shown respectively on the left, center and right panels of figure 7. The results
are consistent with all previous ones: closure is successful since the constraints on all para-
meters are consistent with the truth value of the parameter for any number of design points.
Moreover, constraints on the parameters are still best when the ratio of the number of design
points Nd to the number of TRENTo simulations per design points Mev is in the range
Nd/Mev≈ 0.1–1.

Figure 5. Same as left side of figure 4, with (left) M 2ev
truth 14= events and (right)

M 2ev
truth 18= events.
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4. Discussion

There is a consistent trend among the results shown in figures 4–7: closure was best when the
number of design points was slightly smaller than the square root of the total number of
events ( Ntot ), which is equivalent to Nd/Mev≈ 0.1–1. This trend holds true for all the
variations tested in this study.

A rule of thumb that is used at times to determine the number of parameter samples (design
points) for a Gaussian process emulator is 10 times the number of parameters (10Nparams)
[41]. This guidance is evidently not meant to be precise, if only because it does not take into

Figure 6. Same as left side of figure 4, with (left) three observables (〈εn〉, n= 2, 3, 4),
and (right) four observables (〈εn〉, n= 2, 3, 4, 5).

Figure 7. Same as figure 4, with three TRENTo parameters instead of two, and between
two (left), three (center) or four (right) observables, with the observables being 〈εn〉,
n= 2, 3, n= 2, 3, 4 and n= 2, 3, 4, 5 respectively.
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account the unavoidable trade-offs between statistical and emulator uncertainty. In the two-
parameter case, Nd= 10Nparams≈ 24, which is considerably smaller than the optimal
Nd≈ 26–28 found in the previous section. We also note that the optimal number of design
points did not change significantly when three model parameters were used instead of two
(figure 7), which suggests a modest dependence of this optimum on the number of
parameters.

While statistical uncertainties generally converge at the rate M1 ev , interpolation
uncertainties depend on the details of the model’s parameter dependence, and the range of
parameters (the prior) over which an emulator is being trained. Rather than attempting to
provide general guidance, we focus on application to heavy-ion physics, where our results
guidance will apply most directly.

5. Implications for Bayesian inference in heavy-ion collisions

As seen in the results from section 3, emulator uncertainty is propagated properly in the
Bayesian parameter estimation: even if one uses an emulator with large interpolation or
statistical uncertainties, the parameter constraints remain consistent with the true value of the
parameter used in the closure test. In this sense, we expect the Gaussian process emulators
used in Bayesian inference procedure of heavy-ion data to be robust. On the other hand, we
saw that optimizing the interpolation and statistical uncertainty of the emulator can lead to
considerably improved constraints on the model parameters at the same computational cost.
In our study, we found an optimal ratio of design points to TRENTo events per design point,
Nd/Mev, around 0.1–1.

The optimum Nd/Mev≈ 1 is expected if the interpolation uncertainty in the emulator scales
approximately as N1 d : that is, if both interpolation and statistical uncertainties scale the
same, one should aim for a roughly even number for Nd and Mev. Tests published in [17]
found some evidence of N1 d convergence of observables in realistic models of heavy-ion
collisions. This convergence is likely to depend on the details of the model and on the choice
of observables. The exact implementation of the emulator is expected to impact this conv-
ergence as well; it will be valuable to quantify the dependence on Nd of the interpolation
uncertainty if significant changes are made to the emulation method.

To apply our work’s conclusions to heavy-ion collisions, one must remember that there are
different sources of stochasticity in the collisions, only one of which was considered in this
work: fluctuations in the initial impact geometry of the nuclei. Fluctuations in the number of
particles produced will also introduce statistical uncertainty, which was not studied in this
work. It is common, though not universal, that the two statistical uncertainties are reduced by
oversampling the particles produced for each initial geometry of the collision. The factor Mev

in the ratio Nd/Mev≈ 0.1–1 corresponds to the number of initial geometries samples and not
the total number of oversamples.

Finally, we note that the choice of Mev might be guided by the need for accuracy for
certain statistics-hungry observables, rather than the benefits of the emulator as a whole
[19, 20]. It will be useful to repeat the current study with a broader range of observables.

6. Conclusion

We studied the interplay between interpolation and statistical uncertainties for Bayesian
parameter inference using Gaussian process emulators. We used the TRENTo model of initial
conditions in heavy-ion collisions, with observables given by the event-averaged spatial
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anisotropies 〈εn〉 (equation (2)), which are analogous to momentum anisotropy observables
encountered in heavy-ion collisions. Using Nd samples of the TRENTo parameter space and
Mev TRENTo events at each parameter point, we performed closure tests to determine the
impact of the emulator uncertainty on constraining model parameters. We found that, for a
budget of Ntot total TRENTo events, the optimal number of design points was around
Nd≈ (0.25– ) N1.0 tot , which corresponds to Nd/Mev≈ 0.1–1. We found this optimum by
looking at multiple different metrics: the maximum value and width of the marginalized
posterior, the value of the posterior at the true value of the parameter, and the AIC. We found
the posterior at the truth to be very effective at quantifying closure.

In view of our results, we believe it would be beneficial for Bayesian inference applica-
tions in heavy-ion physics to experiment with different ratios Nd/Mev. Simulating a large
number of collision events, which reduce all sources of stochastic uncertainties, can give
access to statistics-hungry observables [19, 20]; yet using a large number Mev of events at
each parameter sample will not provide significant benefits for a large number of observables
whose emulation is limited by interpolation uncertainty. An improved balance between
interpolation and statistical uncertainties can help reduce the emulator’s uncertainty below
current experimental uncertainties, allowing us to make full use of heavy-ion measurements
from the RHIC and the LHC.
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