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Abstract—A computational camera uses a combination of optics
and processing to produce images that cannot be captured with
traditional cameras. In the last decade, computational imaging has
emerged as a vibrant field of research. A wide variety of computa-
tional cameras has been demonstrated to encode more useful vi-
sual information in the captured images, as compared with con-
ventional cameras. In this paper, we survey computational cam-
eras from two perspectives. First, we present a taxonomy of com-
putational camera designs according to the coding approaches, in-
cluding object side coding, pupil plane coding, sensor side coding,
illumination coding, camera arrays and clusters, and unconven-
tional imaging systems. Second, we use the abstract notion of light
field representation as a general tool to describe computational
camera designs, where each camera can be formulated as a pro-
jection of a high-dimensional light field to a 2-D image sensor. We
show how individual optical devices transform light fields and use
these transforms to illustrate how different computational camera
designs (collections of optical devices) capture and encode useful
visual information.

Index Terms—Computer vision, imaging, image processing,
optics.

I. INTRODUCTION

A
CAMERA is a device that captures light from scenes.
Over the last century, the evolution of cameras has

been truly remarkable. However, through this evolution, the
underlying camera model remains essentially the same, i.e.,
the camera obscura [see Fig. 1(b)]. The traditional camera
has a detector and a standard lens, which captures only those
principal rays that pass through its center of projection, or an
effective pinhole to produce familiar linear perspective images.
In other words, the traditional camera performs a very simple
and restrictive sampling of the complete set of rays or the light
field that resides in any real scene [1], [2].

A computational camera [see Fig. 1(c)], in contrast, uses a
combination of novel optics and computations to produce the
final image [1]. The novel optics are used to map rays in the
light field of the scene to pixels on the detector in some un-
conventional fashion. For instance, a ray shown in Fig. 1(c) has
been geometrically redirected by the optics to a different pixel
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Fig. 1. (a) In a typical scene for imaging, light rays from sources are reflected
by objects, collected by camera lens, and then converted to digital signals for
further processing. (b) Traditional camera model captures only those principal
rays that pass through its center of projection to produce the familiar linear per-
spective image. (c) Computational camera uses optical coding followed by com-
putational decoding to produce new types of images. [1].

from the one it would have arrived at in the case of a traditional
camera. As illustrated by the change in color from yellow to
red, the ray could also be photometrically altered by the optics.
In general, the new arrangement of rays helps to encode more
useful visual information in a computational camera than a con-
ventional camera.

Although the images captured by computational cameras are
optically coded and may not be visually meaningful in their raw
form, the information can be recovered by using computation.
This combination of novel optics and computation hence can
produce new types of images that are potentially beneficial to
a vision system. The vision system could either be a human
observing the image or a computer vision system that uses the
image to interpret the scene.

A. Overview of the Survey

In this paper, we survey computational camera techniques
along two intertwined lines—coding approaches in camera
design and their light field representations.

1) Coding Approaches: The design space for the optics of
computational cameras is large. It would be desirable to have
a single design methodology that produces an optimized op-
tical system for any given set of imaging specifications. The
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Fig. 2. Optical coding approaches used in computational cameras. (a) Object
side coding, where an optical element is attached externally to a conventional
lens. (b) Pupil plane coding, where an optical element is placed at, or close to, the
aperture of the lens. (c) Sensor side coding, where an optical element is behind
the lens. (d) Imaging systems that make use of coded illumination. (e) Imaging
systems that are made up of a cluster or array of traditional camera modules.
(f) Imaging systems using unconventional camera architectures or nonoptical
devices. [2].

optimization criteria could incorporate a variety of factors, in-
cluding performance and complexity. At this point in time, how-
ever, such a systematic design approach is largely missing. Con-
sequently, as with traditional optics, the design of computational
cameras remains part science and part art.

The coding methods used in today’s computational cameras
can be broadly classified into six approaches.

• Object side coding [see Fig. 2(a)] attaches external de-
vices to the camera and is probably the most convenient
way to implement computational cameras. Since the at-
tached device is positioned in front of the main lens, objects
at different field angles can be observed at different regions
of the device. Therefore, object side coding would provide
spatially varying light modulation. This property has been
widely used for various applications (see Section III).

• Pupil plane coding [see Fig. 2(b)] puts optical elements in
the pupil plane of the main lens. Since any rays from ob-
jects ideally pass through the same pupil plane, pupil plane
coding can be used to provide spatially invariant light mod-
ulation and manipulate the system point spread function
(PSF) (see Section IV).

• Sensor side coding [see Fig. 2(c)] places additional optical
elements behind the lens, i.e., either on the sensor plane or
in front of the sensor. In particular, coding on the sensor
plane can yield pixelwise modulation and is useful in many
applications. An emerging type of sensor side coding is to
use sensor motion (see Section V).

• Illumination coding [see Fig. 2(d)] alters captured images
by using a spatially and/or temporally controllable camera
flash. This approach enables image coding in ways that are

not possible by only modifying the imaging optics. Illu-
mination coding has a long history in the field of com-
puter vision. For example, virtually any structured light
method (see [3], [4] for surveys) or a variant of photometric
stereo [5] is based on the notion of illumination coding (see
Section VI).

• Camera clusters or arrays [see Fig. 2(e)] provide a more
flexible and economical way to transcend the limits of
individual cameras by combining multiple cameras (see
Section VII).

• Unconventional coding [see Fig. 2(f)] briefly discusses
some techniques that cannot fit well into the above five
categories. This includes computational camera designs
using unconventional architectures or nonoptical devices
(see Section VIII).

2) Light Field Representation: A light field is a function that
describes the amount of light of each wavelength traveling in
every direction through every point in space and time. The con-
cept of light fields has a long history back to the 19th century [6].
It was introduced to vision and graphics in the 1990s [7]–[9]. A
complete light field in geometrical optics is often represented by
a 7-D plenoptic function , where is
the spatial location of a light ray, is the direction of the
ray, is the light wavelength, and is the time. Given time and
wavelength, the light field is 5-D and can be further reduced to
4-D in a free space because a light ray will not change along its
propagation direction [8], [9].

The light field representation can be a common language to
formulate various computational camera designs. Mathemati-
cally, a camera can be defined as a projection from high-di-
mensional light fields to 2-D images. The projection is imple-
mented through a combination of sequential optical devices. In
the paraxial realm, most optical devices can be formulated as
linear transforms on light fields in the 4-D space. For example,
a lens can be defined as a shearing transform on the incoming
light field, and a prism can be defined as a translation on the
incoming light field [10], [11]. As a result, each camera can be
mathematically defined as a combination of linear element op-
erators in the 4-D light field space. One goal of this paper is to
propose light field representations as a pedagogical tool in order
to provide readers a deeper insight into various typical compu-
tational camera designs.

B. Definition of Scope

Two other concepts that are highly related to a computational
camera are computational photography and computational
imaging. These concepts are heavily overlapping, and the
distinction among them is quite vague. Roughly speaking,
computational photography techniques focus more on how
multiple images (often captured with traditional cameras) are
combined computationally for certain vision or graphic tasks.
Computational imaging techniques focus more on the process
of imaging than on the camera itself and, sometimes, do not
have cameras in a compact form. Finally, a computational
camera emphasizes on camera designs on how cameras can be
designed to serve certain purposes. In this paper of computa-
tional cameras, we focus on camera designs and will not cover
techniques without modifying the camera. In particular, many
recently proposed computational photography techniques use
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traditional cameras and capture images with different camera
settings (e.g., aperture size, exposure time, and focus) (few
examples are in [12]–[16]). These techniques, as they involve
no camera modification, will not be covered in this paper.

Camera designs can be very different at different scales
[17], [18]. In this paper, we restrict ourselves to cameras at the
medium scale, i.e., the ones that operate with incoherent light
within or close to the visible spectrum for common vision and
graphics tasks. Note that extremely large scale cameras (e.g.,
telescopes used in astronomy with focal lengths larger than
1 m) usually have a very small field-of-view (FOV), work with
certain special wavelengths and scenes, and are particularly
concerned with optical aberrations. In contrast, cameras at
extremely small scale (e.g., camera lenses with focal lengths
smaller than 1 mm) are often concerned with pixel size and
diffraction and require coherent illumination. For imaging
systems at the micro- or macroscale, one can find a large body
of literature in optics and astronomy.

Most discussions in this paper are in the realm of geometrical
optics. One exception is polarization. Polarization, although a
concept in wave optics, can be easily observed and has often
been used in computational camera designs. The geometrical
light field representation can be generalized to Fourier optics
by using the Wigner distribution function (e.g., in [17]–[23]).
However, imaging techniques using wave optics will not be the
focus of this paper. This paper will also not cover the work on
time-of-flight cameras (see [24] for a survey of time-of-flight
cameras).

C. Previous Reviews

Nayar [1] discusses the concept of computational cameras
using a number of typical computational camera designs. Levoy
[25] gives an overview of computational camera designs for
light field acquisition. In a recent technical report [2], the author
proposes a taxonomy of computational cameras using coding
approaches of camera design and briefly lists a number of typ-
ical techniques for each category. This paper follows the defi-
nition and taxonomy of computational cameras proposed in [2]
but will provide a much more comprehensive review. In addi-
tion, we use a light field representation as a common language
to interpret typical computational cameras designs, in order to
provide a more insightful understanding of this area.

Raskar et al. [26] discuss the scope and elements of compu-
tational photography and camera research and survey the pop-
ular research topics at that time, which are broadly grouped into
high dynamic range (HDR), aperture and focus, motion blur,
and computational illumination.

Wetzstein et al. [27] provide a state-of-the-art report of the
existing computational photography and computational camera
techniques. The report gives another taxonomy that is different
from that in [2] and this paper. It enumerates the imaging and
computation techniques with respect to five dimensions in the
plenoptic function of light field, including dynamic range, spec-
trum, spatial resolution, angular resolution, and time. The tax-
onomy in [27] and the one in this paper are quite orthogonal to
each other. One is from the perspective of what visual informa-
tion can be extracted [27]. The other one, as used in this paper
and in [2], is from the perspective of how this information can

Fig. 3. Four types of light field parameterization. (a) Use a pair of points on two
parallel planes. (b) Use a pair of points on a spherical surface. (c) Use a point
on a plane and its direction. (d) Use a point on a plane and its tangent direction.
The parameterization (d) greatly simplifies many formulations and derivations
in light field transforms. Therefore, we have chosen to use it in this paper. This
parameterization is also similar to phase space, which is often used in optics.

Fig. 4. Rays represented in the �� space. (a) Bunch of rays passing through
points A and B. (b) Light field on the reference plane with �� representation.
Each ray in (a) becomes a point in the �� space. All the rays passing through a
scene point is represented by a line in the �� space, whose slope is the inverse
of the distance from the point to the reference plane.

be extracted. The latter thus focuses more on how computational
cameras work and how they can be designed.

II. FUNDAMENTALS IN LIGHT FIELD REPRESENTATION

In geometrical optics, the 4-D light field can be parameter-
ized in several different ways, as shown in Fig. 3. In this paper,
we will use position and its tangent direction to rep-
resent light rays, as shown in Fig. 3(d). While all parameteriza-
tions are essentially the same, this particular representation
makes the formulation most concise and intuitive to understand.
This is because light field transforms caused by most typical de-
vices in a camera can be represented by simple linear operators
under this parameterization.1

As an example, Fig. 4 illustrates how rays passing through
two scene points (a) are represented in the space (b) (using
the plane of object A as a reference plane). For the purpose of
illustration, we use a 2-D light field in the representation

1Phase space is a concept in wave optics that is highly related to this light
field representation. For more information about phase space, one can refer to
the optics literature (e.g., [19]–[21], [28], [29]).
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Fig. 5. Six types of typical optical elements that are often used in computational cameras. (a) Space, although not an optical device, is widely used in optical
design. Space propagation shears light fields in the � dimension. (b) A lens shears light fields in the � dimension by an amount of ��� , where � is the lens focal
length. (c) Prism shifts light fields in the � dimension. (d) An optical diffuser performs a convolution in the � dimension in the spatial domain or a dot product
in the Fourier domain. (e) In contrast to optical diffusers, a photomask performs a dot product in � dimension in the spatial domain. (f) Phase plate distorts light
fields in � dimension. The amount of distortion is proportional to the derivative of the phase plate surface.

instead of the 4-D representation. We can see that all the
rays through one scene point will form a line in the space.
The slope of the line is the inverse of , i.e., the distance from
the point to the reference plane. For example, for point A, which
is on the reference plane , the light field is a vertical line.

A. Optical Element Formulation

A camera consists of a number of optical elements. The input
light goes through layers of optical devices and reaches the
sensor. These optical devices are chosen and arranged in a way
such that a desired optical processing will be made to encode
useful visual information. Shown in Fig. 5 are six types of com-
monly used optical devices in camera design. The functionali-
ties of these six devices can be formulated as linear operators
within the space [10], [11], [30]. As before, for simplicity,
we will be illustrating the transforms in a 2-D space.

1) Space, although is not often called a physical optical de-
vice, is important in camera design. As shown in Fig. 5(a),
when light field propagates from one plane to another par-
allel plane, it is sheared in the dimension. The shearing
angle is exactly , i.e., the distance between the two planes.

2) Lens is often used to focus light rays. As shown in
Fig. 5(b), it shears input light fields in the dimension by
an angle of , where is the focal length of the lens.

3) Prism is another typical device often used in computa-
tional cameras. With the paraxial assumption, it deviates
incoming rays by a constant angle , where

is the refractive index of the glass and is the angle of

the wedge of prism. In the space, a prism shifts light
fields along the dimension, as shown in Fig. 5(d). In ad-
dition, a prism can also produce the effect of dispersion,
which can be used for multispectrum imaging.

4) Optical diffuser is a device that scatters light rays [see
Fig. 5(e)]. Diffusers of various scattering patterns can be
made by manipulating their holographic surface profiles.
In the space, the scattering is presented as a convolu-
tion in the dimension, where the convolution kernel is
determined by its scattering pattern [31], [32].

5) Intensity modulator is an optical device that attenuates
the intensity of the incoming rays [see Fig. 5(e)] and can
be made of many materials [e.g., photomasks [33]–[36],
liquid crystal display (LCD) [37], liquid crystal on sil-
icon (LCoS) [38] and digital micromirror device (DMD)
[39]–[42]]. The color filter is also a type of intensity
modulator whose attenuation is wavelength dependent
[43]–[45]. In the space, it can be formulated as a dot
product in the dimension.

6) Phase modulator is an optical device that only changes
the phase of the incoming rays and is usually a piece of
glass of a certain 3-D profile [see Fig. 5(f)]. The lens and
prism are two types of most commonly used phase mod-
ulators. A phase modulator refracts the light according to
the deviation of the 3-D surface. In the space, it distorts
light fields in the dimension, and the amount of distor-
tion at each location is proportional to the corresponding
surface gradient.
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Fig. 6. Light field transforms in a traditional lens camera. (a) Three scene points at different depths are imaged by a traditional camera. The green point is in focus.
(b) From left to right are the light fields on � (the plane of nearest scene point), � (the plane right before the aperture), � (the plane right after the aperture),
� (the plane after the lens), and � (the plane right before the sensor), respectively. The red line intersects the � axis at the origin because the red point is at the
center of FOV. (c) Final captured image is achieved by projecting the light field at � onto the � axis.

B. Traditional Camera

An ideal traditional camera consists of a lens, an aperture
stop, a sensor, and free spaces between them. Fig. 6(a) shows
three scene points at different depths imaged by a traditional
camera. Fig. 6(b) shows how the light field is transformed during
the process of imaging from object plane, to aperture, to lens
and, finally, to the sensor plane. We can see that the light field on
plane is first sheared in the dimension due to the space be-
tween and , then cropped due to the aperture , sheared
in the dimension due to the lens , sheared again due to
the space between the lens and the sensor and, finally, pro-
jected on the axis to produce the final image, as shown in (c).
This process of light field transforms in a traditional camera will
be frequently used in this paper as a reference to understand
other computational camera designs.

C. Visual Information in Light Field

In the area of imaging, visual information in light fields has
been widely discussed. As shown in Fig. 6, the input to the
camera is the light field on plane . A camera cannot pro-
duce extra information but can only be designed to best pre-
serve desired visual information in the input light field during
the transforms. In the 2-D light field on plane illustrated in
Fig. 6, each line represents the rays from a single scene point,
the line slope encodes the depth information, and the variation in
a single line tells the reflectance property of the corresponding
scene point.

When the complete 7-D light field is con-
sidered, imaging is a projection from a 7-D space to a 2-D image
space. For different tasks, one may want to recover information
in other dimensions [27]. Adelson and Bergen [7] discuss early
visual information (e.g., image edges) in light field and suggest
several image filters to extract these information.

In this paper, we will discuss particularly how each coding
approach helps to preserve useful visual information for further
processing or decoding and will formulate and illustrate typical
camera designs in the light field space to facilitate insightful
understanding of these techniques.

III. OBJECT SIDE CODING

Object side coding approaches require optics to be externally
attached to a traditional camera [see Fig. 2(a)]. This is the most
convenient way to implement a computational camera. Because
of the distance between the optical element and the lens, the
cones of light rays from objects at different field angles will in-
tersect with the element at different areas. As a result, if the sur-
face profile is not homogeneous, object side coding will yield
spatially varying modulation. This property has been widely
used to encode more useful visual information. Since extra vi-
sual information is captured in object side coding by making
multiple different observations, the processing afterward usu-
ally involves pixelwise or patch registration and fusion. Another
type of object side coding, although less common, has been pro-
posed by using homogeneous filters. This type of design will
use temporal variations instead of spatial variation to encode
information.

A. Spatially Variant Filter

1) Depth Estimation: Lee et al. [46] proposed using a
biprism in front of the lens for stereo vision with a single
camera. As shown in Fig. 7(a), light rays from any single point
will be split into two by the biprism and produce two image
points on the sensor as if viewed from two viewpoints. This
yields an effect of stereo.

The biprism system can be understood easily and thoroughly
from its light representation. Fig. 7(b) illustrates the light fields
at plane , , and , respectively. The biprism splits the
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Fig. 7. Light field transform in a biprism stereo camera [46]. (a) Geometry of
a biprism camera. Light rays from a scene point will be slitted by the biprism
into two clusters and form two image points on the sensor. The distance between
these two points can be used as the disparity in stereo vision for depth estimation
(red and blue points are not shown for the simplicity of illustration). (b) From
left to right are the intermediate light fields before the biprism, after the biprism,
and after the aperture, respectively. Comparing the light field on� with the one
on � in Fig. 6, we can see that two copies of the light field have been created.

input light field into two pieces and shifts them by in different
directions, where is the absolute angle of deviation of each

prism. Comparing the light field after the aperture here with
that of a traditional camera (see Fig. 6(b) ), we now have two
copies of light fields. These two copied will be mapped onto two
separated regions in the sensor. Tracing these two copies back
to the input light field (see Fig. 7(b) left), we can see that two
samples from each stripe in the input light field are captured.
From the two samples, one can compute the depth as the inverse
of the slope of each stripe. As a stereo technique, its baseline can
be easily derived as , where is the distance from
the biprism to the lens.

Instead of using a biprism, other object side coding tech-
niques have also been proposed by using mirrors [47], [48] or
by rotating glass plates or mirrors [49]–[51].

2) Light Field Acquisition: Georgeiv et al. [52] propose
using an array of lens–prism pairs in front of the main lens to
capture light fields, as shown in Fig. 8. The geometry of the
camera is shown in Fig. 8(a). Each prism in the array has a
different angle of deviation; therefore, similar to the biprism
design (see Fig. 7), the prism array splits the FOV into multiple
pieces, i.e., each corresponding to a different viewpoint. In
other words, the camera observes the same small FOV but from
different viewpoints. The information captured by the sensor
can be used to reconstruct the 4-D light field. A negative lens
in front of each prism is used for increasing the overall FOV.
This light field camera sacrifices spatial resolution for angular
resolution (i.e., the number of lens–prism pairs). In [11] and
[52], the authors also mentioned other possible object side
configurations for light field acquisition by arranging prisms
and lenses in different ways.

Fig. 8. Light field camera using an array of pairs of negative lenses and prisms
[52]. (a) Geometry of the light field camera. (b) Prototype of the lens–prism
array. (c) From left to right are the intermediate light fields before the lens–prism
array, after the array, and after the aperture, respectively. Similar to Fig. 7, the
prism arrays will split the input light field and create multiple copies; each of
them capturing one low-dimensional slice of the high-dimensional light field.

3) Wide FOV Imaging: Catadioptric techniques combine
lenses and mirrors in camera design and are often used to
increase the camera FOV [53]–[60]. These techniques have
significant impacts on a variety of real-world applications,
including surveillance, autonomous navigation, virtual reality,
and video conferencing [61]–[63].

One problem with wide FOV catadioptric camera designs is
that while a convex mirror can significantly increase camera
FOV, it may at the same time distort the image. As a result,
the computationally recovered image often has spatially uneven
resolution, which is undesirable in many applications. Various
configurations of mirrors have been proposed to produce images
of uniform resolution (e.g., in [64]–[66]).

Another important design goal for catadioptric cameras is to
choose the proper shape of the mirrors so that the camera has
a single effective viewpoint. A single viewpoint is important in
many vision applications that require perspective input images
[67]. Baker and Nayar [68] derive the complete class of single-
lens single-mirror catadioptic cameras that has a single view-
point. Hicks [69] proposes a technique of designing a mirror
to realize any given projection in a numerical approximation
manner.

4) Other Applications: Spatially variant intensity modula-
tors can also be used in object side coding to capture more useful
visual information. Schechner and Nayar [33] propose to en-
hance the capabilities of traditional cameras by using spatially
variant intensity modulators in front of the camera. The key ob-
servation is that each scene point will be captured multiple times
as a camera moves. Due to the spatially varying properties of the
filter, multiple measurements are obtained at different optical
settings. Registering and fusing these measurements produces
an HDR and multispectral image mosaic.

Talvala et al. [70] capture multiple images by shifting a struc-
tured occlusion mask in front of the camera in order to remove
veiling glaring. They show that the proposed technique yields a
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much higher SNR than the traditional convolution-based tech-
nique. Kuthirummal and Nayar [71] use a radial catadioptric
camera design for wide FOV imaging, estimating depth map,
and measuring bidirectional reflectance distribution functions
(BRDFs) of surfaces. Du et al. [72] use the dispersion of prisms
for multispectral imaging.

B. Homogeneous Filter

Relatively fewer object side coding techniques use spatially
homogeneous optical devices. Umeyama and Godin [73] and
Nayar et al. [74] propose capturing images with different polar-
ization directions in order to remove specular reflections. Lin
and Lee [75] use polarization to detect specularity. Zhou et

al. [31] place a piece of an optical diffuser on the object side
and capture images for depth estimation. By doing so, one can
achieve large angle triangulation without using a large imaging
system for producing high-precision depth maps. Raskar et al.

[76] use an external shutter for coded exposure in order to pre-
serve more information in the case of motion blurring. Although
the shutter can be placed almost at any layer in the camera, ob-
ject side coding is the most convenient way to do so. Rouf et al.

[77] use a star filter mounted in front of a cameras to encode the
visual information for saturated areas and then use computation
to recover HDR images.

IV. PUPIL PLANE CODING

Pupil plane coding places optical element at or close to the
pupil plane of a traditional lens. Unlike object side coding, its
effect on imaging is spatially invariant. Therefore, pupil plane
coding is often used to modulate the PSF of an imaging system.
In Fourier optics (incoherent light), the relation between pupil
plane coding and the resulting PSF can be simply described by
a Fresnel transform [17], [28] as follows:

(1)

where is the PSF function; is the Fourier transform;
is the aperture coding function, which can be complex

for wavefront coding or real for coded aperture techniques; and
is a quadratic phase term determined by focus. The cap-

tured image is the convolution of the latent focused image
and the PSF , where . The

power spectrum of PSF is often referred to as the modula-
tion transfer function (MTF) and is used to measure the optical
quality of imaging systems. Equation (1) holds as long as the
F-number is not extremely small and the field angle is not too
large [17], and works for most cameras in the fields of computer
vision and graphics.

When PSFs are known, one can use them to deconvolve cap-
tured images and recover high-quality sharp images. Concep-
tually, image deconvolution is dividing the Fourier transform
of the blurred image by the Fourier transform of the PSF [78],
[79]. For better deconvolution results, MTFs should be broad-
band and have fewer zero-crossing frequencies. Zhou and Nayar
[36] formulate how MTFs, together with image priors and noise
models, affect the deconvolution quality.

In addition, when PSFs are known, one can further compute
the depth because PSFs are determined not only by aperture

coding, which is usually known, but also by object depths. In
particular, when is real (in traditional cameras with or
without coded apertures), this depth estimation is often referred
to as depth from defocus (DFD) or as depth from focus.

Obviously, an accurate PSF estimation is critical for both
image deconvolution and depth estimation. The PSF estima-
tion from the single image has to solve
two unknowns from a single equation and therefore is usually
ill-posed. Various prior knowledge about latent images or PSFs
has been used to better constraint the ill-posed problem [34]. To
obtain a more reliable and precise PSF estimation, multiple im-
ages with different pupil plane coding are often required (e.g.,
in [80]–[84]).

The extended depth of field (EDOF) is another promising
solution to recover sharp images without knowing the depth.
EDOF cameras are designed such that PSFs are depth invariant
and can be precomputed or calibrated. Therefore, sharp images
can be recovered directly by deconvolving the captured images
with a single known PSF. However, since PSFs of EDOF cam-
eras are independent of depth, it cannot be used to compute
depth; depth information is lost during capturing.

A. Coded Aperture

Pupil plane coding based on intensity modulators (i.e.,
is positive and real) is often referred to as coded aperture tech-
niques or, sometimes, as apodizer techniques in optics. Coded
apertures can only affect the information in the spatial dimen-
sions ( and in the space). That is, when diffraction and
optical aberration are negligible, the shape of the PSF is simply
determined by the aperture pattern, and the scale is determined
by the amount of defocus.

1) Coded Aperture for Defocus Deblurring: An aperture pat-
tern good for defocus deblurring should be broadband and have
no zero-crossing frequencies in the Fourier domain. An early
work in optics has proposed using coded apertures (e.g., in [85]
and [86]) to preserve more high-frequency information in the
case of defocus. In astronomy, optimized patterns such as the
modified uniformly redundant array are often used for lensless
imaging [87], [88] in order to improve the SNR of the captured
images.

Partly inspired by the work in optics and astronomy, re-
searchers in computer vision make use of computational power
to optimize coded aperture patterns. Veeraraghavan et al. [35]
and Zhou and Nayar [36] optimize aperture patterns so that
more image information can be preserved in the case of defocus
deblurring. Zhou and Nayar [36] further study the effects of
image priors and image noise models in optimizing the pattern.
They show that the optimal coded aperture patterns are different
at different noise level. When the noise level is extremely high,
a wide open aperture is optimal; and when the noise level
decreases, the optimal pattern becomes more unstructured.

2) Coded Aperture for DFD: Traditional DFD techniques
use circular aperture cameras. They capture multiple images at
different focus settings or aperture settings for depth estimation
(e.g., in [80]–[84]). Levin et al. [34], Zhou et al. [89], and Levin
[90] investigate how coded aperture affects the performance of
DFD, and accordingly optimize aperture patterns for these tasks.

The basic observation is that, in a single image scenario, a
good aperture pattern for depth estimation should have obvious
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Fig. 9. Compare binocular stereo and DFD. Depth estimation is about finding
the slope of each stripe in the ���� space. In binocular stereo (a), each camera
captures one sample of each stripe. The two corresponding samples are used
to compute the slope, which is the inverse of the depth. The correspondence
between the two samples are found by using stereo matching algorithms.
(b) Typical DFD technique captures images by changing aperture size or
pattern. Left: when two shifted pinhole apertures are used [84], each image
captures one sample of each stripe. This is virtually the same as in stereo
vision (a). Middle: two images are captured by using two circular apertures of
different sizes. Right: two images are captured by using two coded aperture
patterns [89]. Each DFD algorithm captures two different integrals to estimate
the stripe slope.

zero-crossing frequencies in the Fourier domain to help iden-
tify the PSF scale; and for multiple image scenario, the power
spectra and phase of aperture patterns should compensate each
other in the Fourier domain. They have shown that cameras with
the optimized coded apertures can achieve a much more reli-
able and precise depth map from defocus than with traditional
circular apertures.

With stereo versus DFD, each stripe illustrated in Fig. 6 rep-
resents the light from a single object point. The stripe slope is
the inverse of the point to the reference plane. Both stereo vision
and DFD are about finding the slope of each stripe in the
space. The binocular stereo estimates the slopes by taking two
or more samples from each stripe, as shown in Fig. 9(a). Stereo
matching algorithms (see [91]–[93] for surveys) find the corre-
spondence between each pair of samples and then compute the
depth. Here, we have a slope , where is the baseline
between the stereo camera and is the disparity normalized by
the focal length of the camera.

Instead of capturing two discrete samples, DFD techniques
capture two different integrals along each stripe and then use
them to estimate the slope. Schechner and Kiryati [84] suggest
capturing two images by shifting the pinhole. In this setting, the
light fields after the aperture are two vertical slices (see Fig. 9(b)
left), which are the same as in binocular stereo. A typical DFD

Fig. 10. Coded aperture implementations. (a) Use a four-way aperture-splitting
mirror to divide the lens aperture [96]. (b) Insert photomasks into lenses [36].
(c) Use a scroll of paper patterns or an LCD right behind of the lens [37].

captures two images by changing the aperture size ([80]–[84]).
As shown in Fig. 9(a), each image captures a different integral
along each stripe. From two integrals, the DFD algorithm can
be used to estimate the blur size, which is equivalent to the dis-
parity in stereo vision. Then, the slope of each stripe can be com-
puted as slope , where is the radius of the blur kernel
normalized by the focal length of the camera lens and is the
diameter of the aperture.

3) Other Coded Aperture Techniques: Liang et al. [37] pro-
pose using a programmable aperture camera to capture light
fields. Bando et al. [45] designs a color-filter aperture so that
three color channels will capture images with different aper-
ture patterns. Then, depth information can be estimated from
the three color channels in a single image formatting.

Coded aperture techniques usually cannot be used to extend
the depth of field because, in geometrical optics, the scale of the
PSF varies with depth in an ideal camera. PSFs can be made
relatively invariant to depth if the diffraction effect can be used
properly. For example, a zone plate, i.e., a circular mask with
annular rings of specific radii, can produce multiple focus depths
in an imaging system and can be used to extend the depth of field
[94], [95].

4) Coded Aperture Implementation: Coded apertures can be
implemented in several different ways (see Fig. 10). Levin et al.

[34] and Veeraraghavan et al. [35] insert cut paper boards into
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lenses. Zhou et al. [36], [89] print coded patterns onto preci-
sion photomasks. Liang et al. [37] use an LCD and a series of
rolling paper boards to implement a number of fast switching
aperture patterns. Nagahara et al. [38] design a relay optics with
an LCoS device for programmable aperture imaging. This pro-
grammable aperture camera design can be easily attached to dif-
ferent lenses and afford high-frame-rate aperture switching and
relatively high light efficiency. Green et al. [96] and Aggarwal
and Ahuja [97] use especially designed and arranged mirrors to
split an aperture into several parts of different shapes.

B. Wavefront Coding

Pupil plane coding using phase modulators (i.e., is
complex) is often referred to as wavefront coding. A phase mod-
ulator is usually a plate of glass of a certain 3-D profile. As il-
lustrated in Fig. 5(d), a phase plate will distort the input light
field in dimension, and the resulting PSF will simply be the
histogram of the derivation of the wavefront function . In
wave optics, this relation can be formulated using (1). Wave-
front coding techniques have been studied for decades in optics
for a variety of applications.

Wavefront coding for depth estimation prefers using PSFs
that change dramatically with depth. Dowski [98] designed a
phase plate that has responses at only a few frequencies, which
makes the imaging system more sensitive to depth variations.
Greengard et al. [99] designed a phase plate that can produce
PSFs, which will rotate as depth varies. This rotational PSF de-
sign is shown to increase effectively the depth variations of PSFs
and therefore is more optimal for depth estimation.

More often, wavefront coding is used to extend depth of field
and a lot of work has been done in this line. As mentioned above,
the PSF of a good EDOF technique should be a broad-band
filter without zero-crossing frequencies in the Fourier domain
and should, at the same time, be depth invariant. Cathey and
Dowski [100], [101] propose a cubic phase plate design, which
yields a broad-band spectrum and is relatively depth invariant.
One way to understand its property of depth invariance is that
when is a third-order polynomial function, it will over-
power the quadratic defocus term ; therefore, the system ap-
pears to be depth invariant.

The performance of the cubic phase plate has been analyzed
extensively from the perspectives of light fields, wave optics,
and the frequency domain [102]–[104]. An intuitive under-
standing of the cubic-phase-plate EDOF camera can be found
by using a light field representation. In Fig. 11, we illustrate
two light fields in a cubic-phase-plate camera (b), after the
optics and on the sensor plane, and compare them with that in
a traditional camera (a). In the traditional camera, objects at
different depths yield straight lines of different slopes and then
produce pillbox PSFs of different radii when projected onto
the axis. Meanwhile, in a cubic-phase-plate camera, objects
at different depths yield second-order polynomial curves in the

space. When the curves on the sensor plane are projected
onto the axis, the intensity distribution is proportional to the
curve slopes and has a peak at the vertical regions. The resulting
PSFs have sharp peaks that help to preserve high-frequency
information. Note that the wavefront error function of spherical
aberration and chromatic aberration are also second-order
polynomials, i.e., same as defocus errors. Therefore, the cubic

Fig. 11. Light field transforms in EDOF cameras. An ideal EDOF camera pro-
duces PSFs that are broadband in the Fourier domain (or sharp in the spatial
domain) and invariant to depth. (a)–(c) Traditional camera, cubic-phase-plate
EDOF camera [98], [100], and lattice-focal lens camera [104], respectively.
From the second row to the fourth row, we show light fields after the optics,
light fields on the sensor plane, and the final captured images, respectively. We
can see that the cubic phase plate EDOF camera and the lattice-focal lens camera
produce sharp PSFs at various depths, whereas PSFs of traditional cameras be-
come flat quickly when objects move away from the focal plane. (a) Traditional
Camera. (b) Wavefront coding. (c) Lattice-focal Lens.

phase plate can also be used to suppress these two aberrations
[105].

Many other phase plate designs have also been proposed for
EDOF imaging. George and Chi [106] propose the use of a log-
arithmic asphere and image processing to increase the depth
of field. Castro and Ojeda-Castañeda [107] present a family of
asymmetric phase masks that extends the depth of field of an
optical system. Cossairt et al. [32] and Garcia-Guerrero et al.

[108] propose using radially symmetric optical diffusers to ex-
tend the depth of field. Levin et al. [104] propose using a focal
lattice to extend the depth of field. The light field illustration of
this technique is shown in Fig. 11(c). The authors prove that the
performance of the lattice focus design is close to the theoretical
upper bound.

V. SENSOR SIDE CODING

Here, an optical element is placed on the sensor side of the
lens. The element can be either placed in the space between the
sensor and the lens or placed on or close to the sensor, but their
functionalities will be different. In this category, we also include
the use of small physical motions of the image sensor or the
pixelwise control of exposure. According to the Gaussian lens
law, optical devices after the lens are dual to devices in front
of the lens; therefore, sensor side coding can provide similar
functionalities as object side coding: it can modulate light fields
in both the and dimensions. One important advantage of
using sensor side coding instead of object side coding is that it
can be compactly built into a camera and, hence, is nonintrusive
to the scene.
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Fig. 12. Heterodyne light field camera using a photomask between sensor and
lens [35]. (a) Geometry of the heterodyne camera and its prototype implementa-
tion. (b) Left: an illustration of the band-limited light field in a traditional camera
(Fourier domain). According to the Fourier slice theory [109], the camera sensor
captures a slice of the light field �� � ��. Right: an illustration of the light field
in the Fourier domain in a heterodyne camera (Fourier domain). This hetero-
dyned light field contains multiple copies of the band-limited light field. There-
fore, 1-D slice of the heterodyned light field contains 2-D light field information.

A. Coding in Front of the Sensor Plane

Consider putting an optical element between planes and
in Fig. 6. The light field will be first modulated by this el-

ement, then sheared in the dimension due to the space be-
tween the element and the sensor, and finally projected onto the
sensor. When the element is an intensity modulator , we have

, where
is the projection of the high-dimensional light field onto the

2-D sensor, is the shearing operator on light fields, is the
light field right in front of the intensity modulator, and is the
light field on the sensor plane as if the intensity modulator were
removed.

In the Fourier domain, the dot product in the equation be-
comes convolution. According to the Fourier slice theory [109],
the captured image is one slice of the light field in the Fourier do-
main. Veeraraghavan et al. [35] propose using mask , which
is the sum of several cosine signals in spatial domain (or the sum
of several Dirac delta function in the Fourier domain) to modu-
late the light field so that the Fourier transform of the final light
field will have several identical copies of [see Fig. 12(d)].
Since the copies are made in a tilted angle, different slices of
the light field will be captured by the sensor and then be used to
reconstruct the 4-D light field. One important assumption in this
technique is that the input light field is a band-limited one; oth-
erwise, multiple copies of the light field will overlap each other
and cause severe aliasing. Raskar et al. [110] further study the
glare effect and propose using the same setting, as in [35], to
reduce glare effects of camera lenses.

As in object side coding [52], lens arrays can also be used on
the sensor side to capture light fields. The idea of the plenoptic
camera has a long history since the early twentieth century
[113], [114]. Since the 1990s, a variety of plenoptic cameras
has been proposed and implemented in vision and graphics.

Fig. 13. Plenoptic light field camera using a lens array between sensor and lens
[111]. (a) Geometry of the plenoptic camera, and its prototype implementation.
(b) From (I) to (III) are the intermediate light fields on� (before the lensarray),
� (after the lensarray), and � (before the sensor), respectively. The image
sensor captures the projection of the light field �� � on the � axis, as shown
in (IV). We can see that the incoming 2-D light field (I) is rearranged in such a
way [as shown in (III)] that it can be projected onto a 1-D image sensor.

Adelson and Bergen [7] propose to use a lenslet array in front of
the sensor for light field acquisition. Ng et al. [111] give more
detailed analysis on this approach and implement a prototype
compact handheld light field camera, as shown in Fig. 13(a).
Fig. 13(b) shows how the lens array transforms the light field
and helps to capture the 4-D light field. Consider the two small
labeled blocks in the light field at . The two blocks would be
integrated into a single pixel if a sensor were placed in plane

. The light field is sheared by the lenslet in the dimension
and then sheared in the dimension due to the space

between the lens array and the sensor . In the light field on
plane (see Fig. 13(b) III), the two blocks are now parallel
vertically and can be mapped to different pixels. As a result, a
1-D sensor can capture a 2-D light field. Similarly, a 2-D sensor
can capture a 4-D light field.

The position, size, and focus length of the lenslet array have
to be chosen carefully. To avoid overlapping or waste pixels, the
optimal setting is to have , which indicates that the
F-number of the main lens should be identical to the F-number
of the lenslets. In addition, note that the 4-D light fields are
captured by sacrificing the spatial resolution $u$ for angular
resolution $s$. Therefore, there is a tradeoff between spatial and
angular resolutions in plenoptic light field camera designs. To
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achieve different amount of tradeoffs, Lumsdaine and Georgiev
[115] and Bishop et al. [116] propose several different strategies
of positioning lenslets and sensors.

B. Coding on the Sensor Plane

Coding on the sensor plane usually does not affect the signal
in the angular dimension, but provides pixelwise modulations.
Color filter arrays, such as the Bayer mode array, are widely
used here to encode color information in a monochromatic
sensor [43], [117]. Other color filter patterns have also been
proposed [44], [118], and various demosaicing algorithms have
also been used for high-quality color images [119], [120].

Various intensity modulators (e.g., color filters, neutral filters,
and polarizers) can be used on the sensor plane to capture dif-
ferent visual information. Nayar and Narasimhan [121] gener-
alize the color filter array to assorted filter arrays in order to
capture extra multispectral and HDR information. Ben-Ezra et

al. [122] suggest modifying the shape and layout of pixels for
super-resolution. Their proposed penrose layout is shown to sig-
nificantly improve the factor of super-resolution.

In the past decades, tremendous advances on sensor design
have been achieved to reduce pixel size, increase light efficiency,
extend dynamic range, suppress noise, etc.[123]–[127]. Com-
putational sensor is another overlapping research area, where
people are developing detectors that can perform image sensing
as well as early vision processing [128]–[130]. We will not be
able to cover these approaches in this paper.

C. Sensor Motion

Another type of important sensor plane coding is to use
camera motions. During the exposure time when an image is
captured, one can move the sensor in various directions and
patterns to help preserve useful information. Nagahara et al.

[131] propose a focal sweep technique to extend the depth of
field, which moves the sensor along the optical axis during the
exposure time. They have also demonstrated using discontin-
uous motions to achieve discontinuous depth of field and using
motions with rolling shutter sensors to achieve curved depth of
field. A similar focal sweep idea has been exploited in the area
of a microscope by moving the specimen instead of the sensor
[132]. Sensor motion can also be made on the sensor plane.
Lenz and Lenz [133] and Ben-Ezra et al. [134], [135] propose
capturing multiple images with subpixel sensor motions for
higher resolution images.

Sensor motion techniques can also be used to reduce or to
remove motion blur. Analogous to the cubic-phase-plate idea
for EDOF imaging, Levin et al. [112] propose moving the sensor
in a parabolic trajectory so that the motion-blur PSF will be
invariant to object motion and invertible. The captured images
can then be deconvolved with a single PSF to achieve blur-free
images. In Fig. 14, we illustrate the spatial–temporal light field
representations of three cameras: a traditional camera, a linear
translation camera [76], and the parabolic translation camera
[112]. We can see that object motions of different speed lead
to rectangle PSFs of different scales in a traditional camera or
a linear translation camera; and in the motion invariant camera,
the resulting PSFs are sharp and almost invariant to the velocity
of the moving objects.

Fig. 14. Motion invariant photography [112]. (a) Imaging scene with three ob-
jects of different velocities. From (b) to (d), we illustrate how sensor motions
affect the motion PSFs in three cameras, including a static camera, a camera
with a linear translation, and a camera with a parabolic translation, respectively.
Each figure includes, from top to bottom, the function of camera motion, the
light field relative to the moving sensor in the ��� space, and the captured
PSFs, respectively. We can see that a camera with a parabolic translation yields
sharp motion PSFs and is relatively invariant to the velocity of object motions.
(a) Imaging scene with three moving objects. (b) Static camera. (c) Linear Trans-
lation. (d) Parabolic Translation.

One limitation of this method [112] is that it is designed to
deal with motions in one specific direction. Cho et al. [136]
propose capturing two images by using parabolic motions in
two orthogonal directions in order to estimate motion and to
remove motion blur in arbitrary directions. Rav-Acha and Peleg
[137] show that deconvolution would be more robust if multiple
images with different motion direction could be captured.

VI. ILLUMINATION CODING

The basic function of the camera flash has remained the same
since it first became commercially available in the 1930s. It is
used to brightly illuminate the scene inside the camera FOV
during the exposure time of the image detector. It essentially
serves as a point light source. With significant advances made
with respect to digital projectors, the flash now plays a more
sophisticated role in capturing images. It enables the camera to
project arbitrarily complex illumination patterns onto the scene,
capture the corresponding images, and extract scene informa-
tion that is not possible to obtain with a traditional flash.

In this case, the complete imaging system can still be thought
of as a computational camera where captured images are
optically coded due to the patterned illumination of the scene
[see Fig. 2(d)]. Fig. 15 shows two computational cameras with
built-in coded illumination elements. Kinect depth sensor, a
Microsoft product for gaming released in 2010, combines an
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Fig. 15. Two computational cameras with built-in components of illumination
coding. (a) Microsoft Kinect depth sensor uses an infrared projector and a mono-
chrome CMOS sensor for 3-D reconstruction. [138] (b) Nikon Coolpix camera
with a built-in projector.

Fig. 16. Camera array. (a) Regular array of cameras with overlapping FOV
for light field acquisition [164]. From left to right are the camera geometry,
a prototype camera array, and its light field illustration. (b) Flexible array of
cameras with divergent FOV for scene collage [165]. From left to right are the
geometry, a prototype camera array, and its light field illustration.

infrared projector with a monochrome CMOS sensor for 3-D
reconstruction [138]; and a Nikon Coolpix camera, which was
released in 2009, provides a built-in projector.

Structured light can be regarded as a spatial illumination
coding technique that has a long history in the field of computer
vision (see [3] for a survey). This technique improves the
performance of stereo vision by making the correspondence
matching problem easier to solve. Consider an input light field,
as shown in Fig. 9(a). Stereo matching algorithms need to find
two samples in each stripe in order to compute the slope, i.e.,
the inverse of the depth. Structured light techniques make each
stripe look different (either in intensity, color, or local pattern)
and therefore make the correspondence matching an easier
problem.

Many other illumination coding techniques for depth estima-
tion or 3-D reconstruction have been proposed in recent years.
Zhang and Nayar [139] and Gupta et al. [140] recover DFD pro-
jections, Kirmani et al. [141] measure the depths of points out-
side the camera’s FOV by using echoes of pulsed illumination,
Raskar et al. [142] use multiple flashes for depth edge measure-
ment, Ma et al. [143] estimate specular and diffuse normals by

using gradient illumination, and Zhang et al. [144] produce ro-
bust 3-D reconstruction by using space–time stereo.

Structured illumination has also been used for a variety of
other vision and graphics tasks, including the separation of di-
rect and global illumination [145], image enhancement using
flash and no-flash images [146]–[148], BRDF-invariant surface
reconstruction using Helmholtz stereopsis [149], and the mea-
surement of light transport in a scene [150]–[153]. Multiplexed
illumination is proposed for improving the SNR in the case of
weak sources [154], object relighting [155], and multispectral
imaging [156].

Structured illumination techniques based on a phenomenon
known as the Moire effect have been used to overcome the
resolution limits of microscopy [157], [158] and other imaging
systems [159], [160] (see [161] for a survey of the Moire
technique). Structured illumination using diffuse optical to-
mography has been used for volume density estimation [162],
[163].

VII. CAMERA CLUSTERS OR ARRAYS

Cameras use a set of devices to process the input light field in
order to capture useful information. The capability of a single
camera is virtually constrained by optical size, which physically
determines the field of light to be captured. One way to tran-
scend this limit is by using larger lenses. However, it is often
too expensive and difficult to built large imaging systems of
high quality. In recent years, techniques have been proposed to
use a number of low-cost small cameras to capture more visual
information.

A. Camera Arrays

Camera arrays have been used for stereo vision for a long
history. Multiview stereo helps to solve the ambiguity problem
in stereo matching and, hence, increases the precision of depth
estimation [166]–[170]. Ding et al. [171] use a 3 3 camera
array to track distorted feature points beneath a fluid surface in
order to dynamically recover fluid surfaces. Yang et al. [172]
propose a real-time distributed light field camera of an 8 8
video camera array to capture dynamically changing light field
and allow multiple users to navigate virtual cameras. The ren-
dering algorithm is distributed in order to overcome the data
bandwidth problem. In [165], an array of video cameras are used
to stabilize the video jittering due to camera shaking. The key
idea is to interpolate one smooth camera trajectory from 2 2
unstable cameras.

The high performance of camera arrays in HDR, FOV, syn-
thetic apertures, and high-frame-rate capturing has been studied
in [164]. For example, as illustrated in Fig. 16(a), when all the
cameras have an overlapping FOV, each of them captures one
slice of the 4-D light field at a specific point. Then, 4-D
light fields can be reconstructed by combining all the captured
images. When FOVs are divergent, as shown in Fig. 16(b), the
camera array will be able to capture high resolution and wide
FOV images [173].

B. Camera Clusters

Camera clusters without regular layouts are often used in
graphics for image-based rendering (see [174] for a review) and
panoramic imaging (see [175] for a review). Ideally, one wants
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images of an object or a scene to be captured from all possible
perspectives. Image-based rendering techniques in graphics use
a finite number of cameras to capture multiple images from dif-
ferent perspectives and then use view interpolation algorithms
to synthesize those unsampled pixels. The camera layout in the
cluster has been studied extensively in the 1990s. The basic idea
is that more cameras should be located from perspectives where
the scene complexity is high [176], [177].

Shum and He [178] and Chai et al. [179] propose using a
number of cameras mounted on a rotating holder to uniformly
sample a light field for concentric mosaicking. This technique
is then further analyzed with respect to non-Lambertian sur-
face, occlusions, and sampling strategies [180], [181]. Inward
and outward camera clusters have been widely used for virtual
reality [182].

VIII. UNCONVENTIONAL IMAGING SYSTEMS

There are several other computational camera designs that
cannot fit well in the previous five categories. Work has been
done to simplify cameras by using computations instead of ex-
tending the functionalities of the camera. Stork and Robinson
[185] and Robinson and Stork [186] discuss several mathemat-
ical and conceptual foundations for digital–optical joint opti-
mization and propose a singlet lens design and a triplet lens de-
sign with improved image quality after computation. Robinson
and Stork [187] exploit the idea of digital–optical joint opti-
mization for super-resolution.

A number of techniques have been proposed to make use
of axial chromatic aberrations for EDOF imaging. These tech-
niques only require lenses as simple as singlet, doublet, or
triplet, and achieve much larger depth of fields for grayscale
scenes [188]–[191]. Guichard et al. [192] also extend DOF by
exploiting chromatic aberrations, but can deal with color im-
ages by finding the best focused color channel and transferring
high-frequency information to the remaining color channels.
Cossairt and Nayar [191] show that, for a system with axial
chromatic aberrations, even the best focused color channel is
blurred and this limits the quality of the recovered images.
They therefore propose an SFS technique, which creates an
approximately depth-invariant PSF, and use deconvolution to
recover more scene details.

It is also possible to change the overall architecture of cam-
eras. Zomet and Nayar [193] propose lensless cameras with one
or multiple layers of controllable apertures for imaging. Al-
though this design requires a larger video detector and loses
some light, it yields more flexible FOV than traditional cameras.
Tumblin et al. [194] conceptually propose a gradient camera
that measures image gradients instead of intensities and demon-
strates its advantage in HDR imaging by simulation.

While most imaging techniques are interested in capturing
perspective images as if through one pinhole, multiperspective
imaging combines what is seen from several viewpoints into a
single image and is potentially advantageous to understand the
structure of certain scenes [195]. For example, an XSlit camera
[197] collects all rays that pass through two noncoplanar lines.
Yu and McMillan [198] present a general linear camera (GLC)
model that unifies many multiperspective cameras and reveal
three new and previously unexplored multiperspective linear

Fig. 17. Two unconventional computational camera designs. (a) Single element
design using a ball lens for gigapixel imaging [183]. This design uses computa-
tion to achieve high resolution while reducing lens complexity and camera size.
(b) FrankenCamera provides an open-source experimental platform for compu-
tational photography [184].

cameras by using the GLC model (see [199] for a survey on
multiperspective modeling, rendering, and imaging).

High-resolution cameras require using large lenses to over-
come the diffraction limits but are fundamentally limited by ge-
ometrical aberrations. In face of this fundamental limit, Ben-
Ezra [200] and Gigapixel Project [201] propose large format
sensors and scanning strategies for gigapixel imaging, Marks
and Brady [202] and Brady and Hagen [203] increase the com-
plexity of lens design as the lens is scaled up, and Cossairt et

al. [183] propose a shared ball lens architecture, as shown in
Fig. 17(a), and use computation to achieve high resolution while
reducing lens complexity and camera size.

Adams et al. [184] propose FrankenCamera, i.e., an open-
source experimental platform, for computational photography.
Although the FrankenCamera design does not modify the optics
directly, it makes the control of the optical devices much easier
in experiments. Nonoptical devices can also be used with cam-
eras to capture extra information for image processing. Park et

al. [204] propose using a three-axis accelerometer to measure
camera motion and then use the motion information for mo-
tion-blur deblurring, and Joshi et al. [205] combine gyroscopes
and accelerometers for more precise motion measurement and
better motion deblurring results.

IX. DISCUSSION

Among the six coding approaches, object side coding, pupil

plane coding, and sensor side coding are shown as modifica-

tions made to a traditional camera. Fig. 18 gives an overview

of the computational camera designs in these three categories.

In the horizontal direction, we have object side coding, pupil

plane coding, and sensor side coding. In the vertical direction,
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Fig. 18. Overview of computational camera designs using object side coding, pupil plane coding, and sensor side coding. In the vertical direction are the optical
devices that are often used in designing computational cameras. In each cell, we group the techniques according to the type of visual information to be captured,
including light field, depth, image (i.e., spatial resolution), EDOF, HDR, Color, FOV, and motion (i.e., temporal resolution). Each group is differently colored. This
table, although not exhaustive, provides an overview of existing computational camera designs and may inspire new ideas in this area.

we have phase modulators (including lens, lens array, prisms,

prism array, plate, phase plate, and diffuser), intensity modula-

tors (including masks, color filters, and polarizers), and others

(including mirrors and motions). In each cell, we group the tech-

niques according to the type of visual information that they want

to capture, including light field, depth, image (i.e., the spatial

resolution), EDOF, HDR, color, FOV, and motion (i.e., the tem-

poral resolution). This table, although not exhaustive, provides

an overview of existing computational camera designs and may

inspire new ideas in this exciting research area.

We made several observations from this table. First, tech-

niques in the same cell usually have a lot of similarities in

their formulation and design principles and are often different

from each other by choosing different performance tradeoffs or

optimization strategies. For example, several sensor side coding

techniques have been proposed to use lens arrays for light field

acquisition, and these techniques achieve different spatial and

angular resolution tradeoffs. Various masks in pupil plane

coding have been used to improve the spatial resolution, and

they are differently designed mainly due to the different criteria

of image quality measurement. Understanding the similarity

and difference can help one to know computational cameras

techniques better.

Second, the camera designs are distributed in the table in

a nonuniform manner. This is first related to the fact that

certain combinations of devices and coding approaches are

good or not good at preserving certain visual information. For

example, people usually do not use phase plates on the sensor

plane because it does not affect the final captured images. The

nonuniform distribution can also be a result of other factors,

including market needs and implementation difficulties. For

example, research in catadioptic camera design is greatly

driven by the need of wide FOV imaging in autonomous nav-

igation, virtual reality, and video conferencing; the popularity

of wavefront coding techniques in the research community

of vision and graphics is greatly limited by the difficulty in

implementation.

There are many holes in the table. Some of them may be

worthy of exploiting. For example, there is no much work using

phase plates for object side coding. The missing of this type

of technique is probably because of the difficulties in imple-

menting phase plates and analyzing the effects of an object-

side phase plate. Overcoming these difficulties may lead to new

useful techniques.

While the first three coding approaches are used to extract

more useful information from the incoming light field, the latter

three coding approaches (i.e., illumination coding, camera array

or cluster, and unconventional computational cameras) are more

about transcending the fundamental limits of traditional cam-

eras. Illumination coding techniques modify incoming light

fields by actively projecting light. Camera arrays or clusters

overcome the physical limit of camera size and are able to

sample light fields at a larger scale. Unconventional camera

research optimizes or may even revolt camera architectures by

leveraging the power of computation.
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