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Cancer is a leading cause of death worldwide and represents one of the biggest biomedical

research challenges of our time. Tumor progression is caused by somatic evolution of cell popu-

lations. Cancer cells expand because of the accumulation of selectively advantageous mutations,

and expanding clones give rise to new cell subpopulations with increasingly higher somatic fit-

ness (Fig 1). In the 1970s, Nowell and others established this somatic evolutionary view of can-

cer [1]. Today, computational biologists have the opportunity to take advantage of large-scale

molecular profiling data in order to carve out the principles of tumor evolution and to elucidate

how it manifests across cancer types. Analogous to other evolutionary studies, mathematical

modeling will be key to the success of understanding the somatic evolution of cancer [2].

In general, cancer research involves a range of clinical, epidemiological, and molecular

approaches, as well as mathematical and computational modeling. An early and very successful

example of mathematical modeling was the work of Nordling [3] and of Armitage and Doll

[4]. In the 1950s, long before cancer genome data was available, they analyzed cancer incidence

data and postulated, based on the observed age-incidence curves, that cancer is a multistep pro-

cess. In search of these rate-limiting events, cancer progression was then linked to the accumu-

lation of genomic alterations. Since then, the evolutionary perspective on cancer has proven

useful in many instances, and the mathematical theory of cancer evolution has been developed

much further. However, little clinical benefit could be gained from this approach so far. Much

of evolutionary modeling in general, and of cancer in particular, has remained conceptual or

qualitative, either because of strong simplifications in the interest of mathematical tractability

or lack of informative data.

Next-generation sequencing (NGS) technologies and their various applications have

changed this situation fundamentally [5]. Today, cancer cells can be analyzed in great detail at

the molecular level, and tumor cell populations can be sampled extensively. Driven by this

technological revolution, large numbers of high-dimensional molecular profiles of tumors, and

even of individual cancer cells, are collected by cancer genome consortia, as well as by many

individual labs. Large catalogs of cancer genomes, epigenomes, transcriptomes, proteomes, and

other molecular profiles are generated to assess variation among tumors from different patients

(intertumor heterogeneity) as well as among individual cells of single tumors (intratumor het-

erogeneity). These data hold the promise not only of new cancer biology discoveries but also of

progress in cancer diagnostics and treatment.

Analyzing these complex data and interpreting them in the context of ongoing somatic evo-

lution, disease progression, and treatment response is a major challenge, and the prospects to

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004717 February 4, 2016 1 / 12

OPEN ACCESS

Citation: Beerenwinkel N, Greenman CD, Lagergren

J (2016) Computational Cancer Biology: An

Evolutionary Perspective. PLoS Comput Biol 12(2):

e1004717. doi:10.1371/journal.pcbi.1004717

Editor: Ruth Nussinov, National Cancer Institute,

United States of America and Tel Aviv University,

Israel, UNITED STATES

Published: February 4, 2016

Copyright: © 2016 Beerenwinkel et al. This is an

open access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Funding: NB was partially supported by ERC

Synergy Grant 609883 (http://erc.europa.eu/),

SystemsX.ch RTD Grant 2013/150 (http://www.

systemsx.ch/), and Swiss Cancer League Grant KLS-

2892-02-2012 (www.krebsliga.ch). JL was supported

by the Swedish Research Council Grant 2013-4993

(www.vr.se). The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004717&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://erc.europa.eu/
http://www.systemsx.ch/
http://www.systemsx.ch/
http://www.krebsliga.ch
http://www.vr.se


improve cancer treatment depend critically on progress with these computational and statistical

tasks. In the following, we briefly summarize the current state of the art in the field and highlight

major challenges that lie ahead, including (i) reconstruction of evolutionary history based on

different types of genomic alterations, (ii) functional interpretation of mutations, and (iii) pre-

dictive modeling of the evolutionary dynamics of cancer. We argue that an interdisciplinary

approach, including statistical and computational data analysis as well as evolutionary modeling

of cancer, will be essential for translating technological advances into clinical benefits.

Cancer As an Evolutionary Process

Cancer is a genetic disease that arises when normal cellular functions are disrupted by muta-

tions arising in DNA. These changes occur at the level of single cells, which are then propa-

gated into subpopulations as cells divide and pass mutations through cell lineages (Fig 1).

Differences in growth rates between clones produce a complex tumor microenvironment con-

sisting of many different interacting and evolving cells, including normal stromal and immune

cells. These differences can manifest on various spatial, organizational, and functional levels.

Furthermore, although mutations are thought to primarily arise during the development of

cancerous tissue, there is a growing body of evidence, including theoretical [6], histological [7],

and genetic [8,9] approaches, supporting the idea that somatic mutations occur throughout the

entire lifetime of the host organism. Such mutations can be detected at low levels in circulating

cells [8], as well as directly from tissue. In eyelid epidermal cells, for example, it has recently

been shown that perfectly functional cells harbor a plethora of mutations that are also found in

known cancer genes [9].

The resultant intratumor genetic diversity is a huge problem for correctly diagnosing and

successfully treating tumors [10,11]. For example, the biopsy obtained from a heterogeneous

tumor may not be representative of the entire tumor because of insufficient resolution or spa-

tial heterogeneity. The treatment decision is then based on an incomplete or biased sample and

therefore is at risk of failing to target existing but undetected tumor subclones. This problem is

particularly pronounced for targeted drug therapy, in which small tumor subpopulations resis-

tant to targeted treatment are likely to preexist in the tumor prior to therapy [12].

Epistatic interactions among mutations are abundant. For example, many different cancer

mutations can result in deregulation of the same signaling pathways, and distinct mutational

Fig 1. Schematic representation of neoplastic transformation. (A) The left-hand side represents regular homeostatic tissue. The middle region
represents a mutation undergoing a selective sweep across a population of phenotypically normal tissue. The right-hand side indicates a period of clonal
growth, during which different mutations combine across subclones. (B) A phylogenetic tree on the right mirrors the subclonal structure in (A); the circles
represent mutations, and their sizes indicate the size of the corresponding subpopulation. The green subclone contains a branching process of mutation
accumulation, indicating the continual stochastic processes that underlie the approximation that is a clonal evolution tree.

doi:10.1371/journal.pcbi.1004717.g001
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patterns may result in the same phenotype [13,14]. Conversely, the accumulated mutations

create an environment that may cause selection to act in temporally and spatially distinct ways

[15–19]. For example, a mutation may initially yield a growth advantage, but after growing

into a large tumor, the advantage may disappear because the inner regions of the tumor can

suffer from necrosis and further growth is impossible without angiogenesis. Whether muta-

tions are adaptive or not will then depend on cellular location within the tumor.

Molecular Profiling of Tumors

In order to assess tumor diversity and to better understand the evolution of cancer, paired-end

sequencing experiments can elucidate the genetic makeup of tumors. A single sample will pro-

vide a snapshot of the end result of these evolutionary processes across the cells that are

sequenced at that point in time. We would like to use this information to infer the evolutionary

history of the tumor, evaluate the rates of mutation and selection, and predict future responses

of the tumor to environments potentially controlled by various drug protocols.

The detected mutations can take the form of single-nucleotide variants (SNVs), in which a

single nucleotide substitution occurs (or, occasionally, a few consecutive base changes), or

structural variants (SVs), in which chunks of DNA are erroneously copied, deleted, or mis-

placed, which in turn can lead to copy number variations (CNVs). Epigenetic changes affecting

chromatin conformation, such as DNA methylation or histone modifications, can also arise.

Paired-end sequencing offers a means to obtain relatively comprehensive descriptions of all of

this somatic variation [20].

Even so, a single snapshot of a genome can only provide so much information. Modern

sequencing techniques now enable analysis of spatial and temporal effects. For example, sam-

ples can be taken from different locations in a patient, either within a tissue or including pri-

mary tumor and distant metastases [18,19]. Such sampling can also include a time series, in

which, for example, samples before and after treatment or during initial and relapse presenta-

tion can be used to investigate how genetics correlates with clinical protocols or outcome [17].

Although direct sequencing of samples is now routinely carried out, mutation signals from

small subsets of cells are difficult to detect. Deep sequencing can mitigate these difficulties

somewhat [21–23], but alternative techniques are also becoming available. For example, single-

cell sequencing is now possible [24,25], although the signal obtained is relatively noisy and

these experiments are currently best combined with the information gleaned from standard

multicellular sequencing protocols. Alternatively, ultrasensitive methods that can detect circu-

lating tumor DNA from plasma samples are also possible [26]. Finally, experimental tech-

niques other than sequencing, typically not genome-wide but some single-cell–based, have also

been applied (for example, fluorescence techniques [26–28]).

There have been concerted international efforts over the last few years to produce compre-

hensive libraries of cancer genome data across a range of tissues, including The Cancer

Genome Atlas (TCGA) (http://cancergenome.nih.gov/) and the International Cancer Genome

Consortium (ICGC) (https://icgc.org/). Both have collated open-access data for hundreds to

thousands of samples available to the cancer research community for further study. The gener-

ation of these great volumes of data of different types is inevitably leading to a range of compu-

tational and statistical challenges.

Data Integration and Functional Interpretation

Driver mutations are those mutations that contribute to causing cancer, as opposed to non-

causal passenger mutations. Moreover, cancer genes are genes that can carry driver mutations

or can contribute to oncogenesis when epigenetically modified. NGS provides increasingly
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better means to identify cancer genes as well as driver mutations, which has implications on

the identification of biomarkers as well as on our ability to study somatic evolution of cancer

on predefined cancer genes.

From sequenced tumor genomes, cancer genes and driver mutations can be predicted

through the application of statistical methods for detecting overrepresentation, based on the

assumption that genes that are frequently mutated across a tumor collection are likely to carry

driver mutations. However, detecting recurrent mutations is challenging because the back-

ground mutation rate has been shown to be quite heterogeneous across genomes. For instance,

genes with lower expression and those replicated late during the cell cycle have a higher muta-

tion rate than genes with higher expression and those replicated early [29]. A review of meth-

odologies for the identification of driver mutations can be found in [30].

As is frequently the case in biological analyses, when attempting to understand somatic evo-

lution of cancer, the pathway level is perhaps more relevant than the gene level. The intuitive

reason is that phenotypes providing a selective advantage to a cell are often the effect of a path-

way rather than an individual gene. Consequently, a mutation in any of the genes of the path-

way may provide more or less the same effect on the tumor and, hence, also a similar selective

advantage. This phenomenon complicates inference and representation of how a cancer pro-

gresses towards increased malignancy. However, it also means that mutations belonging to the

same pathway will tend to appear in a mutually exclusive manner, an observation that has been

taken advantage of in order to identify the pathways [13,31–34], even though mutual exclusiv-

ity might also have other reasons. Predefined biological networks can, for the same reason,

assist the identification of cancer genes. If pathways have a tendency to occur as subnetworks

with small radius, then statistical methods can be designed for identifying such gene groups

with an overrepresentation of mutated genes [35]. Several aspects of pathway and network

analysis in computational cancer research are reviewed in [36].

Intratumor Phylogeny

In principle, the genomic diversity observed within each individual tumor can reveal the evolu-

tionary history of the tumor (Fig 1). This perspective is promising, as tumor phylogenies would

allow for assessing the mode of tumor evolution and for distinguishing different hypotheses

about this process. For example, monoclonal and polyclonal evolution, mutator phenotype,

and cancer stem cells all leave characteristic evolutionary traces and result in distinct tumor

phylogenies [37].

In practice, however, the intratumor phylogeny problem is challenging. Sampling individual

cancer genomes from a tumor involves either single-cell approaches or bulk sequencing of a

heterogeneous sample. Single-cell analysis seems natural for assessing genetic tumor diversity,

and because of technological advances, single-cell sequencing is likely to become the state of

the art soon [24,25]. However, the technology is just emerging, and large, unbiased samples are

costly and still difficult to obtain. The increased levels of noise associated with amplifying indi-

vidual genomes pose additional challenges on the statistical analysis of genomic data obtained

in this manner [38,39]. As an alternative to exome- or genome-wide sequencing, more targeted

approaches, such as fluorescent in-situ hybridization (FISH), can be used to measure specific

mutational patterns in single cells [26].

On the other hand, bulk sequencing of a mixture of cells is much more robust, but it pro-

vides only indirect and imperfect evidence of the individual genomes. The deconvolution prob-

lem of grouping genomic variations into an unknown number of tumor subclones and normal

cells is particularly challenging for short-read sequencing data, which complicates and often

prohibits the phasing of genetic alterations. To address this problem, Bayesian approaches
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based on the stick-breaking process are commonly used to hierarchically cluster SNVs into

clones, or genotypes, according to their estimated frequency in the tumor cell population

[40,41]. For tree reconstruction, a perfect phylogeny is usually assumed, i.e., mutations are irre-

versible and each mutation can occur at most once in the tree. With these assumptions, the

estimated SNV frequencies provide information on the tree topology. For example, if the rela-

tive frequencies of two clones sum to more than 100%, then the clone with higher frequency

must be an ancestor of the one with lower frequency [42–44].

Besides SNVs, CNVs are frequent genomic changes in cancer genomes. Reconstructing

tumor phylogenies from CNV data is challenging for two reasons. First, CNVs do not occur

independently along the genome because they are the result of genomic alterations, such as

insertions and deletions, that can affect large chromosomal segments. These spatial correla-

tions need to be accounted for when computing evolutionary distances between CNV profiles,

for example, by defining breakpoint distances or by computing the minimal number of events

necessary to transform one CNV pattern into another [45–47]. Second, at each site, SNP arrays

can detect the copy numbers of both parental alleles, but their phasing across sites is difficult to

determine. Because the evolutionary events occur on individual haplotypes, correct evolution-

ary distances can only be computed based on phased CNV profiles [48]. The phasing problem

has also been addressed by using external linkage information [48] and by solving it jointly

with tree reconstruction using a minimum evolution criterion [47]. Finally, CNVs can con-

found SNV frequencies, and both data types should be analyzed jointly to obtain a more com-

prehensive picture of the evolutionary history of the tumor [49,50].

Spatial Genomics and Biogeography

It is natural to extend studies of intratumor heterogeneity by asking how the heterogeneity is

distributed spatially in a single tumor and how this distribution varies across tumors. Such

investigations of spatial distribution may very well bear a resemblance to biogeography, a field

concerned with understanding the geographic distribution of genetic variation within species

as well as among closely related species [51]. As new experimental techniques emerge that

allow for increasingly fine-grained assays of genetic variation across cells of tumor cross sec-

tions, and eventually the entire three-dimensional tumor, studies of spatial distribution of het-

erogeneity will become increasingly feasible in computational cancer research. This trend will,

for instance, make it possible to analyze tumor heterogeneity by relating and contrasting the

spatial distribution with the phylogenetic distribution of tumor cells.

Already today, there are a number of spatial transcriptomics techniques, while other spatial

omics techniques are emerging, such as spatial genomics and proteomics [52]. Crosetto et al.

[52] speculate that the next wave of sequencing devices, such as long-read, single-molecule

technologies, might integrate electrophoretic systems, moving DNA and RNAmolecules from

a tissue section directly to a local nanopore and thereby enabling in situ single-cell sequencing.

It may also turn out to be viable to locally add barcodes to DNA and RNAmolecules to anno-

tate the original location and thereafter sequence the resulting barcoded nucleic acids in one

batch. In fact, coarse-grained techniques of this type are emerging for spatial transcriptomics,

and more fine-grained versions, i.e., having single-cell resolution, are bound to emerge. Inde-

pendently of the technical details, it is highly likely that, in the near future, spatial-omics data

will provide key insights into tumor heterogeneity.

There are four types of phylogenetic methods in biogeography: diffusion models, island mod-

els, hierarchical vicariance, and reticulate models. The latter three models use discrete areas,

between which species or individuals can move. Although it may be of interest to ask whether,

and potentially how, tumor cells have moved between specific, predetermined regions of a tumor,
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perhaps identified by a pathologist, the fact that diffusion models allow for continuous move-

ments probably make themmore applicable in tumor studies. However, the entire spatial area is

in this case the growing tumor, i.e., far from being constant, which is likely to further complicate

the analysis; a cell can move because of addition of other cells or because of its own movement.

In a study of tumor heterogeneity, Navin et al. [25] took a first step towards a joint analysis

of spatial and evolutionary aspects. They categorized a tumor as monoclonal or polyclonal,

depending on whether or not all its cells have the same genomic structure. Among the poly-

clonal category, they found tumors in which the genomically homogeneous subpopulations

were spatially segregated but also those in which the subpopulations were intermixed. It will be

highly interesting to find out how common these basic categories are, how they can be refined,

and what the clinical impact of these refinements may be.

Tumor Cell Population Dynamics

In order to describe the population dynamics of evolving tumors, different modeling

approaches have been used. Population genetics models, based on the Wright–Fisher process

or the Moran process, can be used to model the fate of individual cells in a population [53].

More generally, branching processes have frequently been employed to account for stochastic

fluctuations in the growth and composition of the population (Fig 1) [54,55]. These stochastic

models or their deterministic approximations can often be solved analytically under simplify-

ing assumptions, which allows for computing key quantities of interest, including the probabil-

ity of and time to fixation of a mutant and the size and age of the tumor cell population. By

contrast, models with more intricate features, such as population structure or cellular interac-

tions, quickly become intractable. Cellular automata are a popular choice for this model class,

whose analysis relies on forward simulations [56]. Thus, simple models can provide easy-to-

capture insights at the risk of oversimplification, while complex models may capture more

details of the evolutionary process at the cost of being difficult to analyze comprehensively.

Population genetics modeling of cancer has addressed many aspects of this somatic evolu-

tionary process, including tumor initiation, tumor progression, and drug resistance develop-

ment. Tumor initiation models aim at identifying the rate-limiting steps in the first

transformations of a normal cell. Early in cancer research, a dichotomy was identified between

(1) oncogenes that, when gaining increased activity through mutations, directly promote cancer

(by enhancing the ability of the cell to grow and proliferate, for example) and (2) tumor suppres-

sor genes that normally protect against cancer (by initiating programmed cell death upon signs

of uncontrolled growth, for example). Tumor initiation models have highlighted the different

dynamics of oncogene activation versus tumor suppressor gene inactivation, the role of chromo-

somal instability, and the importance of the spatial structure of the tissue of origin [57].

Tumor progression models focus on the process of mutation accumulation and further neo-

plastic transformation in an initiated tumor. These models have been used to infer the velocity

at which mutant waves sweep through the cancer cell population and to elucidate how this

speed of adaptation depends on the mutation rate, the fitness advantage of driver mutations,

and on the feasible set of mutational pathways [58–60]. The tumor progression dynamics can

also inform the discrimination of driver from passenger mutations [61,62], as driver mutations

are commonly predicted by detecting genes under positive selective pressure. Evolutionary

models can quantify the probability of any mutation to reach fixation in a tumor cell popula-

tion, including advantageous drivers as well as neutral or even deleterious passengers hitchhik-

ing on advantageous clones [63].

Mathematical models of drug resistance development date back to Luria and Delbrück [64],

who studied viral resistance in bacteria, and Goldie and Coldman [65], who analyzed drug
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resistant tumor subclones. The key conclusion of these and other studies is that drug resistance

mutations are much more likely to preexist in the tumor prior to treatment, as opposed to

being generated under treatment. The probability of a preexisting single-gene mutation is gen-

erally high, such that resistance against any drug targeting a single gene can be expected to be

implanted in any large tumor [66,67]. These predictions have been confirmed repeatedly. For

example, in colorectal carcinomas, resistance to epidermal growth factor receptor (EGFR)

inhibitors has recently been observed after a fairly constant time period, supporting the notion

that resistance is a fait accompli [12]. These dynamics of evolutionary escape from selective

drug pressure suggest that long-term tumor suppression can only be achieved by therapies tar-

geting more than one pathway. Indeed, using branching processes, it has been predicted that

combination therapies have a considerably higher probability of success than sequential mono-

therapies of the same drugs [68].

Mathematical modeling of tumor cell population dynamics will result in models and soft-

ware tools that are potentially predictive of disease progression and treatment outcome. At

present, much of the large-scale sequencing that has taken place is of limited depth and geo-

graphical scope, and mathematical models based on such information will likely be crude and

approximate. To construct realistic models of the evolutionary processes taking place, we need

to combine models that are representative of the processes taking place with high-resolution

data. In the long run, ecological models of the entire tumor microenvironment may play this

role [69]. The best current candidate for an approach is single-cell sequencing. By utilizing

such data, in both spatial and temporal capacities, along with information obtained in parallel

experiments, such as ultra-deep sequencing of circulating tumor DNA, exosomes, or cells, an

accurate picture of tumor heterogeneity and evolution dynamics will potentially be realized. To

achieve this with decent precision will likely require information from thousands of individual

cells. Furthermore, to gain an appreciation of the variation of these processes across different

tumors will require such data from patient numbers similar to the recent ICGC and TCGA

consortia. Although these requirements are beyond current capabilities, continuing improve-

ments in current technologies and the introduction of new methods such as nanopore sequenc-

ing are likely to see a climb in data resolution and will result in a need for such mathematical

approaches.

Cancer Progression Networks

Multistage theory suggests that cancer progression involves several rate-limiting events, and

early on, genetic alterations have been proposed to play this role. For example, the development

of colorectal cancer has been mapped to a series of genetic changes involving successive muta-

tions in the genes APC, KRAS, and TP53 [70]. In general, however, the diversity of genomes

obtained from tumors of the same histological type is very high, complicating the identification

of cancer driver genes and the discovery of biomarkers. The linear progression model initially

proposed for colorectal cancer cannot explain the entire genomic diversity observed in cancer

genome sequencing data today. Cancer progression models address this challenge and try to

estimate common features of tumor progression across tumors of the same type. Each tumor is

regarded as an independent realization of the same evolutionary process (Fig 2A).

Several cancer progression network models have been developed. They are usually formulated

as probabilistic graphical models, in which a directed acyclic graph represents all feasible pro-

gression paths (Fig 2B) [71–74]. The network models generalize the linear model in several dif-

ferent ways. They allow for more general graph topologies, including trees, mixtures of trees, and

acyclic graphs, and they account for observation errors. Most models make monotonicity

assumptions, which state that, for any mutation to occur, all (or some) of its predecessor
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mutations in the graph need to have occurred before. This assumption makes learning the model

structure from data more efficient, as compared to general graphical models. Various learning

algorithms have been proposed, including exact combinatorial optimization techniques, local

optimization using the structural expectation-maximization (EM) algorithm, heuristic search

strategies, and Bayesian inference using Markov chain Monte Carlo (MCMC) [2,75,76].

Fig 2. Cancer progression networks. (A) Schematic representation of cancer genomes obtained from different patients. Each row represents one patient.
Four different mutations are indicated by disc (●), square (&), triangle (▲), and diamond (♦). (B) A cancer progression network that is consistent with the
data shown in (A). In the directed acyclic graph, vertices are labelled by mutations, and edges indicate dependencies. Here, both mutations● and&must
occur before▲ and finally ♦ can occur. Thus, the model encodes two mutational pathways, namely●!&!▲! ♦ and&!●!▲! ♦, and each tumor
would follow exactly one of these.

doi:10.1371/journal.pcbi.1004717.g002
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Cancer progression models have been shown to improve prediction of patient survival. In

particular, they allow for quantification of the degree of progression for each tumor, for exam-

ple, as the expected waiting time for the specific mutational pattern to accumulate [77,78]. As

such, progression models can be regarded as evolutionary biomarkers offering data-derived

progression scores, which can complement classical tumor staging and grading.

Summary and Outlook

Driven by technological advances in genomics, cancer research is changing rapidly. Mathemati-

cal, statistical, and computational methods play an increasingly important role in this process,

and many problems that occur in today’s cancer research can be addressed with methods that

are familiar to computational biologists. On the other hand, many novel modeling and compu-

tational problems arise in cancer research that lead to methodological research in computational

biology. With the ongoing large-scale generation of (single-cell, spatiotemporal) genomic pro-

files of tumors that are publically available, computational biologists have the opportunity to

make substantial contributions to cancer research. Here, we have highlighted a few major chal-

lenges which we believe are central for making progress, including (i) reconstruction of the evo-

lutionary history of a tumor based on different types of genomic alterations, (ii) functional

interpretation of mutations, and (iii) predictive modeling of the evolutionary dynamics of can-

cer. Statistically robust and computationally efficient methods of addressing these challenges

will enable a range of applications, such as optimal control of tumor development, forecast of

drug resistance evolution, and design of optimal individualized treatment strategies.
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