
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

1-1-2009

Computational capabilities of graph neural networks Computational capabilities of graph neural networks

Franco Scarselli
University of Siena, franco@ing.unisi.it

Marco Gori
University of Siena, marco@dii.unisi.it

Ah Chung Tsoi
Hong Kong Baptist University, act@uow.edu.au

Markus Hagenbuchner
University of Wollongong, markus@uow.edu.au

Gabriele Monfardini
University of Siena, Italy

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation

Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner, Markus; and Monfardini, Gabriele:

Computational capabilities of graph neural networks 2009, 81-102.

https://ro.uow.edu.au/infopapers/1695

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F1695&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F1695&utm_medium=PDF&utm_campaign=PDFCoverPages

Computational capabilities of graph neural networks Computational capabilities of graph neural networks

Abstract Abstract
In this paper, we will consider the approximation properties of a recently introduced neural network model
called graph neural network (GNN), which can be used to process-structured data inputs, e.g., acyclic
graphs, cyclic graphs, and directed or undirected graphs. This class of neural networks implements a

function tau(G, n) isin R m that maps a graph G and one of its nodes n onto an m-dimensional Euclidean
space. We characterize the functions that can be approximated by GNNs, in probability, up to any
prescribed degree of precision. This set contains the maps that satisfy a property called preservation of
the unfolding equivalence, and includes most of the practically useful functions on graphs; the only
known exception is when the input graph contains particular patterns of symmetries when unfolding
equivalence may not be preserved. The result can be considered an extension of the universal
approximation property established for the classic feedforward neural networks (FNNs). Some
experimental examples are used to show the computational capabilities of the proposed model.

Keywords Keywords
Computational, capabilities, graph, neural, networks

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
Scarselli, F., Gori, M., Tsoi, A., Hagenbuchner, M. & Monfardini, G. 2009, 'Computational capabilities of
graph neural networks', IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 81-102.

This journal article is available at Research Online: https://ro.uow.edu.au/infopapers/1695

https://ro.uow.edu.au/infopapers/1695

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009 81

Computational Capabilities of Graph
Neural Networks

Franco Scarselli, Marco Gori, Fellow, IEEE, Ah Chung Tsoi, Markus Hagenbuchner, Member, IEEE, and
Gabriele Monfardini

Abstract—In this paper, we will consider the approximation
properties of a recently introduced neural network model called
graph neural network (GNN), which can be used to process-struc-
tured data inputs, e.g., acyclic graphs, cyclic graphs, and directed
or undirected graphs. This class of neural networks implements
a function � � that maps a graph and one of
its nodes onto an -dimensional Euclidean space. We char-
acterize the functions that can be approximated by GNNs, in
probability, up to any prescribed degree of precision. This set
contains the maps that satisfy a property called preservation of
the unfolding equivalence, and includes most of the practically
useful functions on graphs; the only known exception is when
the input graph contains particular patterns of symmetries when
unfolding equivalence may not be preserved. The result can be
considered an extension of the universal approximation property
established for the classic feedforward neural networks (FNNs).
Some experimental examples are used to show the computational
capabilities of the proposed model.

Index Terms—Approximation theory, graphical domains, graph
neural networks (GNNs), universal approximators.

I. INTRODUCTION

I
N a large number of practical and engineering applications,

the underlying data are often more conveniently represented

in terms of graphs. In fact, a graph naturally represents a set of

objects (nodes) and their relationships (edges). For example, in

an image, it is natural to represent as nodes regions of the image

that have similar intensity or color, and to represent the relation-

ship among these regions by edges. This is often known as a re-

gion adjacency graph. As another example, it is convenient to

model the individual web pages as nodes of a graph, and the hy-

perlink connections among the web pages as edges of the graph.

Traditionally, to process graph-structured input data, one first

“squashes” the graph structure into a vector, and then uses neural

network models that accept vectorial inputs, e.g., multilayer per-

Manuscript received May 24, 2007; revised January 08, 2008 and May 02,
2008; accepted June 15, 2008. First published December 09, 2008; current ver-
sion published January 05, 2009. This work was supported by the Australian
Research Council in the form of an International Research Exchange scheme
which facilitated the visit by F. Scarselli to University of Wollongong when the
initial work on this paper was performed. This work was also supported by the
ARC Linkage International Grant LX045446 and the ARC Discovery Project
Grant DP0453089.

F. Scarselli, M. Gori, and G. Monfardini are with the Faculty of Informa-
tion Engineering, University of Siena, Siena 53100, Italy (e-mail: franco@dii.
unisi.it; marco@dii.unisi.it; monfardini@dii.unisi.it).

A. C. Tsoi is with Hong Kong Baptist University, Kowloon, Hong Kong
(e-mail: act@hkbu.edu.hk).

M. Hagenbuchner is with the University of Wollongong, Wollongong, N.S.W.
2522, Australia (e-mail: markus@uow.edu.au).

Digital Object Identifier 10.1109/TNN.2008.2005141

ceptrons and self-organizing maps, to process such resulting

data [1]. Such “squashing” of the graph-structured input may

lose most of the topological relationships among the nodes of

the graph. An alternative approach is to preserve the topolog-

ical relationships among the data items in a graph-structured

input data, and to follow the graph structure in a node-by-node

processing of the input data [2]–[4]. This general approach un-

derpins a number of proposed neural network models, e.g., re-

cursive neural networks (RNNs) [2], [4] and self-organizing

map for structured data [3]. The advantages of this approach

include: the topological relationship among the data items are

preserved, and taken into account in the data processing steps;

and less data processing is required for each node. However,

at least in the ways in which the RNN models or the self-or-

ganizing maps for structured data are formulated [3], [4], they

can process limited types of graphs, e.g., acyclic and directed

graphs. While RNNs or self-organizing maps for structured data

can be extended to handle more general graph structures, e.g.,

cyclic graphs or undirected graphs or to adopt a more sophisti-

cated processing scheme, e.g., taking into account the ancestors

as well as descendants of a node in the processing, they tend to

become relatively complicated.

Recently, the supervised approaches of this class of methods

have been unified in a novel neural network model called graph

neural networks (GNNs) [5]. GNNs can handle acyclic and

cyclic graphs, directed and undirected graphs, and graphs with

locally neighborhood dependency. A GNN handles such com-

plexity by deploying two functions in the model: a transition

function , which defines the relationship between the nodes of

the graph, and an output function , which specifies an output

for each node. By using these functions, a GNN implements

a mapping , where is a graph, denotes a

node in , and is the -dimensional Euclidean space.

It was shown empirically that GNNs can be used to model

graph-structured data, and that trained GNNs can generalize to

unforeseen data [6].

However, the approximation capabilities of this

model have not been investigated yet and it has not

been defined which functions on graphs the GNNs are

able to realize. In other words, an interesting ques-

tion arises: given a generic function

can it be realized or approximated by a function implemented

by a GNN model?

In this paper, we will seek to answer this question. In partic-

ular, we will show that under mild generic conditions, most of

the practically useful functions on graphs can be approximated

in probability by GNNs up to any prescribed degree of accu-

racy. Such a result can be considered an extension of the uni-

1045-9227/$25.00 © 2008 IEEE

82 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

versal approximation property that was proved for feedforward

neural networks (FNNs) [7]–[10]. It also extends the universal

approximation property of RNNs [11], [12].

The structure of this paper is as follows. After the introduction

of some notations used in this paper as well as some preliminary

definitions, Section II briefly presents the concept of a graph

neural network model. A universal approximation theorem is

shown in Section III and the proof of the theorem together with

its auxiliary lemmas are given in the Appendix, while Section IV

collects some experimental results on a number of examples

used to illustrate the demonstrated property. Finally, conclu-

sions are drawn in Section V.

II. GRAPH NEURAL NETWORKS

The GNN model was first introduced in [5] and [13]. In this

section, we briefly introduce the model and the notation needed

in this paper. Readers are referred to [5] for more details on the

GNN model.

A. Notation

A graph is a pair , where is a set of nodes and

is a set of edges (or arcs) between nodes in . Graphs are

assumed to be undirected, i.e., for each arc , the equality

holds. The set collects the neighbors of

, i.e., the nodes connected to by an arc, while de-

notes the set of arcs having as a vertex. Nodes and edges may

have labels, which are assumed to be real vectors. The labels at-

tached to node and edge are represented by

and , respectively, and is the vector obtained

by stacking together all the labels of the graph. The notation

adopted for the labels follows a more general scheme. If is a

vector that contains data from a graph and is a subset of its

nodes (edges), then is the vector obtained by selecting from

only the components related to the nodes (edges) in . Thus,

for example, is the vector containing the labels of all the

neighbors of .

Graphs may be either positional or nonpositional. The latter

are those described so far, while positional graphs differ since a

unique integer identifier is assigned to each neighbors of a node

to indicate its logical position. Formally, for each node in a

positional graph, there exists an injective function

, which assigns to each neighbor of a position

. The position of the neighbor may be important in certain

practical applications, e.g., object locations [12].

The graphical domain considered in this paper is the set

of pairs of a graph and a node, i.e., where

is a set of graphs and is a subset of their nodes. We as-

sume a supervised learning framework with the learning set

, where denotes the th

node in the graph and is the desired target associated

to . Finally, and . Interestingly, a set of

graphs can be seen as one large graph that contains disconnected

components. Hence, one can refer to a learning set as the pair

where is a graph and is a set of

pairs .

B. The Model

The intuitive idea underlining the proposed approach is that

nodes in a graph represent objects or concepts, and edges rep-

resent their relationships. Each concept is naturally defined by

its features and the related concepts. Thus, we can attach a state

to each node that is based on the information con-

tained in the neighborhood of (see Fig. 1). The variable

contains a representation of the concept embodied in node

and can be used to produce an output , i.e., a decision

about the concept.

Let be a parametric function, called local transition func-

tion, that expresses the dependence of a node on its neighbor-

hood and let be the local output function that describes how

the output is produced. Then, and are defined as follows:

(1)

where and are the label of , the labels of

its edges, the states, and the labels of the nodes in the neighbor-

hood of , respectively. In GNNs, the transition and the output

functions are implemented by multilayer FNNs [5].

Remark 1: For the sake of simplicity, only the case of undi-

rected graphs is studied, but the results can be easily extended

to directed graphs and even to graphs with mixed directed and

undirected arcs. In fact, with minor modifications, GNNs can

process general types of graphs. For example, when dealing with

directed graphs, the function must also accept as an input the

direction of each arc, coded, for instance, as an additional pa-

rameter for each arc such that , if is

directed towards and , if comes from . Moreover,

when different kinds of edges coexist in the same data set, the

label should be designed to distinguish between them.

Note that (1) makes it possible to process both positional and

nonpositional graphs. For positional graphs, needs to receive

as additional input the positions of the neighbors. In practice,

this can be easily achieved provided that the information con-

tained in and is sorted according to neighbor

positions and is properly padded with special null values in po-

sitions corresponding to nonexisting neighbors. For example,

, where , if is the th neighbor

of , and , for some predefined null state

, if there is no th neighbor, and is the

maximum number of neighbors of the node .

For nonpositional graphs, on the contrary, it is useful to re-

place function of (1) with

(2)

where is a parametric function. In the following, (2) is re-

ferred to as the nonpositional form, while (1) is called the posi-

tional form. It is worth mentioning that the same structure of (2)

can also be applied to positional graphs provided that the param-

eters of are extended to include a description of the position

of each neighbor of . Formally, positional graphs can

SCARSELLI et al.: COMPUTATIONAL CAPABILITIES OF GRAPH NEURAL NETWORKS 83

Fig. 1. Graph and the neighborhood of a node. The state ��� of node 1 depends on the information contained in its neighborhood.

be processed when takes the position of the neighbors as

input, i.e.,

(3)

In practical implementations of GNNs and RNNs, the form de-

fined in (1) is preferred to (3). However, (3) is a special case of

(1) and will be particularly useful for proving our results.

Let , and be the vectors constructed by stacking all

the states, all the outputs, and all the node labels, respectively.

Then, (1) can be written in a vectorial form as follows:

(4)

where and are the composition of instances of

and , respectively. In GNNs, is called the global transi-

tion function while is the global output function. Note that in

order to ensure that is correctly defined, (4) must have a unique

solution. The Banach fixed point theorem [14] provides a suffi-

cient condition for the existence and uniqueness of the solution

of such a system of equations. According to Banach’s theorem

[14], (4) has a unique solution provided that is a contraction

map with respect to the state, i.e., there exists a real number

, such that holds

for any , where is any vectorial norm. In GNNs, is

designed so that is a contraction map.

Thus, (1) provides a method to realize a function that re-

turns an output for each graph and each node

.

Definition 1—Harmolodic Functions: Let be a contrac-

tion map with respect to (w.r.t.) . Then, any function

generated by is referred to as a harmolodic

function.1 The class of harmolodic functions on will be de-

noted by .

Banach’s fixed point theorem suggests also the following

classic iterative scheme for computing the value of the stable

state:

(5)

where denotes the th iteration of . This equation con-

verges exponentially fast to the solution of (4) for any initial

value . In fact, (5) implements the Jacobi iterative method

for the solution of nonlinear systems [15].

Learning phase in GNN model aims at adapting the pa-

rameter set such that approximates the learning set

. This learning task can be posed

as the minimization of a quadratic error function

(6)

1The name “harmolodic function” is inspired by the harmolodic philosophy
that is behind jazz music of saxophonist Ornette Coleman.

84 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 2. Graph and four unfolding trees of depth 3. Dashed lines specify the correspondence between a node and its unfolding tree. The two nodes with label � are
not unfolding equivalent because their unfolding trees are different, whereas the two nodes with label � are unfolding equivalent.

In GNNs, the minimization is achieved by a new learning algo-

rithm [5] that combines backpropagation-through-structure al-

gorithm [4], which is used in RNNs, with the Almeida–Pineda

algorithm [16], [17]. In order to ensure that the global transition

function remains a contraction map during learning phase, a

penalty term may be added to the error func-

tion (6), where is if and 0 otherwise, and

the parameter defines the desired contraction con-

stant of .

III. COMPUTATIONAL CAPABILITIES OF GNNS

FNNs have been proved to be universal approximators [7]–[9]

for functions having Euclidean domain and codomain, i.e., they

can approximate any map . Several versions

of the result have been proposed, which adopt different classes

of functions, different measures of the approximation, and dif-

ferent network architectures [10]. Recently, also RNNs have

been shown to approximate in probability any function on trees

up to any degree of precision [11], [12]. More precisely, it has

been proved that for any probability measure , any reals ,

and any real function defined on trees, there exists a function

implemented by a RNN such that

holds. In the following, the approximation capabilities of

GNN model are investigated. The analysis presented here con-

cerns the undirected graphs2 the labels of which are expressed as

a vector of reals, i.e., graphs where node labels belong to

and edge labels belong to . Both positional and nonposi-

tional GNNs are studied.

In order to discuss the results, some new concepts will be

introduced. First, we will define an equivalence on nodes,

called unfolding equivalence, that aims to specify which con-

cepts, among those represented by a graph, can or cannot be

distinguished using only the information contained in the graph.

Then, we will demonstrate that the class of functions that can be

approximated by GNNs consists of maps , which

2For the sake of simplicity, only the case of undirected graphs is studied. The
results can be easily extended to directed graphs.

are generic except for the fact that is constrained to produce the

same output on nodes that are unfolding equivalent i.e.,

implies . The equivalence will be formally

defined using another concept, the unfolding tree, that is defined

in the following.

An unfolding tree is the graph obtained by unfolding

up to the depth , using the node as the starting point (see

Fig. 2).

Definition 2—Unfolding Tree: An unfolding tree having

depth of a node is recursively defined as

Tree if

Tree if

Here, is the vector containing the

unfolding trees having depth of the neighbors

of . The operator Tree constructs a tree from

the label of the root, the labels of the edges entering into the

root, and a set of subtrees.3 Moreover, the possibly infinite tree

that can be constructed by merging all the

unfolding trees for any will simply be called the unfolding

tree of .

An example of construction of the unfolding tree is shown in

Fig. 2. Unfolding trees naturally induce an equivalence relation-

ship on the nodes of .

Definition 3—Unfolding Equivalence: Let be

an undirected graph. The nodes are said to be un-

folding equivalent, , if .

For example, Fig. 2 shows a graph with two unfolding

nonequivalent nodes, two unfolding equivalent nodes, and their

respective unfolding trees of depth 3. In this particular example,

nonequivalent nodes can be immediately distinguished at the

first level of the trees, since they have a different number of

children.

Functions that do not distinguish nodes which are unfolding

equivalent are said to preserve the unfolding equivalence.

3If no subtree is given, as in Tree���� �, the constructed tree contains only one
node.

SCARSELLI et al.: COMPUTATIONAL CAPABILITIES OF GRAPH NEURAL NETWORKS 85

Definition 4—Functions Preserving the Unfolding Equiva-

lence: A function is said to preserve the unfolding

equivalence on , if

implies

The class of functions that preserves the unfolding equivalence

on is denoted by .

For example, let us apply a given function to the

graph in Fig. 2. If preserves the unfolding equivalence, then

is constrained to produce the same output for the two nodes

and having label , i.e., .

Remark 2: The exact meaning of the given definitions is

slightly different according to whether positional or nonposi-

tional graphs are to be considered. If the graphs are positional,

the unfolding trees should take into account also the original

neighbors’ positions. Moreover, equation in Defini-

tion 3 uses the equality embedded in positional trees. For non-

positional graphs, the unfolding trees and the equality are both

nonpositional.

The following theorem states that functions preserving the

unfolding equivalence compute the outputs at a node consid-

ering only the information contained in the unfolding tree .

Theorem 1—Functions of Unfolding Trees: A function be-

longs to if and only if there exists a function defined on

trees such that for any node of the domain

.

The proofs of all theorems and corollaries presented in this

section have been moved to the Appendix to improve paper’s

readability.

The following corollary, which is an immediate consequence

of Theorem 1, suggests that is a large class of functions.

It can be applied, for example, to all the real-life domains where

the labels contain real numbers.

Corollary 1—Graphs With Distinct Labels: Let be the set

of the graphs of and assume that all the nodes have dis-

tinct labels, i.e., implies for any nodes

of . Then, any function defined on preserves the unfolding

equivalence.

In the following, we assume that is equipped with a proba-

bility measure and an integral operator is defined on the func-

tions from onto . In order to clarify how these concepts

can be formally defined, note that a graph is specified by its

structure and its labels. Since node labels and the possible struc-

tures of a graph are enumerable, there exists an enumerable par-

tition of the domain such that and

each set contains only graphs having the same structure. For

each , a graph is completely defined by the vector

formed by stacking all its labels and the set ,

obtained by collecting all those vectors, is a subset of an Eu-

clidean space, i.e., . Thus, any measure on , when

restricted to , is equivalent to a measure defined on the

linear space . As a consequence, can be formally defined,

for each , as

(7)

where is specified by the equality

and the are positive numbers such that .4

Moreover, we will define the integral of a function on

as , where each

is computed using the Lebesgue measure

theory [18].

The set plays an important role in our analysis. In fact,

it will be proved that any measurable function can be

approximated by a GNN in probability. Moreover, the converse

holds: all the functions implemented by a GNN preserve the

unfolding equivalence.5 First, the result is proved for positional

GNNs.

Theorem 2—Approximation by Positional GNNs: Let be

a domain that contains positional graphs. For any measurable

function preserving the unfolding equivalence, any

norm on , any probability measure on , and any reals

, where and , there exist

two continuously differentiable functions and such that, for

the GNN defined by

the global transition function is a contraction map with a con-

tracting constant , the state dimension is , the stable state

is uniformly bounded, and the corresponding harmolodic func-

tion defined by satisfies the condition

Commonly used FNNs are universal approximators [7]–[10]

and, obviously, they can also approximate the functions and

of Theorem 2. However, to perfectly simulate the GNN dy-

namics, we must consider a restricted class of network architec-

tures that can approximate any function and its derivatives at the

same time.

Definition 5—FNNs Suitable to Implement GNNs: A class

of FNNs is said to be suitable to implement GNNs, if for any

positive integers , any continuously differentiable function

with a bounded support, and any real numbers

, there exist a function , implemented by

a network in , and a set of parameters , such that

and hold6

for any .

In [19], it is proved that the class of three-layered neural net-

works with activation function in the hidden neurons and a

linear activation function in the output neurons can approximate

any function and its derivatives on , provided that there ex-

ists a linear combination of scaled shifted rotations of such

that is a square integrable function of uniformly

locally bounded variation. It can be easily proved that three-lay-

ered neural networks using common differentiable activation

functions, e.g., ,

4It is worth mentioning that also the converse holds: in fact, any measure on
� can be represented as in (7) where � � � �� �.

5This is stated in Theorem 4.

6Notice that since all the norms on the Euclidean space are equivalent, the
definition is not affected by considered norm � � �.

86 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

or , satisfy the above property and are suitable

to implement GNNs.

Corollary 2 proves that and can be replaced by networks

suitable to implement GNNs without losing the property stated

in Theorem 2.

Corollary 2—Connectionist Implementation of Positional

GNNs: Let us assume that the hypotheses of Theorem 2 holds,

that the nodes of the graph in have a bounded number of

neighbors, and that is a class of networks suitable to im-

plement GNNs. Then, there exist a parameter set and two

functions (transition function) and (output function)

implemented by networks in , such that the thesis of Theorem

2 is true.

The hypothesis on the boundedness of the number of neigh-

bors is needed because , without such a constraint, can have

any number of inputs, whereas an FNN can only have a prede-

fined number of inputs. It is worth mentioning that the hypoth-

esis could be removed by adopting the form defined in (3) in

place of the one expressed in (1). In this case, we can prove that

can be implemented by a multilayered FNN.7

The definition of network class suitable to implement GNNs

can be weakened, if we admit that the GNN state remains

bounded during the computation of the fixed point. Such an as-

sumption is reasonable in a real application and can be guaran-

teed by using a fixed initial state, e.g., . In fact, the

proofs of Theorem 2 and Corollary 2 demonstrate that if the

states are bounded, and have to be approximated only on

compact subsets of their domains, instead of the whole domains.

With such a simplification, the universal approximation litera-

ture provides several other results about the approximation of a

function along with its derivatives [10], [20], [21]. For example,

in [10], it is proved that three-layered networks with nonpoly-

nomial analytic activation functions can implement any poly-

nomial on compact sets. Since polynomials are dense in con-

tinuous functions also with respect to derivatives, three-layered

networks with nonpolynomial analytic activations are suitable

to implement GNNs.

The transition function defined in (2) is less general than the

one in (1). For this reason, one may wonder whether nonposi-

tional GNN based on (2) has narrower approximation capabil-

ities than the GNN of (1). Theorem 3 states that both models

have the same computational power.

Theorem 3—Approximation by Nonpositional GNNs: Let

be a domain that contains nonpositional graphs. For any mea-

surable function that preserves the unfolding equiv-

alence, any norm on , any probability measure on ,

and any reals , where and ,

there exist two continuously differentiable functions and

such that, for the GNN defined by

the global transition function is a contraction map with con-

traction constant , the state dimension is , the stable state

7A formal proof of this statement, which is not included in this paper for space
reasons, can be easily obtained by the reasoning of the proof of Corollary 2.

is uniformly bounded, and the corresponding harmolodic func-

tion defined by satisfies the condition

In addition, we have the following corollary.

Corollary 3—Connectionist Implementation of Nonposi-

tional GNNs: Let us assume that the hypothesis of Theorem 2

holds and is a class of network suitable to implement GNNs.

Then, there exists a parameter set and two functions

(transition function) and (output function) implemented by

networks in , such that Theorem 3 holds.

Finally, the following theorem proves that a GNN can im-

plement only functions that preserve the unfolding equivalence.

Hence, the functions realizable by the proposed model are ex-

actly those described in Theorems 2 and 3 respectively.

Theorem 4— : Let be the function imple-

mented by a GNN. If the GNN is positional, then preserves the

unfolding equivalence on positional graphs, while if the GNN

is nonpositional, then preserves the unfolding equivalence on

nonpositional graphs.

Theorems 2–4 can be provided with intuitive explanations.

GNNs use a local computational framework, i.e., the processing

consists of “small jobs” operated on each single node. There

is no global activity and two “small jobs” can communicate

only if the corresponding nodes are neighbors. The output

of node depends only on the information contained

in its neighbors, and recursively, in all the connected nodes. In

other words, is a function of the unfolding tree ,

which, according to Theorem 1, implies that preserves the

unfolding equivalence.

What the GNNs cannot do is described by the following two

cases. Theorems 2–4 ensure that GNNs do not suffer from other

limitations except for those mentioned here. If two nodes

and are “completely symmetric” (recursively equivalent) and

cannot be distinguished on the basis of information contained in

the connected nodes, then a GNN will produce the same output

for those nodes. In the example depicted in Fig. 3, every node

has the same label and graphs and are regular, i.e., each

node has exactly the same number of edges. Thus, all the nodes

of graph (graph) are “symmetric” and will have the same

output, i.e., if both and belong

to (or both and belong to). Moreover, GNNs cannot

compute general functions on disconnected graphs. If is com-

posed of disconnected graphs, the information contained in a

subgraph cannot influence the output of a node, which is not

reachable from that subgraph. For example, if is a node of

graph in Fig. 3, then cannot be influenced by , e.g.,

cannot count the number of edges of graph .

It is worth mentioning that in common graph theory all the

nodes of a graph are considered different entities. On the con-

trary, in GNNs, two nodes are equal unless the available infor-

mation suggests otherwise. Such a property is not necessarily a

limitation, for two different reasons. 1) It may capture an intu-

itive idea of the information contained in a graph. In fact, the

unfolding tree contains all the data that can be reached by

surfing the graph from . If we assume that the graph defines

SCARSELLI et al.: COMPUTATIONAL CAPABILITIES OF GRAPH NEURAL NETWORKS 87

Fig. 3. Two regular graphs where all the nodes have the same label �. Two
functions that do not preserve the unfolding equivalence are also displayed.
Each function � is represented by black and white nodes. A node � is black
if �������� � � and it is white if �������� � �.

all available information about the domain objects and their re-

lationships, then it is reasonable to think that describes all

our knowledge about . In addition, the definition of function

preserving the unfolding equivalence captures all the reasonable

functions on a graphical domain. 2) If the considered application

requires that some nodes are distinct, then the goal can be practi-

cally obtained by inserting into the data set the appropriate infor-

mation. Let us consider again the examples depicted in Fig. 3.

If is a node of graph and should depend on the

information contained in , then there must be some hidden re-

lationship between the object represented by and the objects

represented by the nodes of . By explicitly representing this

relationship with appropriate edges, and become a con-

nected graph and the GNN model can produce the desired func-

tion. Similarly, if some nodes are unfolding equivalent, but

should produce different outputs, then there exists some infor-

mation that distinguishes among the equivalent nodes and is not

represented in the graph. Including such information into the la-

bels (or, in general, into the graph) will solve the problem.

The presented theory also extends all the currently known re-

sults on approximation capabilities of RNNs. In fact, it has been

proved that RNNs can approximate in probability any function

on trees [11], [12]. On the other hand, when processing a tree,

an RNN acts as an GNN where the neighborhood of a node only

contains its children, i.e., the father is not included (see [5] for a

more detailed comparison). It can be easily observed that under

this definition of neighborhood, any function on trees that satis-

fies the unfolding equivalence and Theorems 2 and 3 reproduces

those presented in [11] and [12].

Moreover, the concept of unfolding tree has been introduced

in [22], where it is used to implement a procedure that allows

to process cyclic graphs by RNNs. Such an approach extracts,

from the input graph, the unfolding trees of all the nodes: then,

those trees are processed by an RNN. It is proved that such a

method allows to approximate in probability any function on

cyclic graphs with distinct labels. Such a result can now be de-

duced by using Corollary 1.

The intuition delivered by these results is that a wide class

of maps on graphs is implementable by a diffusion mechanism

based on a transition function and an output function. Here,

we also proved that the global transition function can be re-

stricted to be a contraction map. Such result is crucial for the

applications of the GNN model to practical problems using

generic forms of graphs (because the functions that cannot

be approximated by the proposed GNNs are pathological in

nature). These universal approximation results thus recommend

the GNNs as suitable practical models for processing of most

classes of graph-structured input data, e.g., cyclic or acyclic

and directed or undirected.

IV. EXPERIMENTAL RESULTS

This section presents four experiments designed to demon-

strate peculiarities of the GNN model that can be observed in its

practical applications and are related to its approximation prop-

erties. In the first example, it is shown that by adding noise to

the node labels of a data set, we can transform a function that

does not preserve the unfolding equivalence to a function that

preserves the unfolding equivalence. The experiment demon-

strates that such a function, which in theory is approximable by

a GNN, can be, even if only partially, learned. The other three

experiments face problems with different levels of difficulties.

Here, the difficulty depends on the complexity of the coding

that must be stored in the states. Even if in theory a GNN can

realize most of the functions on graphs, in practice, the learn-

ability may be limited by the architecture adopted for the tran-

sition function and the output function , and by the presence

of local minima in the error function. We will observe that the

accuracy of the learned function decreases while the coding be-

comes more complex. Other experiments, whose goal is to as-

sess the performance and the properties of the GNN model on

wider and real-life applications, can be found in [5], [6], and

[23]–[27]. The following facts hold for each experiment, unless

otherwise specified. The functions involved in the GNN model

were implemented by three-layered (one hidden layer)

FNNs with sigmoidal activation functions. The presented results

were averaged on five different runs. In each run, the data set was

a collection of random graphs constructed by the following pro-

cedure: each pair of nodes was connected with a certain proba-

bility ; the resulting graph was checked to verify whether it was

connected and, finally, if it was not, random edges were inserted

until the condition was satisfied. The data set was split into a

training set, a validation set, and a test set and the validation

set was used to avoid possible issues with overfitting. In every

trial, the training procedure performed at most 5000 epochs and

every 20 epochs the GNN was evaluated on the validation set.

The GNN that achieved the lowest error on the validation set

was considered the best model, which was then applied to the

test set.

The performance of the model is measured by the accuracy

in classification problems (when can take only the values

or 1) and by the relative error in regression problems (when

may be any real number). More precisely, in classifica-

tion problems, a pattern is considered correctly classified if

and or if and

. Thus, the accuracy is defined as the percentage of

patterns correctly classified by the GNN on the test set. On

the other hand, in regression problems, the relative error on a

pattern is given by .

A. Half-Hot on Uniform Graphs

This problem consists of learning by examples a relation

that, given a graph , returns for half of the

88 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 4. Results achieved on the test set ��� and the training set ��� for the half-hot problem. Horizontal axes display the possible differences � and vertical
axes denote the percentage of graphs where the GNN obtained the error � . The dotted, continuous, and dashed lines represent the results achieved by the GNN, a
random process, and an FNN, respectively.

nodes of and for the other half. Fig. 3(b)

shows an example of .

The data set contained connected regular graphs, i.e., graphs

where each node has the same number of connections. As dis-

cussed in Section III, if all the labels of the nodes are equal and

the graphs are regular, then does not preserve the unfolding

equivalence and cannot be realized by a GNN. In practice, when

a GNN is applied on a regular graph, it produces the same output

on each node. However, the labels can be made distinct by ex-

tending them with a random component. With this extension,

according to Corollary 1, can be realized by a GNN.

The purpose of this experiment is to check the above theoret-

ical results and to verify whether the extension of the labels with

random vectors can actually increase the computational power

of GNNs. In this experiment, 300 uniform graphs with random

labels and random connectivity were equally subdivided into

training set, validation set, and test set. Each graph was gen-

erated by the following three-step procedure.

Step 1) An even random number of nodes in the range

and a random integer number of links in

the range were generated. The numbers are

produced by uniform probability distributions.

Step 2) A random undirected regular graph with nodes

and connections for each node was generated.

The graph was produced by recursively inserting

random edges between nodes that did not reach the

maximal number of connections. The construction

procedure may be stopped either because a regular

graph was obtained or because a configuration was

reached where no more edges could be inserted.

The construction procedure was repeated until a

regular graph was generated.

Step 3) A random node label was attached to each node .

Each label is a five–dimensional vector containing

integers in the range .

Fig. 5. Two graphs ��� and��� that contain one clique and two cliques of five
nodes, respectively. Dark gray nodes belong to at least one clique.

Note that given a graph , there are many dif-
ferent functions solving the task. However, for our purposes,
no particular one is preferable. Such a concept can be expressed
applying the following error function:

to each graph . It can be easily proved that if contains
an even number of nodes and produces values in the range

, then reaches a minima when for half of the nodes
and for the other half.

For this experiment, a GNN was employed where both the
transition function and the output function were imple-
mented by three-layered FNNs with five hidden neurons. The
constraint was enforced using a hyperbolic tan-
gent activation in the output layer of the FNN that implements

.
For each graph of the data set, the test procedure computed

the difference between the desired result and the achieved one as
, where was the number of “hot” nodes.

A node was considered hot if . The GNN predicted the

SCARSELLI et al.: COMPUTATIONAL CAPABILITIES OF GRAPH NEURAL NETWORKS 89

Fig. 6. Distribution of the number of nodes with positive target in the graphs of the data set.

correct result, i.e., , in 38% of the cases. Moreover, for
only 2% of the total number of patterns, the differences were
larger than 2 . The dotted lines in Fig. 4 show the
results achieved for each possible value of on the test set and
the training set, respectively.

One may argue that the results achieved by GNNs cannot be
correctly evaluated without a statistical analysis of the data set.
In fact, even a simple procedure that assigns to each output a
random value may often produce the right result, because the
case is the most probable one. On the other hand, the ex-
pected behavior of such a procedure can be easily computed8

and is depicted in Fig. 4 (continuous line). Interestingly, the
GNN used the random labels to distinguish nodes and outper-
formed the random process. Moreover, the results have been
compared also with a three-layer FNN (dashed line in Fig. 4).
The FNN was fed only by node labels and did not use graph
connectivity. The results obtained by such a network were very
similar to those expected for the random procedure. In fact, the
experiments have shown that the FNN just learns to produce a
balanced number of hot and nonhot nodes in the whole data set.

B. The Clique Problem

A clique of size is a complete subgraph with nodes9 in

a larger graph (see Fig. 5). The goal of this experiment was

to detect cliques of size 5 in the input graphs. More precisely,

the GNN was trained to approximate the function defined by

, if belongs to a clique of size 5, and

, otherwise. The data set contained 2000

8Note that the most useful random procedure is the process that sets � to
a value in ���� �� with uniform probability. In this case, the probability of
producing � hot nodes in a graph with � nodes is �� , where is the

binomal coefficient.

9A graph is complete if there is an edge between each pair of nodes.

TABLE I
RESULTS ON THE CLIQUE PROBLEM. THE TABLE DISPLAYS THE PERFORMANCE

ACHIEVED ON TEST AND TRAINING SETS WITH DIFFERENT NUMBERS OF

HIDDEN NODES IN THE FNNS THAT COMPOSE THE GNN. THE

PERFORMANCE IS MEASURED AS THE PERCENTAGE OF NODES

THAT HAVE BEEN CORRECTLY CLASSIFIED

random graphs of 20 nodes each: 300 graphs in the training

set, 300 in the validation set, and the rest in the test set. After

the construction procedure described at the beginning of this

section, a clique of size 5 was inserted into each graph of the

data set. Thus, each graph had at least one clique, but it could

have more cliques, due to the random data set construction.

The graph density used in the construction was

heuristically selected so as to build a small but not negligible

number of graphs with two or more cliques. In fact, only about

65% of the graphs had only five nodes belonging to a clique

(the graph contains just one clique), while in some particular

cases more than half the nodes of a graph were involved in a

clique (Fig. 6).

The overall percentage of nodes belonging to a clique was

28.2%. All the nodes were supervised and the desired outputs

were generated by a brute force algorithm

that localized all the cliques of the graphs.

Table I shows the accuracies achieved on this problem by a set

of GNNs obtained by varying the number of hidden neurons of

the FNNs that compose the GNN, i.e., and . For the sake

of simplicity, the same number of hidden neurons was used in

90 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

both FNNs. Finally, the dimension of the state was set to .

Some experiments with larger states have shown only a marginal

improvement of the performance.

The accuracy achieved on the test set is very close to the ac-

curacy on training set, with any number of hidden units. This

proves that the GNN model did not suffer from overfitting prob-

lems on this experiment and that the accuracy is satisfactory

even with a reduced number of hidden neurons.

Finally, one may wonder whether the clique problem can be

solved by a simpler approach, for example, by an FNN that takes

in as input only the number of neighbors of each node

. The number of neighbors is informative on the nature of the

data; this can be statistically closely correlated with the target

. For instance, it is obvious that if , then

cannot belong to any clique of size five. Thus, an FNN with one

input, 20 hidden neurons,10 and one output neuron was trained

to predict from . The accuracy reached by FNN

averaged on five runs was 81.56%. As a consequence, GNNs

always outperform FNNs, suggesting that GNNs are able to ex-

ploit more information from the graph topology than just the

number of neighbors.

However, the difference between the performances of the two

models, GNNs and FNNs, was not large. The clique task is a

difficult problem for GNNs. In fact, in GNN model, the compu-

tation is localized on the nodes of the graph [see (1)], while the

detection of a clique requires the simultaneous knowledge of the

properties of all the nodes involved in the clique. Learning pro-

cedure should adapt the parameters so that the transition func-

tion accumulates the needed information into the node states,

while the output function decodes the states and produces the

right answer. Thus, as suggested by the proofs of Theorems 2

and 3, those functions may be very complex and the learning

may be difficult.11

C. The Neighbors Problem

This simple task consists of computing the number of neigh-

bors of each node . Since the information required to

compute the desired output is directly available by counting the

arcs entering to each node, GNNs are expected to perform much

better on this problem than on the clique problem. On the other

hand, the peculiarity of this experiment lies in the fact that the

data set consisted of only one single large graph .

In each run of this experiment, one random graph with 500

nodes was built. The data set contained a pattern

, for each node of the graph. The data set was

randomly split into a training set (125 patterns), a validation set

(125 patterns), and a test set (250 patterns). The performance

was measured by the percentage of the patterns where GNNs

achieved a relative error lower than 0.05 and 0.1, respectively.

Table II shows that GNNs solve this problem. As the number of

10Increasing the number of hidden neurons did not improved the result
significantly.

11It is difficult to make a deeper analysis of the reasons for which a given
function that can be realized in theory cannot be learned in practice. It is worth
noticing, however, that similar problems can be encountered also in common
recurrent neural networks, e.g., when a long sequence of inputs is processed
(those problems are usually referred to as long term dependencies problems
[28]).

TABLE II
RESULTS ON THE NEIGHBORS PROBLEM. THE TABLE DISPLAYS THE

PERFORMANCE ACHIEVED WITH DIFFERENT NUMBERS OF HIDDEN

NODES IN THE FNNS THAT COMPOSE THE GNN. THE PERFORMANCE

IS MEASURED AS THE PERCENTAGE OF THE NODES HAVING RELATIVE

ERROR � SMALLER THAN TWO THRESHOLDS: 0.05 AND 0.1

TABLE III
RESULTS ON NEIGHBORS’ NEIGHBORS PROBLEM. THE TABLE DISPLAYS THE

PERFORMANCE ACHIEVED ON TEST AND TRAINING SETS, WITH DIFFERENT

NUMBERS OF HIDDEN NODES IN THE FNNS THAT COMPOSE THE GNN. THE

PERFORMANCE IS MEASURED AS THE PERCENTAGE OF THE NODES HAVING

RELATIVE ERROR � SMALLER THAN TWO THRESHOLDS: 0.05 AND 0.1

hidden neurons in the FNNs becomes larger, so does the per-

centage of the patterns whose prediction is very close to the de-

sired output . For a large number of hidden neurons, most of

the patterns are correctly predicted.

D. The Second-Order Neighbors Problem

For this experiment, the graph was constructed as in the

neighbors problem. Here, the goal is to compute, for each

node , the number of distinct neighbors’ neighbors. In other

words, the GNN should predict the number of nodes

that are reachable from by a path containing two edges;

the nodes that are connected to by several paths must be

counted only once and itself should not be counted.12 For

this reason, this problem is more difficult to learn than the

neighbors problem. Table III shows the obtained results. As in

the neighbors problem, the error decreases for larger numbers

of hidden units. However, in this case, the GNNs can solve

the problem only partially and the percentage of patterns with

small relative error never exceeds 89%.

E. The Tree Depth Problem

The goal of the task was to compute the depth of each

node in a tree, i.e., the length of the path from the root of

the tree to node . In each run, the data set contained one large

tree , with 10 000 nodes. The tree was built starting from the

root and attaching to each node a number of children randomly

chosen between 0 and 5. Then, the procedure was applied re-

cursively to each leaf until contained the given number of

nodes. If the final tree had less than 10 000 nodes (this could

12More precisely, the desired output � was normalized so that it belongs to
��� ��, i.e., � � ������ ���� , where� is the maximum number of neighbors’
neighbors � � �	
 ����� �.

SCARSELLI et al.: COMPUTATIONAL CAPABILITIES OF GRAPH NEURAL NETWORKS 91

TABLE IV
TREE DEPTH PROBLEM. THE TABLE DISPLAYS THE ACCURACIES ACHIEVED ON

TEST AND TRAINING SETS, WITH DIFFERENT NUMBERS OF HIDDEN NODES

IN THE FNNS THAT COMPOSE THE GNN. THE PERFORMANCE IS MEASURED

AS THE PERCENTAGE OF THE NODES HAVING RELATIVE ERROR �

SMALLER THAN TWO THRESHOLDS: 0.05 AND 0.1

have happened as nodes may have no children), the construc-

tion was repeated. The depth of the trees, measured after the

completion of the construction process, usually belonged to the

interval .

Thus, each data set consisted of 10 000 patterns ,

where and is the maximum depth of the tree,

i.e., . Training set and validation set collected

2000 random patterns from the data set; the remaining 6000

patterns constituted the test set.

Intuitively, this task appears to be more difficult than the

neighbors problem, but less difficult than neighbors’ neighbors

problem. In fact, the depth cannot be computed using only the

local information as in the neighbors problem. On the other

hand, the depth of a node depends on the depth of the parent

and such a dependence is expressed by a simpler function than

in neighbors’ neighbors problem. The results achieved in the

experiments seem to confirm such an intuitive idea.

V. CONCLUSION

In this paper, we studied the approximation properties of

graph neural networks, a recently introduced connectionist

model for graph processing. First, we defined the class of

functions preserving the unfolding equivalence. Such a class

contains most of the practically useful maps on graphs. In fact,

only when the input graph contains symmetries, the unfolding

equivalence may not be preserved. Then, we proved that GNNs

can approximate, in probability, up to any degree of precision

any function that preserves the unfolding equivalence and

that, vice versa, any function implemented by GNNs preserves

the unfolding equivalence. The presented results extend and

include those already obtained for RNNs, the predecessor

model of GNNs, and prove that the GNN model can be applied

to more general classes of applications. Some experimental

examples shed some light on the computational capability of

the model and have been discussed w.r.t. the developed theory.

As a topic of future research, it may be useful to consider

theoretical issues that have been considered for common

connectionist models, but have not been studied for GNNs.

For example, the investigation of the generalization proper-

ties of GNNs may require the extension of the concepts of

Vapnik–Chervonenkis dimension [29] and minimum descrip-

tion length [30]. Moreover, conditions under which the error

function does not have any local minima have been considered

for FNNs [31]–[33], but not yet for GNNs. Similarly, there are

no studies, analogous to those in [34], on the closure of the

class of functions that can be implemented by GNNs.

APPENDIX

PROOFS

The proofs of the main results can be found in this appendix.

A. Proof of Theorem 1—Functions of Unfolding Trees

If there exists such that , then
implies

On the other hand, if preserves the unfolding equivalence,
then we can define as . Note that the above
equality is a correct specification for a function. In fact, if
and are two unfolding trees, then implies

, such that is uniquely defined.

B. Proof of Theorem 2—Approximation by Positional GNNs

For the sake of simplicity, the theorem will be proved as-

suming , i.e., . However, the result is

easily extended to the general case when is a

vector. The GNN that satisfies the theorem can be defined by

composition of GNNs, each one approximating a component

of .

According to Theorem 1, there exists a function such that

. Thus, the main idea of the proof consists

of designing a GNN that is able to encode the unfolding trees

into the node states. The stable state of a node will be

, where is an encoding function that maps trees to real

numbers. In this way, the output function will obtain a rep-

resentation of by decoding the state and will produce the

desired output using . Said differently, the recursive activation

of will implement , and will implement , where

is the inverse function of and is the function compo-

sition operator.

The proof of the theorem is organized into three sections. In

the next section, some preliminary lemmas are proved, which

allow to restate the theorem in a simpler form. Then, the coding

function is defined. Finally, it is proved that can be im-

plemented by a transition function and that the corresponding

global transition function is a contraction map.

1) Preliminary Results: Theorem 2 requires to

be approximated in probability on the whole , i.e.,

. The first step of

the proof consists of two lemmas, which simplify this problem

by showing that the theorem can be reduced to a simpler

form where the approximation is

achieved just on finite sets of patterns .

Moreover, it is also proved that it is sufficient to consider

graphs having integer labels only. Formally, Theorem 2 will be

reduced to the following theorem.

Theorem 5: For any finite set of patterns

where the graphs have integer labels,

any function: , which preserves the unfolding

equivalence, any reals: , where and , there

exist two continuously differentiable functions and such that

for the GNN defined by

92 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 7. Partition constructed in Lemma 1. Each subset �� of the domain contains graphs with the same structure and the same supervised node (the black ones).
The labeled domain is divided into hypercubes. The labels of all the graphs in a subset �� belong to only one hypercube.

the global transition function is a contraction map with con-

tracting constant , the dimension of the state is , the stable

state is uniformly bounded, and

holds for any , where is the function implemented

by the GNN.

The reduction is carried out by proving two lemmas. The first

lemma proves that the domain can be divided into small subsets

such that the graphs in each subset have the same

structure and have similar labels (see Fig. 7). A finite number

of is sufficient to cover a subset of the domain whose prob-

ability is larger .

Lemma 1: For any probability measure on , and any reals

and , where and , there exist a real ,

which is independent of , a set , and a finite number of

partitions of , where for a graph

, and a node , such that:

1) holds;

2) for each , all the graphs in have the same structure, i.e.,

they differ only in the values of their labels;

3) for each set , there exists a hypercube such that

holds for any graph , where denotes the

vector obtained by stacking all the labels of ;

4) for any two different sets , their graphs have

different structures or their hypercubes have a null

intersection ;

5) for each and each pair of graphs , the in-

equality holds13;

6) for each graph in , the inequality holds.

Proof: Two graphs may differ either because of their dif-

ferent structures or because of the different values of their la-

bels. Since the set of the possible structures is enumerable, the

set of graphs can be partitioned into a sequence of disjoint

subsets , where each contains graphs having

the same structure (they differ only for their label values). More-

over, since there is a finite number of nodes in a graph structure,

also can be partitioned into a sequence , where, for

each , is equal to an for some , and

is a node of the corresponding graph (structure).

13The infinity norm � � � of a vector is defined as ����� � ��� �� �.

Let be a real number, be defined

by for some integer , and be the interval

, where . More-

over, consider all the hypercubes that can be constructed

by taking values in the , e.g.,

is a four-dimensional hypercube. In the following, we

will denote these hypercubes as . Note

that each is contained in , for some , and

their union approximates ,

when . Moreover, for any points

we have , since each interval is shorter than .

Let be the subset of containing only the graphs the

labels of which belong to . Since

there exists such that

(8)

Moreover, since

there exist and such that

(9)

The sets involved in (9) satisfy the properties expected

of the sets of the theorem and the are the cor-
responding hypercubes. In fact, (9) implies point 1 in the the-
orem. Points 2–4 of the theorem follow by definition of the sets

. Moreover, point 5 of the theorem holds because the la-

bels of the graphs in belong to the same hypercube .

SCARSELLI et al.: COMPUTATIONAL CAPABILITIES OF GRAPH NEURAL NETWORKS 93

Finally, since the labels of the graphs in are vectors with
components in , also point 6 of the theorem holds.

The following lemma completes the proof of the equivalence
between Theorem 2 and Theorem 5. The intuitive idea behind
the proof of the theorem is that of constructing a GNN, which
produces a constant output on each subset . Since there is only
a finite number of subsets , Theorem 5 ensures that the con-
struction is possible. Since the are small and is continuous,
such a GNN will also satisfy the hypothesis of Theorem 2.

Lemma 2: Theorem 2 holds if and only if Theorem 5 holds.
Proof: Theorem 2 is more general than Theorem 5, so

one direction of the implication is straightforward. On the other
hand, let us assume that Theorem 5 holds and we have to show
that this implies Theorem 2.

Let us apply Lemma 1 setting the values and of the hy-
pothesis equal to the corresponding values of Theorem 2 and
being any positive real number. It follows that there is a real

and a subset of such that . Let
be the subset of that contains only the graphs satisfying

. Note that since is independent of , then
for any .

Since is integrable, there exists a continuous function14 that
approximates up to any degree of precision in probability.
Thus, without loss of generality, we can assume that is con-
tinuous w.r.t. the labels. Moreover, since is bounded, is
equicontinuous on . By definition of equicontinuity, a real

exists such that

(10)

holds for any node and for any pair of graphs having
the same structure and satisfying .

Let us apply Lemma 1 again, where, now, the of the hypoth-
esis is set to , i.e., . In the following,

, represents the sets obtained by the new application

of the lemma and , denotes the corresponding
intervals defined in the proof of Lemma 1.

Let be a function that encodes reals into integers

as follows: for any and any , . Thus, assigns

to all the values of an interval the index of the interval
itself. Since the intervals do not overlap (see Fig. 7) and are
not contiguous, can be continuously extended to the entire .
Moreover, can be extended also to vectors: let denote the
vector of integers obtained by coding all the components of .
Finally, let represent the function that transforms
each graph by replacing all the labels with their coding, i.e.,

.

Let be graphs, each one extracted from a dif-
ferent set . Note that, according to points 3–5 of Lemma 1,

produces an encoding of the sets . More precisely, for any
two graphs of , we have , if the
graphs belong to the same set, i.e., ; and we have

, otherwise. Thus, we can define a function
such that .

Consider the problem of approximating on the set
. Theorem 5 can be applied to

such a set, because the set contains a finite number of graphs

14Note that the concept of “continuity” is defined only with respect to the
labels of the graphs.

with integer labels. It follows that there exists a GNN that
implements a function such that, for each

(11)

Let and be the encoding function and the output function,
respectively, that realize the above GNN. Consider the GNN
described by

(12)

and let be the function implemented by this GNN. It is easily
shown that for any and

holds. Putting together the above equality with (10) and (11), it
immediately follows, for any

Thus, the GNN described by (12) satisfies
in the restricted domain . Since ,

we have

and the lemma has been shown to be true.

2) The Coding Function: The main idea of the proof is that

of designing a transition function , which is able to encode the

input graph into the node states. In this way, the output function

has to only decode the state and produce the desired outputs.

Of course, the transition function cannot access directly the

whole input graph, but has to read it using the information stored

in the states of the neighbor nodes. On the other hand, the target

function preserves the unfolding equivalence by hypothesis

and there exists a function such that . Thus,

an obvious solution will be to store directly the unfolding of

node into the state . More precisely, in place of , which

is infinite and cannot be directly memorized, it is sufficient to

store the unfolding up to a depth , where is the total number

of nodes contained in the graphs of Theorem 5. In

fact, the following lemma shows that is sufficient to define

the unfolding equivalence.

Lemma 3: Let us consider the unfolding equivalence de-

fined on a set of graphs . For any two nodes and

holds if and only if holds, where

, and .

Proof: The “only if” part of the proof is straightforward.

In fact, by definition, implies , for each . Thus,

follows. For the “if part,” let us assume .

Note that, for any integer implies

, because and are subtrees of and , re-

spectively. Thus, there are only three possible cases: 1)

for any ; 2) for any ; and 3) there exists a

such that , for and , for . Case

94 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

1) immediately supports our theorem, and case 2) is absurd by

the assumption that of Theorem 5. Hence, case 2)

cannot be true. Let us discuss case 3): we will show that .

If and have different (node or edge) labels, their unfolding

trees are immediately different at depth 1, i.e., . On

the other hand, if two nodes and have the same labels and

are connected to the neighbors by edges having the same la-

bels, then may happen only because they have dif-

ferent subtrees, which implies that the set of the unfolding trees

of the neighbors are different. Putting together the above rea-

soning with the assumption of case 3), we deduce the following

inference rule:

If and , then there are two

neighbors of , respectively, for which

and hold.

Let us consider the equivalence defined by if and

only if , and let us denote by the equality for equiv-

alences. At the beginning, is the largest equivalence, i.e.,

for each having the same label. Then, while in-

creases, becomes more and more refined until becomes

constant and equals the unfolding equivalence . The above in-

ference rule suggests that if then , i.e.,

implies . Thus, all the steps where

is refined are consecutive. Since at each refining step at least a

class of the equivalence defined by is split and the number of

equivalences classes cannot be larger than the number of nodes,

then there exist at most refining steps. As a consequence,

holds.

In the following, we describe a representation that will en-

code trees by real numbers. Such a representation will be used

to store the unfolding trees into the states. More precisely, let

be the graphs considered in Theorem 5. We will re-

strict our attention only to the trees up to depth that can be

built from the graphs ; i.e., the trees

is a node of . Our purpose is that of

designing an encoding , which maps the tree to a real

number and is defined for any . The function will be

specified in two steps.

Step 1) A map will be defined, which assigns a

different integer number to each quintuple

, where is the th neighbor

of . Moreover, the coding will be defined as

(13)

where is any positive real number smaller than

. Here, is given by ,

where is the contraction constant of Theorem 2

(which we are proving), and are two real

numbers such that holds

for any , the 1-norm , and the norm

of the hypothesis of Theorem 2.15

15Such a definition is made possible by the fact that all norms on a finite-
dimensional space over �� are equivalent.

Step 2) It will be proved that is injective on and there

exists a decoding function such that

.

The two steps are discussed with more details in the following.

Step 1—Function : Since contains a finite number of

trees, only a finite number of quintuples

exists. So, we can enumerate all the possible quintuples and de-

fine the coding that assigns a different integer to each quin-

tuple. Among the possible assignments, we select a that is

monotonically increasing w.r.t. . More precisely, we assume

that for any and any nodes and

(14)

holds.

Step 2—The Decoding Function : Let us consider the

function that takes in as input an unfolding tree

and returns the polynomial of the variable that is repre-

sented on the right-hand side of (13). Notice that the function

is injective on , because the polynomial contains a

term for each quintuple . In fact, a quin-

tuple contains all the information related to a neighbor of and

is uniquely described by .

We will show that is also injective by using a

reduction to absurdity argument. Let us assume that

holds, for some , and

that does not hold. By definition, we have

. On the

other hand, the polynomial function is different from

because is injective. Thus, is a root of the nonnull

polynomial . Such a conclusion cannot be

true by the following lemma, which shows that if is a positive

real number, sufficiently close to 0, then cannot be a root of

.

Lemma 4: Let be a polynomial in with

integer coefficients and let be the maximal magnitude of the

coefficients, i.e., . Then, has no root in the

open interval .

Proof: Let be the first nonnull coefficient, i.e.,

. Moreover, let us assume :

the proof when follows by a similar reasoning as shown

here. By using simple algebra

SCARSELLI et al.: COMPUTATIONAL CAPABILITIES OF GRAPH NEURAL NETWORKS 95

where the last inequality follows by the assumption

, which implies , and

. Hence the lemma is true.

More precisely, note that the coefficients of the poly-

nomial can assume only three numer-

ical values . Thus, we can apply Lemma 4 to

with . It follows that provided

that holds,

is injective on and there exists a decoding function such that

.
3) Implementation of : In this section, we will show

how a GNN can implement the coding and store
in the state of a node . In fact, a GNN can construct
the coding recursively storing in the states larger and
larger unfolding trees. At the beginning, the states are set
to a predefined initial value, which represents a void tree

. Then, the transition function constructs
the representation of a deeper unfolding tree each time the
node is activated. In fact, builds , using the set

of the representations

stored in the states of the neighbors. The construction process
is stopped when the depth is reached: is defined so that

for each and . Thus, our goal is to
implement the following transition function:

if

if
(15)

Such a goal is reached by defining as

(16)

where is the representation of any set of unfolding trees and
is the representation of the th tree contained in . Moreover,
is the function

if

if
(17)

where is the real number in the definition of the coding func-
tion [see (13)], is a representation of an unfolding tree, and

is defined as

i.e., is a function that extracts from the unfolding tree

the tree , which is related to the same node but has a
shallower depth.16

It is easily observed that such a function satisfies (15) and
realizes the construction of the coding as desired. In
fact, from (13), it follows:

16Note that such a definition is made possible by the fact that an unfolding
tree of a given depth � contains the unfolding tree of a shallower depth �� �.

if

if

On the other hand, and are still defined only on a finite set
of points, e.g., is not defined when the first input parameter
does not contain a label of a node or the second input parameter
is not the coding of a tree. Since we are looking for a differen-
tiable functions, and must be extended to accept any vector
of reals. Any continuously differentiable extension of works,
because will operate only on the final stable state. On the other
hand, the extension of must be carefully designed to ensure
that the corresponding global transition function is a contrac-
tion map. Lemma 5 produces the needed results to achieve this
goal.

Lemma 5: For any positive real , there exists a continuously

differentiable function such that if

is defined as in (16) and is the global transition function

corresponding to , then:

1) equation (15) holds for any unfolding tree ;

2) the inequality

holds for any and any .

Proof: The proof of this lemma is more involved. In order

to preserve the flow of the proof of Theorem 2, we will defer the

proof until Section B4 of the Appendix.

In fact, since by definition of ,

then

holds for a sufficiently small . As a consequence, the second

point of Lemma 5 and the definition of (see definition

of in step 1 in Section B2 of the Appendix) implies

Thus, is a contraction map with contraction constant smaller

than and Theorem 2 has been proved.

4) Proof of Lemma 5: In order to carry out the proof, some

properties of the function and of the coding must be con-

sidered. The following lemma shows that behaves as a con-

traction map with respect to the domain of the trees in .

96 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Lemma 6: Let be defined as in (17). For any node and

any integers: and , the inequality

holds, where is the th neighbor of .

Proof: Without loss of generality, we can assume

. In fact, the proof of case follows the

same reasoning, and, in the case , it is straightforward.

Moreover, by definition of , the cases and can

be reduced to and , respectively.

In the following, let and be, respectively

where is the tuple coding function used in . Since, by defi-

nition, is monotonically increasing w.r.t. [see (14)], then

and, since

(18)

holds for any , and . Using (18), it follows:

(19)

Moreover, an upper bound on is established as

(20)

where the inequalities and

have been exploited. Finally, the thesis of the lemma follows

by putting together (19) and (20)

Lemma 7 shows that if a function is defined and if it is a

contraction map only on a finite set of points, it can be extended

to a contraction map on the entire input domain.

Lemma 7: Let be a positive real number, be a

function, and be a finite set of vectors. Assume

that

(21)

holds for any vectors that belong to , where

, and denotes the operator that stacks

two vectors. Then, for any positive real can be extended to

the entire . The resulting function equals on , is

infinitely differentiable, and satisfies

(22)

on the entire domain, i.e., for any vectors that belong

to .

Proof: The proof is carried out in five steps. Each step de-

fines a new function using the previous one: . The first

function is the function defined by the hypothesis; the last will

be the function that satisfies the lemma.

Step 1—Extending to Some Large and Small Values

: Let be the set obtained by removing

the first component from each vector in . For each ,

denotes the subset of that

includes all the vectors containing . Moreover, for each , let

be two real numbers that fulfill

In the following, represents the superset of defined by

. The function is a simple

extension of to and is defined by ,

if , and , otherwise.

We will prove that satisfies inequality (21) on . In fact, this

claim holds in a straightforward manner if both and

SCARSELLI et al.: COMPUTATIONAL CAPABILITIES OF GRAPH NEURAL NETWORKS 97

belong to . On the other hand, if and

for some , then

The proof of the claim follows a similar reasoning for the other

cases, i.e., , and

.

Step 2—Extending to any : Without loss of gener-

ality, let us assume that, for each , are sorted

according to their values, i.e., . More-

over, let be defined as .

The function generalizes to the set . More precisely,

is

if

if or

Actually, is a piecewise linear function on

and it equals on . Moreover,

holds, because

if , then

by definition of , and if , then

A similar reasoning can be used to prove

.

Let be vectors in , and without loss of gen-

erality, assume that holds. Let be the largest index

satisfying , and let be the smallest index satisfying

. Using (21) and the inequality

, it follows:

which implies that satisfies (21) on .

Step 3—Extending to the Entire : Let

be the vertices of a hypercube in that con-

tain the vectors in as interior points.17 By some results shown

in [35], can be partitioned, by a process called triangulation,

into -simplexes having as vertices and such that no

vector of is an interior point of a simplex. A -simplex

is a geometric figure having vertices and it is a general-

ization of a triangle in the domain . Each point of a simplex

can be obtained as a linear combination of its vertices. Thus, for

any , let us denote by the set of the

vertices of the simplex where is included. Since, a simplex is

the convex hull of its vertices, there exist positive reals

, such that

The function is defined on the entire as

if

if

Note that is a linear function on each simplex and interpo-

lates on the vertices. Thus, is piecewise continuous on .

Moreover, is 0 on the faces of and it is 0 outside . Thus,

is piecewise continuous on . Finally, by simple algebra

(23)

which implies that satisfies (21) for any .

Step 4—Approximating by a Differentiable Function: In

the following, will denote an infinitely differentiable proba-

bility distribution. We further assume that the support of is

inside the unit ball, i.e., , if and is

not null in . Finally, the constants and are specified

as follows:

(24)

(25)

Function will be an infinitely differentiable function that

approximates . Let us consider a smoothing operation on as

follows:

where is a positive real and the smoothing function is de-

fined as . According to well-known

results on convolutions [18], is an infinitely differentiable

17A vector will be called an interior point of a polytope if the vector is con-
tained in the polytope, but it is not contained in the polytope’s faces.

98 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

function and uniformly. Since the convergence

is uniform, there exists such that

(26)

Thus, we define . Finally, note that by (23)

(27)

holds, so that fulfills (21) on .

Step 5—Adjust the Function on for an Interpolation: Note

that is differentiable, but it does not interpolate on any-

more. Function will be an infinitely differentiable map that in-

terpolates on . More precisely, is built by slightly changing

in the neighborhood of the points of

Note that, since is null outside the unit ball and is twice

the maximal distance of the points in [see (25) and (24)],

then holds only if

is the point of closest to . Thus, for any , at most

one term of those involved in the sum of (28) is nonnull. Since

is the closest point to itself, then

holds.

Finally, let , and be vectors in . Then, by

definition of and (27) and (26)

Again, since is null outside the unit ball and is twice the

maximal distance of the points in , there are at most two

for which

holds. Moreover, the definition of

implies

. Thus

and Lemma 7 has been proved with .

Proof of Lemma 5: Now, we can proceed with the proof of

Lemma 5. To avoid confusion, let us use an alternative notation

to represent the function in (16): is

where collects into a vector the values

and . Note that according to the specification of ,

function is defined only for the labels and the unfolding tree of

a node of the graphs of Section B2 of the Appendix.

By Lemma 6

holds for any . More-

over, by Lemma 7, can be extended to an infinitely differen-

tiable function that satisfies

(28)

for any positive real , any , and any

. Thus, let be defined as in (16), with its parameters

being any value in the corresponding Euclidean spaces, i.e.,

for any , and any ,

. Here, is the extension of represented by .

It is clear that function fulfills point 1) of Lemma 5 by

definition of . On the other hand, by (28)

SCARSELLI et al.: COMPUTATIONAL CAPABILITIES OF GRAPH NEURAL NETWORKS 99

holds for any . Thus, if is the global transition

function corresponding to , then

holds, and hence point 2) of Lemma 5 has been proved.

C. Proof of Corollary 2: Connectionist

Implementation of Positional GNNs

Let denote the function realized by a GNN, where and

are the local transition and local output functions, respectively.

Moreover, for any function , let represent the superior

norm, i.e., . Lemma 8 proves that

depends continuously on and w.r.t. the superior norm.

Lemma 8: Let be the function realized by a GNN.

Suppose that and are continuously differentiable, has

a bounded support, and the global transition function is a

contraction map. Then, for any real , there exist two reals

such that

holds for any implemented by a GNN, provided that the

corresponding global transition function is a contraction, and

the local transition and local output functions fulfill

and

respectively.

Proof: Since is continuous and has a bounded support,

then it is equicontinuous. Moreover, also is equicontinuous,

because it is built by stacking copies of . Thus, there exists

a real such that implies

, for any .

Let us define , where is the contrac-

tion constant of is a vector whose components are

one, i.e., and is the

maximum number of neighbors for a node.18 Moreover, assume

that holds. Note that, since and consist of

stacking copies of and , respectively, then

18Such a maximum exists according to the hypothesis of Corollary 2.

holds. Let and denote the corresponding fixed

points, for a given input graph, of and , respectively. By

simple algebra

and, as a consequence

holds. By definition of , it follows:

Moreover, let us define . Then

which implies .

Let and be the local transition function and the local

output function of the GNN, as defined in Theorem 2. According

to the theorem, and

hold. Moreover, according to the proof of

the theorem, has a bounded support (see how is extended

to the entire input domain in the proof of Lemma 7). Finally,

we can also assume that has bounded support, because it is

an extension of a function defined on a finite set of points (see

discussion on page 15).

Let us apply Lemma 8 to with . By definition

of , we can assume, without loss of generality, that the func-

tions and of the lemma are implemented by networks in .

Moreover, we can also assume that the Jacobian of approxi-

mates the Jacobian of with precision . Then, there exist two

functions and , implemented by FNNs, such that

for any graph and node . As a consequence, it follows:

that is, can approximate up to any degree of precision in

probability.

100 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Moreover, since, in our setting, all the norms are equivalent,

there exists a constant such that

As a consequence, it is sufficient to set in order

to ensure that is a contraction map (with contraction constant

smaller than). Thus, the corollary is shown to be true.

D. Proof of Theorem 3 and Corollary 3: Approximation by

Nonpositional GNNs and the Connectionist Implementation

The proof of Theorem 3 follows the same reasoning as the

proof of Theorem 2 with few minor differences in the definition

of the function (Step 1 in Section B2 of the Appendix) and in

the demonstration of the existence of a decoding function

(Step 2 in Section B2 of the Appendix). In fact, in the definition

of , we must take into account that the processed graphs are

nonpositional. Such a difference can be overcome by discarding

the neighbor position from the input parameters of .19 Thus,

will be defined as a function that is monotonically increasing

w.r.t. and produces a different integer for

each different value of , , and .

Moreover, also the proof of the existence of a decoding func-

tion must be changed due to the different definition of ,

and, as a consequence, of . However, an inspection of the proof

indicates that the new definition of affects only the maximum

coefficient of the polynomial . In fact, was

equal to 1 in Theorem 2, whereas it will be shown that

in the current case. On the other hand, affects only Lemma

4, which still holds if , because for the lemma to be true,

it is sufficient that holds and, in this case, we

have .

Thus, in order to prove Theorem 3, we have only to demon-

strate . Note that each neighbor of is represented by a

term of the polynomial . In this case, it is different from

Theorem 2 in that several children may be represented by the

same term since the position of the child is not considered. More

precisely, this happens when two neighbors and of have

the same unfolding tree, i.e., . Intuitively, such an

occurrence is not a problem, since the coefficient corresponding

to each term of will count the number of subtrees of a

given “type” and such information is sufficient to reconstruct

the original nonpositional tree . Formally, since is the max-

imum coefficient of the polynomial cannot

be larger than the maximum number of possible trees ,

which is smaller than the number of neighbors of . As a con-

sequence, holds.

Finally, Corollary 3 can be demonstrated using the same ar-

gument used in the proof of Corollary 2. In fact, the proof of

19As a consequence, the neighbor position will be removed from �, which
has been specified using .

Corollary 3 shows that a GNN can approximate another GNN,

provided that we can approximate up to any degree of preci-

sion the transition function and its derivatives by a network in

. Similarly, in nonpositional GNNs, the function is approx-

imated by a network in . It turns out that, for each

holds, where is the function implemented by the neural net-

work, the corresponding transition function, and is a bound

on the achievable accuracy. Since the accuracy is proportional

to the number of neighbors, it may appear that cannot be ap-

proximated up to any desired accuracy. On the contrary, we can

observe that the function implemented by the GNN does not ac-

tually approximate the target function on the whole domain

, but only on graphs having a finite set of structures as defined

by Theorem 5. Thus, we can concentrate our attention only on

those graphs and we can assume that is bounded. As a con-

sequence, can be approximated up to any degree of precision

by implementing with a network in and a similar reasoning

applies also to the approximation of the Jacobian of .

E. Proof of Theorem 4:

This theorem is proved for positional GNNs. The demonstra-

tion of the other cases follows the same reasoning. Let and

be, respectively, the local transition and output functions of the

GNN, and consider the following:

where holds, for each . In the following, it is shown

by an induction argument on that there exists a function such

that for . Note that this immediately

implies that the theorem is true, since we can define a function

that satisfies the hypothesis of Theorem 1.

The induction argument goes as follows.

Base: .

The state is computed by applying on

. All this data belong to , so that we

can define a function such that

holds.

Induction: .

SCARSELLI et al.: COMPUTATIONAL CAPABILITIES OF GRAPH NEURAL NETWORKS 101

Note that is calculated from

. By using the induction argument, there

exists such that holds, for each

. Thus, depends on and all

the . Since such information is contained in , we

can define

where is a vector obtained by stacking all the

.

REFERENCES

[1] S. Haykin, Neural Networks: A Comprehensive Foundation. New
York: Prentice-Hall, 1994.

[2] P. Frasconi, M. Gori, and A. Sperduti, “A general framework for adap-
tive processing of data structures,” IEEE Trans. Neural Netw., vol. 9,
no. 5, pp. 768–786, Sep. 1998.

[3] M. Hagenbuchner, A. Sperduti, and A. C. Tsoi, “A self-organizing map
for adaptive processing of structured data,” IEEE Trans. Neural Netw.,

vol. 14, no. 3, pp. 491–505, May 2003.
[4] A. Sperduti and A. Starita, “Supervised neural networks for the clas-

sification of structures,” IEEE Trans. Neural Netw., vol. 8, no. 3, pp.
429–459, May 1997.

[5] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, Jan. 2009, to be published.

[6] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning
in graph domains,” in Proc. Int. Joint Conf. Neural Netw., 2005, pp.
778–785.

[7] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Math. Control Signals Syst., vol. 3, pp. 303–314, 1989.

[8] K. Funahashi, “On the approximate realization of continuous mappings
by neural networks,” Neural Netw., vol. 2, pp. 183–192, 1989.

[9] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, pp.
359–366, 1989.

[10] F. Scarselli and A. C. Tsoi, “Universal approximation using feedfor-
ward neural networks: A survey of some existing methods, and some
new results,” Neural Netw., vol. 11, no. 1, pp. 15–37, 1998.

[11] B. Hammer, “Approximation capabilities of folding networks,” in
Proc. Eur. Symp. Artif. Neural Netw., Bruges, Belgium, Apr. 1999,
pp. 33–38.

[12] M. Bianchini, M. Maggini, L. Sarti, and F. Scarselli, “Recursive neural
networks for processing graphs with labelled edges: Theory and appli-

cations,” Neural Netw., vol. 18, Special Issue on Neural Networks and
Kernel Methods for Structured Domains, no. 8, pp. 1040–1050, 2005.

[13] M. Gori, M. Hagenbuchner, F. Scarselli, and A. C. Tsoi, “Graphical-
based learning environment for pattern recognition,” in Lecture Notes

in Computer Science. Berlin, Germany: Springer-Verlag, 2004, vol.
3138, pp. 42–56.

[14] M. A. Khamsi, An Introduction to Metric Spaces and Fixed Point

Theory. New York: Wiley, 2001.
[15] M. J. D. Powell, “An efficient method for finding the minimum of a

function of several variables without calculating derivatives,” Comput.

J., vol. 7, pp. 155–162, 1964.
[16] L. Almeida, “A learning rule for asynchronous perceptrons with feed-

back in a combinatorial environment,” in Proc. IEEE Int. Conf. Neural

Netw., M. Caudill and C. Butler, Eds., 1987, vol. 2, pp. 609–618.
[17] F. Pineda, “Generalization of back-propagation to recurrent neural net-

works,” Phys. Rev. Lett., vol. 59, pp. 2229–2232, 1987.
[18] H. A. Priestley, Introduction to Integration. Oxford, U.K.: Oxford

Univ. Press, 1997.
[19] Y. Ito, “Differentiable approximation by means of Radon transforma-

tion and its application to neural net,” J. Comput. Appl. Math., vol. 55,
pp. 31–50, 1994.

[20] K. Hornik, M. Stinchcombe, and H. White, “Universal approximation
of an unknown mapping and its derivatives using multilayer feedfor-
ward networks,” Neural Netw., vol. 3, pp. 551–560, 1990.

[21] K. Hornik, “Approximation capabilities of feedforward neural net-
works,” Neural Netw., vol. 4, pp. 251–257, 1991.

[22] M. Bianchini, M. Gori, L. Sarti, and F. Scarselli, “Recursive processing
of cyclic graphs,” IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 10–18,
Mar. 2006.

[23] V. Di Massa, G. Monfardini, L. Sarti, F. Scarselli, M. Maggini, and

M. Gori, “A comparison between recursive neural networks and graph
neural networks,” in Proc. Int. Joint Conf. Neural Netw., Jul. 2006, pp.
778–785.

[24] G. Monfardini, V. Di Massa, F. Scarselli, and M. Gori, “Graph neural
networks for object localization,” in Proc. 17th Eur. Conf. Artif. Intell.,
Aug. 2006, pp. 665–670.

[25] F. Scarselli, S. Yong, M. Gori, M. Hagenbuchner, A. C. Tsoi, and M.
Maggini, “Graph neural networks for ranking web pages,” in Proc.

IEEE/WIC/ACM Conf. Web Intell., 2005, pp. 666–672.
[26] S. Yong, M. Hagenbuchner, F. Scarselli, A. C. Tsoi, and M. Gori, “Doc-

ument mining using graph neural networks,” in Proc. 5th Int. Work-

shop Initiative Evaluation XML Retrieval, N. Fuhr, M. Lalmas, and A.

Trotman, Eds., 2007, pp. 458–472.
[27] W. Uwents, G. Monfardini, H. Blockeel, F. Scarselli, and M. Gori,

“Two connectionist models for graph processing: An experimental
comparison on relational data,” in Proc. Eur. Conf. Mach. Learn.,
2006, pp. 213–220.

[28] Y. Bengio, P. Frasconi, and P. Simard, “The problem of learning long-
term dependencies in recurrent networks,” in Proc. IEEE Int. Conf.

Neural Netw., San Francisco, CA, 1993, pp. 1183–1195.
[29] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[30] J. Rissanen, “Modeling by shortest data description,” Automatica, vol.

14, pp. 465–471, 1978.
[31] P. Baldi and K. Hornik, “Neural networks and principal component

analysis: Learning from examples without local minima,” Neural

Netw., vol. 2, pp. 53–58, 1989.
[32] M. Bianchini, M. Gori, and M. Maggini, “On the problem of local

minima in recurrent neural networks,” IEEE Trans. Neural Netw., vol.
5, Special Issue on Recurrent Neural Networks, no. 2, pp. 167–177,
Mar. 1994.

[33] M. Gori and A. Tesi, “On the problem of local minima in backprop-
agation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 1, pp.
76–86, Jan. 1992.

[34] M. Gori, F. Scarselli, and A. C. Tsoi, “On the closure of set of functions
that can be realized by a multilayer perceptron,” IEEE Trans. Neural

Netw., vol. 9, no. 6, pp. 1086–1098, Nov. 1998.
[35] F. Preparata and M. I. Shamos, Computational Geometry: An Introduc-

tion. New York: Springer-Verlag, 1985.

Franco Scarselli received the Laurea degree with
honors in computer science from the University of
Pisa, Pisa, Italy, in 1989 and the Ph.D. degree in
computer science and automation engineering from
the University of Florence, Florence, Italy, in 1994.

He has been supported by foundations of private
and public companies and by a postdoctoral of the
University of Florence. In 1999, he moved to the Uni-
versity of Siena, Siena, Italy, where he was initially a
Research Associate and is currently an Associate Pro-
fessor at the Department of Information Engineering.

He is the author of more than 50 journal and conference papers and has been
has been involved in several research projects, founded by public institutions
and private companies, focused on software engineering, machine learning, and
information retrieval. His current theoretical research activity is mainly in the
field of machine learning with a particular focus on adaptive processing of data
structures, neural networks, and approximation theory. His research interests
include also image understanding, information retrieval, and web applications.

102 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Marco Gori (S’88–M’91–SM’97–F’01) received the
Ph.D. degree from University di Bologna, Bologna,
Italy, in 1990, while working in part as a visiting stu-
dent at the School of Computer Science, McGill Uni-
versity, Montréal, QC, Canada.

In 1992, he became an Associate Professor of
Computer Science at Università di Firenze and, in
November 1995, he joined the Università di Siena,
Siena, Italy, where he is currently Full Professor of
Computer Science. His main interests are in machine
learning with applications to pattern recognition,

web mining, and game playing. He is especially interested in the formulation of
relational machine learning schemes in the continuum setting. He is the leader
of the WebCrow project for automatic solving of crosswords that outperformed
human competitors in an official competition taken place within the 2006
European Conference on Artificial Intelligence. He is coauthor of the book
Web Dragons: Inside the Myths of Search Engines Technologies (San Mateo,
CA: Morgan Kauffman, 2006).

Dr. Gori serves (has served) as an Associate Editor of a number of technical
journals related to his areas of expertise and he has been the recipient of best
paper awards and keynote speakers in a number of international conferences. He
was the Chairman of the Italian Chapter of the IEEE Computational Intelligence
Society and the President of the Italian Association for Artificial Intelligence. He
is a Fellow of the European Coordinating Committee for Artificial Intelligence.

Ah Chung Tsoi received the Higher Diploma degree
in electronic engineering from the Hong Kong Tech-
nical College, Hong Kong, in 1969 and the M.Sc. de-
gree in electronic control engineering and the Ph.D.
degree in control engineering from University of Sal-
ford, Salford, U.K., in 1970 and 1972, respectively.

He was a Postdoctoral Fellow at the Inter-Uni-
versity Institute of Engineering Control at University
College of North Wales, Bangor, North Wales and a
Lecturer at Paisley College of Technology, Paisley,
Scotland. He was a Senior Lecturer in Electrical En-

gineering in the Department of Electrical Engineering, University of Auckland,
New Zealand, and a Senior Lecturer in Electrical Engineering, University Col-
lege University of New South Wales, Australia, for five years. He then served
as Professor of Electrical Engineering at University of Queensland, Australia;
Dean, and simultaneously, Director of Information Technology Services, and
then foundation Pro-Vice Chancellor (Information Technology and Communi-
cations) at University of Wollongong, before joining the Australian Research
Council as an Executive Director, Mathematics, Information and Communica-
tions Sciences. He was Director, Monash e-Research Centre, Monash Univer-
sity, Melbourne, Australia. In April 2007, he became a Vice President (Research
and Institutional Advancement), Hong Kong Baptist University, Hong Kong. In
recent years, he has been working in the area of artificial intelligence in par-
ticular neural networks and fuzzy systems. He has published in neural network
literature. Recently, he has been working in the application of neural networks to
graph domains, with applications to the world wide web searching, and ranking
problems, and subgraph matching problem.

Markus Hagenbuchner (M’02) received the B.Sc.
degree (with honors) and the Ph.D. degree in
computer science from University of Wollongong,
Wollongong, N.S.W., Australia, in 1996 and 2002,
respectively.

Currently, he is a Lecturer at Faculty of In-
formatics, University of Wollongong. His main
research activities are in the area of machine learning
with special focus on supervised and unsupervised
methods for the graph-structured domain. His contri-
bution to the development of a self-organizing map

for graphs led to winning the international competition on document mining
on several occasions.

Gabriele Monfardini received the Laurea degree
and the Ph.D. degree in information engineering
from the University of Siena, Siena, Italy, in 2003
and 2007, respectively.

Currently, he is Contract Professor at the School
of Engineering, University of Siena. His main
research interests include neural networks, adaptive
processing of structured data, image analysis, and
pattern recognition.

	Computational capabilities of graph neural networks
	Recommended Citation

	Computational capabilities of graph neural networks
	Abstract
	Keywords
	Disciplines
	Publication Details

	untitled

