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1. Introduction

In the present article we study the computational capabilities of a binary committee

machine with an ultrametric synaptic overlap matrix. In many first-approach

studies involving neural networks the single-layered perceptron has been the preferred

laboratory [2, 3]. Perceptrons are the most fundamental networks and, as it is expected,

their computation capabilities are limited. The next level in terms of architectural

complexity is represented by networks with at least one hidden layer and a fixed hidden

to output relation. A network with an arbitrary number K of units in its only hidden

layer suffices to reproduce nontrivial scalar functions of N -dimensional variables. Exact

representation of Boolean functions requires at most K ∼ O(2N) units; continuous

functions can be approximated with arbitrary accuracy if the number K of units is not

constrained [4]. There is an extensive number of studies done on this type of networks

[5, 6, 7, 8], mostly in the area of learning theory [9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and

applications [19, 20, 21, 22]. In the present paper we focus on quantifying the complexity

of a binary committee machine, with no more hidden-to-input units K than inputs N

and with a finite number of hidden layers L. This hardness measure, or complexity, can

be used to assess what network architecture is more convenient to reproduce a given

realizable Boolean function.

Attempts to quantify the complexity of an object have given origin to many formal

definitions of complexity [23, 24, 25, 26, 27]. Recently [1] L. Franco proposed to

quantify a function’s complexity by the size of the minimal set of inputs needed to

train a feed-forward network, with a predetermined architecture, until reaching zero

prediction error. It was found that this minimal set is mainly formed by pairs of

inputs with different classification and so adjacent to the classification boundary [28].

Further investigation showed that the average fraction of neighboring pairs with different

classification (or average discrepancy) is correlated to the generalization ability of the

network implementing the function, in such a way that the higher the fraction the larger

the effort to reach complete generalization. They naturally concluded that the average

discrepancy is a measure of how hard is to reproduce the function’s behavior [29].

The average discrepancy has been used successfully for inferring the architecture

of very simple machines. In [2] we used Franco’s complexity measure for inferring

the dilution coefficient in perceptrons; results that have been recently confirmed by

other means [3]. To use Franco’s complexity for inferring the suitable committee for

reproducing a Boolean function we need to characterize both, the Boolean functions to

be mimicked and the committees to be used. In Section 2 we present the expression

for the average discrepancy for the L + 2 layered committees. In Section 3 we study

some particular cases and finite-size dependencies of the expression found in Section 2.

In Section 4 we describe the Boolean functions that can be potentially described by the

architectures explored in 2. In the final section we discuss our conclusions and further

possible investigations.
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2. Average discrepancy for ultrametric committees

Let us consider a committee machine with L hidden layers with K ≤ N hidden-to-input

units. All units of all layers are binary. These links are implemented by synaptic vectors

w ∈ RN (figure 1). The structure from the bottom up is composed by one output unit

connected to KL units in the L-th hidden layer, each connected to KL−1 units in the

(L − 1)-th level. The total number of units in the (L − 1)-th level is then KLKL−1.

Each node has an activation variable that is a function of the activation variables of the

sub-tree with root at the node. Connections from units at the ℓ-th hidden layer to units

at the ℓ + 1-th layer are all set to one. To single out the variables of the ℓ-th layer we

will use the notation kℓ ≡ [kL, kL−1, . . . , kℓ] = kℓ+1kℓ, which runs over all hidden units

of the ℓ-th layer. Thus

σ(S) ≡ sgn

(

KL
∑

kL=1

σkL
(S)

)

(1a)

σkℓ
(S) ≡ sgn





Kℓ−1
∑

kℓ−1=1

σkℓkℓ−1
(S)



 (1b)

σk1
(S) ≡ sgn

(

wT

k1
S√
N

)

, (1c)

where wk1
∈ SN is the synaptic vector of the k1-th unit, wT is the transpose of the

vector w and S ∈ {±1}N . SN is the surface of the N -hypersphere of radius
√
N and

{±1}N is the N -hypercube centered at 0. The committee has been constructed drawing

vectors from a suitable distribution over SN such that

[Q]k1,k′

1

≡
wT

k1
wk′

1

N
= δk1k

′

1

(

1 − ζ̃1

)

+ . . .+ δkLk′

L

(

ζ̃L−1 − ζ̃L

)

+ ζ̃L, (2)

where ζ̃ℓ is the overlap between synaptic vectors belonging to units that have a common

root in the ℓ-th hidden layer (see figure 1) and δkℓk
′

ℓ
≡
∏L

m=ℓ δkmk′

m
and δij = 1 if

and only if i = j and 0 otherwise. The structure of this matrix is block-diagonal and

resembles the matrices used to represent inter-replica interactions [30].

We suppose that the elements of the overlap matrix have a natural scaling

relationship with the size of the system. The argument that gives support to this

conjecture runs as follows: suppose we want to draw K ≤ N vectors from a uniform

distribution over SN , with the constraint that for any pair of vectors wi and wj it is

satisfied that wT

i wj = N cos(α) for all i 6= j and fixed α. The first vector w1 drawn can

be any vector on the surface of the sphere. The second vector w2 is one of the vectors

located on the hyper-ring with center in w1 and radius
√
N sin(α). Thus the probability

P(w2|w1) has to be proportional to the volume of this hyper-ring, i.e., P(w2|w1) ∝
sinN−2(α). The third vector w3 has to sustain the same angle with the other two vectors,

therefore the probability has to have a second factor such that P(w3|w1,w2)P(w2|w1) ∝
sinN−2(α) sinN−3(α). After drawing K vectors we have that the probability of

the set of vectors is P(wK |w1, . . . ,wK−1)P(wK−1|w1, . . . ,wK−2) . . .P(w2|w1) ∝
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sinN−2(α) sinN−3(α) . . . sinN−K(α). The expected overlap is then

〈overlap〉 ≡
∫ π/2

0
dα cos(α) sinz(α)
∫ π/2

0
dα sinz(α)

=
1√
π

Γ

(

2 + z

2

)

Γ

(

3 + z

2

)

≃
√

2

πz
+O(z−1),

with an asymptotic variance of

var(overlap) ≃ π − 2

π z
+O(z−1) ,

where z = N − 2 + N − 3 + . . . + N −K = 1
2
(K − 1)[2N −K − 2]. If 1 ≥ κ ≡ K/N

then

〈overlap〉 ∼
√

4κ

π(2 − κ)

1

K
=
ζ1
K
, (3)

where ζ1 ∼ O(1). Let us suppose now that from the K = K1K2 vectors we make K2

groups of K1 vectors each, in such a way that the inter-group and extra-group overlaps

are fixed to ζ̃1 and ζ̃2 respectively. We have proven that the inter-group overlap must

scale with the inverse of the group size, i.e., ζ̃1 = ζ1/K1 and we know that there are a

total ofK1K2 inter-group overlaps andK1K2 (K1K2 − 1) /2 extra-group vector overlaps.

A crude estimate of the average overlap is then

〈overlap〉 ∼
(

K1K2 + 1

2

)−1 [(
K1K2

1

)

ζ1
K1

+

(

K1K2

2

)

ζ̃2

]

∼ ζ̃2 +O(1/K2
1K2)

and, according to (3), we must have ζ̃2 ∼ O(1/K1K2).

If the above argument is iterated L times we recover the matrix defined in (2) with

elements satisfying the scaling relationship:

ζ̃ℓ =
ζℓ

∏ℓ
j=1Kj

, (4)

where ζj ∼ O(1) and
∏L

j=1Kj = K.

Observe that the matrix Q has the following properties

(i) Q is symmetric, i.e., [Q]k1,k′

1
= [Q]k′

1
,k1

for all paths k1 and k′
1

(ii) Q only has non-negative entries, i.e., [Q]k1,k′

1
> 0 for all paths k1 and k′

1

(iii) [Q]k1,k′

1
≥ min

{

[Q]k1,k′′

1
, [Q]k′

1
,k′′

1

}

for all paths k1, k′
1 and k′′

1

(iv) 1 = [Q]k1,k1
≥ max

{

[Q]k1,k′

1
∀ k′

1 6= k1

}

,

therefore the matrix Q is ultrametric. Given that the overlap matrix Q is ultrametric

we dubbed these networks ultrametric committee machines.
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The average discrepancy [1, 2] is defined as

d
(N)
P (Q) =

∑

S,S′∈{±1}N

P(S,S′)
1 − σ(S)σ(S′)

2
,

where S and S′ differ in exactly P entries. We assume that the components of the input

vector S are i.i.d. variables, therefore P(S) =
∏N

ℓ=1 P(Sℓ) and P(S = 1) = P(S =

−1) = 1
2
. The input vector S′ is constructed by flipping P entries randomly chosen from

S. Thus P(S′|S) =
(

N
P

)−1
δN−S·S′,2P .

Following the developments of Appendix A and considering the large system-size

limit P,K ≤ N → ∞ with p ≡ P/N fixed, and by defining

G1(p) ≡ 1 − 2

π
arccos(1 − 2p)

γℓ ≡
(

2

π

)ℓ

ζℓ

[

1 +
ℓ
∑

j=1

(

2

π

)j

ζj

]−1

(5)

Gℓ+1(p) ≡ 1 − 2

π
arccos ((1 − γℓ)Gℓ(p) + γℓ(1 − 2p))

we obtain the following expression

d(p,Q) =
1

π
arccos ((1 − γL)GL(p) + γL(1 − 2p)) . (6)

3. Particular cases and finite-size dependencies

If we have that ζℓ = 0 for all ℓ = 1, . . . , L, the matrix Q is the identity and the committee

has a perfect tree structure. Let us introduce the notation

[[f ]]k+1(x) = [[f ]]k ◦ f(x)

where f ◦ g(x) = f(g(x)). Therefore, if we define ψ(p) ≡ arccos(1 − 2p)/π, then

d(p, I) = [[ψ]]L+1(p)

in agreement with [31] and references therein. Examples of curves obtained by applying

(6) for tree committee machines are given in figure 2.

If the overlap of the ℓ0-th layer is too large, i.e., limK1,...,Kℓ0
→∞

(

∏ℓ0
ℓ=1Kℓ

)

ζ̃ℓ0
diverges, we have that

γℓ =















(

2
π

)ℓ
ζℓ

[

1 +
∑ℓ

j=1

(

2
π

)j
ζj

]−1

∀ ℓ < ℓ0

1 ℓ = ℓ0
0 otherwise

which immediately implies that

lim
ζℓ0

↑∞
d(p,Q) = [[ψ]]L−ℓ0+1(p).
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σ1

σ2

σ3

σ2,3

S
S
S

SN

1

2

3

σ2,1

σ2,2 w2,2,1

(3) hidden layersL

σ σ2,2,1

σ2,2,2

Figure 1. Typical feed-forward network architecture studied in the present paper.

This committee has L = 3 hidden layers with synaptic overlaps in the first hidden to

input layer. All the synaptic weights linking hidden to hidden and hidden to output

units are set to one. Observe that the highlighted synaptic vector w2,2,1 corresponds

to the output to the input layer path k1 = (2, 2, 1), i.e., second unit of the third hidden

layer, second unit second hidden layer, first unit first hidden layer (color on-line).

Figure 2. Discrepancy as a function of p for tree committee machines with L = 0, . . . , 6

hidden layers, as obtained by applying (6) (color on-line).
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Therefore, a too large an overlap reduces the computational capabilities of the network

by effectively deleting the first ℓ0 hidden layers.

Equation (6) is valid in the limit P,K ≤ N → ∞ keeping P/N = p fixed. It

is important to note that none of the ratios Ki/N are relevant to this formulation.

Therefore, whatever the path taken to increase the number of hidden units, the

asymptotic value of the discrepancy is always the same.

In order to check this statement we run a number of numerical experiments in

networks with L = 1, 2. Firstly we developed an algorithm for generating the set of

synaptic vectors satisfying the relationship (2) which has the following general form:

(i) Generate K =
∏L

l=1Kl orthonormal vectors characterized by a suitable set of

indexes |j1, . . . jL) ∈ S (the Gram–Schmidt algorithm may be used), with 1 ≤
jl ≤ Kl and where S is a vector space over R with an inner product such that

(j′1, . . . , j
′
L|j1, . . . jL) =

L
∏

l=1

δj′
l
,jl
,

where δj,k is the Kronecker’s delta (equal to 1 if j = k and zero otherwise).

(ii) Define the block average vectors as

|µl, jl+1, . . . jL) ≡ 1√
K1

K1
∑

j1=1

. . .
1√
Kl

Kl
∑

jl=1

|j1, . . . jL) .

(iii) Define the synaptic vectors as

wj1 = wj1,...,jL
≡

√
N

[

a0 |j1, . . . jL) +
L
∑

l=1

al |µl, jl+1, . . . jL)

]

,

where the real coefficients al, 0 ≤ l ≤ L are determined from the equations

satisfying the definition of the matrix Q (2).

In the present application we have to solve the following equations for the coefficients:

ζ̃1 =
2a0a1√
K1

+ a2
1

1 = ζ̃1 + a2
0

for L = 1 and

ζ̃2 =
2a0a2√
K1K2

+
2a1a2√
K2

+ a2
2

ζ̃1 = ζ̃2 +
2a0a1√
K1

+ a2
1

1 = ζ̃1 + a2
0

for L = 2.
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By constructing networks like the one depicted in figure 1 with output σ given by

(1a) and synaptic vectors chosen according to the algorithm described, we estimate the

average discrepancy by computing

d
(N)
P [σ] ≃ 1

M

M
∑

m=1

1 − σ(Sm)σ(S′
m)

2

over M = 104 pairs of inputs (Sm,S
′
m) differing in P ≈ 0.03N bits. For L = 1 we

worked with networks having K = N = 279, 465, 651 and 837 and overlap ζ1 = 1. The

results (empty circles) are plot in figure 3 (a). The error bars have been obtained by

repeating the experiment ten times and computing the variance of the averages. All the

results obtained are indistinguishable with the value obtained by applying equation (6)

with ζ1 = 1 and p = 0.03, represented as a full circle.

For L = 2 we perform two experiments, with sampling size of 104. The first with

ζ1 = ζ2 = 1 and K1 = K2 =
√
N for N = 625, 729, 841 and 961. The results

are represented by empty circles in figure 3 (b). The error bars were computed as

in the previous experiment. The second experiment was ran with ζ1 = ζ2 = 1 and

25 = K2 < K1 = 27, 29 and 31 and N = 729, 841 and 961 respectively (empty

squares). Results with equal N have been found indistinguishable. Moreover, a linear

regression produces an extrapolated value of the discrepancy of 0.260 ± 0.004 that is

indistinguishable to 0.2617, the one obtained by applying (6) with ζ1 = ζ2 = 1 and

p = 0.03, (full circle).

4. Boolean functions with continuous discrepancies

In this section we will study the Boolean functions that can be implemented by the the

networks presented in figure 1. Expression (6) provides a family of curves that densely

cover the set of possible discrepancy values. It is clear from (1b) that any function

approached by these networks must be odd, i.e., f(S) = −f(−S). It is also clear that

(6) is continuous in p, thus we expect the discrepancy functional to be also continuous,

i.e.,

∀ 0 ≤ P <∞ and 0 < ε ∈ R, ∃N0 ∈ N/ |d(N0)
P [f ] − d

(N0)
P+1[f ]| < ε. (7)

In order to analyze what type of functions satisfy (7) we will use the decomposition of

a function into an orthogonal basis set. The main development of this section is based

on Ref. [32].

Let f and g : {±1}N → R. Consider the inner product defined by

〈f |g〉 ≡ 1

2N

∑

{S}

f(S) g(S)

and consider also the set of parity functions χI(S) ≡
∏

k∈I
Sk where I ⊆ [N ] =

{1, 2, . . . , N} . Observe that

〈χI|χJ〉 =
1

2N

∑

{S}

∏

k∈I△J

Sk = δI,J



Computational capabilities of multilayer committee machines 9

0 279
-1

465
-1

651
-1

837
-1

1/N

0.17188

0.175

0.17813

0.18125

0.18438

0.1875

d
 (

0.
03

)

0 961
-1

841
-1

729
-1

625
-1

1/N 

0.24

0.2425

0.245

0.2475

0.25

0.2525

0.255

0.2575

0.26

0.2625

d
 (0

.0
3)

N = K
1
K

2
(K

1
 = K

2
)

N > K
1
K

2
(K

2
 = 25)

(a)                                                               (b)

Figure 3. Finite-size dependencies of the average discrepancy at p ≈ 0.03, measured

over M = 104 pairs. For L = 1 we worked with networks sizes of K = N =

279, 465, 651 and 837 and overlap ζ1 = 1. The results (empty circles) are plot in panel

(a). The error bars have been obtained by repeating the experiment ten times and

computing the variance of the averages. All the results obtained are indistinguishable

with the value obtained by applying equation (6) with ζ1 = 1 and p = 0.03, represented

as a full circle. For L = 2 we perform two experiments, panel (b). We firstly considered

networks with ζ1 = ζ2 = 1 and K1 = K2 =
√

N for N = 625, 729, 841 and 961. The

results are represented by empty circles and the error bars were computed as in the

previous experiment. The second experiment was ran with ζ1 = ζ2 = 1 and sizes

of 25 = K2 < K1 = 27, 29 and 31 and N = 729, 841 and 961 respectively (empty

squares). Results with equal N have been found to be indistinguishable. Moreover,

a linear regression produces an extrapolated value of the discrepancy of 0.260± 0.004

that is indistinguishable to 0.2617, the one obtained by applying (6) with ζ1 = ζ2 = 1

and p = 0.03 (full circle).

where I△ J ≡ I∪ J/I∩ J = {k ∈ [N ]|k ∈ I xor k ∈ J} and δI,J = 1 if both sets are equal

(i.e., I ⊂ J and J ⊂ I) and 0 otherwise. Given a Boolean function f : {±1}N → {±1}
we define the Fourier amplitudes as f̂I ≡ 〈f |χI〉. It is straightforward to prove that

1 =
∑

I
f̂ 2

I . The Fourier spectrum of f is defined as the set

S [f ] ≡
{

f̂I|I ⊆ [N ]
}

(8)

By following the developments of Appendix D and considering the definition

Ar ≡
∑

Ir

f̂ 2
Ir

(9)

where the sum is over all the sets of indexes Ir with exactly r elements, we have that

the Fourier components of the function must satisfy the following condition

∀ j ∈ N lim
N→∞

1

N j

N
∑

r=1

Ar r
j = 0. (10)

Thus the functions that can be approached by committees like the one depicted in figure

1 must have a Fourier spectrum satisfying the conditions elicited by (10). Observe
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S1

SN/3

SN/3+1

S2N/3

S2N/3+1

SN

Figure 4. Graphic representation of the function TRIBE3(S)

that the functions not satisfying this conditions are those with Fourier components

corresponding to parity functions constructed using a macroscopic (i.e., O(N)) number

of bits. Trivially, the full parity machine χ[N ] does not satisfy (10) and its discrepancy

curve is, in the large N limit, discontinuous everywhere.

Consider now the function TRIBEn(S) which is defined by applying the AND

function to the output of n OR functions, which in turn are applied to n equal and

disjoint segments of the input vector S (see figure 4). Although the functions TRIBEn(S)

are not odd they satisfy (10) (its Fourier spectrum is reported in [31]); they can be

easily constructed from logical gates and they have also been used in studies of noise

sensitivity [31, 33]. We are currently working on developing methods for approximating

TRIBEn functions with ultrametric committees.

5. Conclusions

The most important result of the present article is expression (6). This is the expression

of the average discrepancy of a binary committee machine with L+2 layers as a function

of the overlap parameters ζ1, . . . , ζL. It is clear that, for a fixed value of p = P/N , by

varying these parameters the committee’s average discrepancy may take any possible

value between the discrepancy of a simple perceptron, i.e., 1
π

arccos(1 − 2p), and 1
2
.

Moreover, for a fixed value of p the larger the L and the smaller the overlap parameters

the larger the discrepancy. This suggests that the smaller the overlap parameters and

for large networks the larger the ability of the committee to compute Boolean functions

with a continuous discrepancy curve.

Most results in committee machines [14, 17, 18] are obtained with a finite number
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of hidden units. In our case we consider the regime with both, large number of input

units and large number of hidden units. Although the average discrepancy appears to

be a quantity that develops finite-size dependencies, expression (6) represents a good

approach even for the smallest system size studied in this article.

Observe also that the relative errors in our numerical calculations are of the order

of the 2%. We intend to continue the study of these finite-size effects in order to obtain

scaling laws that may be useful for computing the properties of finite systems. These

proposed studies are limited by the number of hidden layers considered, given that

the more hidden layers the larger the number of parameters (K1, . . . , KL) we need to

increment to infinity.

Appendix A. Calculation of (6)

By using the definition (1b) and the properties of the Heaviside function we can see that

Θ(±σ(S)) = Θ

(

±
KL
∑

kL=1

σkL
(S)

)

=
∑

τ1=±1

. . .
∑

τKL
=±1

Θ

(

±
KL
∑

kL=1

τkL

)

KL
∏

kL=1

Θ (τkL
σkL

(S))

=
∑

{τL}

Θ

(

±
KL
∑

kL=1

τkL

)

KL
∏

kL=1

Θ (τkL
σkL

(S))

where τL = (τ1, . . . , τKL
) are binary variables used to represent the internal state of the

hidden units in the L-th layer and
∑

{τL} ≡
∑

τ1=±1 . . .
∑

τKL
=±1. Applying this identity

again we obtain

Θ(±σ(S)) =
∑

{τL}

Θ

(

±
KL
∑

kL=1

τkL

)

KL
∏

kL=1

∑

n

τ

kL
L−1

o

Θ



τkL

KL−1
∑

kL−1=1

τkL,kL−1





KL−1
∏

kL−1=1

Θ
(

τkL,kL−1
σkL,kL−1

(S)
)

,

where τ kL

L−1 ≡ (τkL,1, τkL,2, . . . , τkL,KL−1
) is the set of binary variables used to represent

the state of the hidden units at the L − 1-th layer, with root at the kL unit in the

L-th layer. If we use the vectorial notation for the indexes, we can define the vector

τ
kℓ

ℓ−1 ≡ (τkℓ,1, τkℓ,2, . . . , τkℓ,Kℓ−1
) as the vector where the component τkℓ,m represents the

state of the m-th unit at the ℓ− 1-th layer with root at the kℓ-th unit in the ℓ-th layer.

In this way we obtain that

Θ(±σ(S)) =
∑

{τL}

Θ

(

±
KL
∑

kL=1

τkL

)

KL
∏

kL=1

L−1
∏

ℓ=1

∑

n

τ

kL−ℓ+1

L−ℓ

o

Θ



τkL−ℓ+1

KL−ℓ
∑

kL−ℓ=1

τkL−ℓ+1,kL−ℓ
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KL−ℓ
∏

kL−ℓ=1

K1
∏

k1=1

Θ

(

τk1

wT

k1
S√
N

)

. (A.1)

We can represent the Heaviside function by using the Fourier transform of the delta

function

Θ(x) =

∫ ∞

0

dη δ(η − x) =

∫ ∞

0

dη

∫ ∞

−∞

dη̂

2π
exp [−iη̂ (η − x)] =

∫

D(η, η̂) exp(iη̂x),

where we have defined the notation
∫

D(x, x̂) ≡
∫∞

0
dx
∫∞

−∞
dx̂ exp(−ixx̂)/2π. Applying

these expressions we have that, by redistributing the products,

Θ(±σ(S)) =

∫

D (ηL+1, η̂L+1)
∑

{τL}

exp

(

±iη̂L+1

KL
∑

kL=1

τkL

)

×
∫

[

KL
∏

kL=1

D (ηkL
, η̂kL

)

]







KL
∏

kL=1

∑

n

τ

kL
L−1

o






exp



i

KL
∑

kL=1

η̂kL
τkL

KL−1
∑

kL−1=1

τkL,kL−1





×
∫





∏

kL−1

D
(

ηkL−1
, η̂kL−1

)













∏

kL−1

∑

n

τ

kL−1

L−2

o









exp



i
∑

kL−1

η̂kL−1
τkL−1

KL−2
∑

kL−2=1

τkL−1,kL−2



 . . .

×
∫

[

∏

k2

D (ηk2
, η̂k2

)

]







∏

k2

∑

n

τ
k2
1

o






exp

(

i
∑

k2

η̂k2
τk2

K1
∑

k1=1

τk2,k1

)

×
∫

[

∏

k1

D (ηk1
, η̂k1

)

]

exp

(

i
∑

k1

η̂k1
τk1

wT

k1
S√
N

)

,

where
∏

kℓ
≡
∏KL

kL=1

∏KL−1

kL−1=1 . . .
∏Kℓ

kℓ=1 and
∑

kℓ
≡
∑KL

kL=1

∑KL−1

kL−1=1 . . .
∑Kℓ

kℓ=1. Observe

that
∏

kℓ+1

∑

n

τ

kℓ+1

ℓ

o is the trace over all the internal representations at the ℓ-

th layer, therefore, if we define the vector τ ℓ such that [τ ℓ]kℓ
= τkℓ

we can re-

write the trace as
∑

{τℓ}
≡
∏

kℓ+1

∑

n

τ

kℓ+1

ℓ

o. Equivalently we can redefine the

differentials such that D (ηℓ, η̂ℓ) ≡
∏

kℓ
D (ηkℓ

, η̂kℓ
) . Finally we want to remark that

∑

kℓ+1
η̂kℓ+1

τkℓ+1

∑Kℓ

kℓ=1 τkℓ+1,kℓ
=
∑

kℓ
η̂kℓ+1

τkℓ+1
τkℓ
. With all things considered and

defining the variable τkL+1
≡ τL+1 = ±1 according to the prefactor of the argument,

we can write

Θ(±σ(S)) =
∑

{τL+1}

δτL+1,±1

∫

D (ηL+1, η̂L+1)

×
1
∏

ℓ=L

∫

D (ηℓ, η̂ℓ)
∑

{τℓ}

exp

(

i
∑

kℓ

η̂kℓ+1
τkℓ+1

τkℓ

)

exp

(

i
∑

k1

η̂k1
τk1

wT

k1
S√
N

)

. (A.2)

As it is presented in [2] we can define the sets of indexes IP such that for each set

IP there is a vector SIP
such that [SIP

]i = −Si ∀ i ∈ IP and Si otherwise. We can write
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the discrepancy as

d
(N)
P (Q) =

1

2N

∑

{S}

(

N

P

)−1
∑

IP

[Θ(−σ(S))Θ(σ(SIP
)) +Θ(σ(S))Θ(−σ(SIP

))]

=
1

2N

∑

{S}

(

N

P

)−1
∑

IP

2Θ(−σ(S))Θ(σ(SIP
))

× 2
∑

{τL+1,τL+1}

δτL+1,−1δτL+1,1

∫

D (ηL+1, η̂L+1)

∫

D
(

η′L+1, η̂
′
L+1

)

×
1
∏

ℓ=L

∫

D (ηℓ, η̂ℓ) D
(

η′
ℓ, η̂

′
ℓ

)

∑

{τℓ,τℓ}

exp

[

i
∑

kℓ

(

η̂kℓ+1
τkℓ+1

τkℓ
+ η̂′kℓ+1

τkℓ+1
τkℓ

)

]

× 1

2N

∑

S∈ZN

(

N

P

)−1
∑

IP

exp

[

i
∑

k1

wT

k1√
N

(

η̂k1
τk1

S + η̂′k1
τk1

SIP

)

]

.

Observing that wTSIP
= wTS− 2

∑

j∈IP
wjSj , we can write

κP,N(v1,S) ≡ exp







i
∑

k1





(

η̂k1
τk1

+ η̂′k1
τk1

)

N
∑

j=1

wk1,jSj√
N

− 2 η̂′k1
τk1

∑

j∈Ip

wk1,jSj√
N











where v1 represent the set of variables in the first hidden and input layers.

The dependency on S can be eliminated by averaging over all possible inputs

1

2N

∑

{S}

κP,N(v1,S) =
∏

j∈IP

cos

(

∑

k1

(

η̂k1
τk1

− η̂′k1
τk1

) wk1,j√
N

)

×
∏

j /∈IP

cos

(

∑

k1

(

η̂k1
τk1

+ η̂′k1
τk1

) wk1,j√
N

)

≃ exp

[

−1

2

∑

k1,m1

(

(

η̂k1
τk1

+ η̂′k1
τk1

) wT

k1
wm1

N

(

η̂m1
τm1

+ η̂′m1
τm1

)

−4η̂′k1
τk1

∑

j∈IP

wk1,jwm1,j

N
η̂′m1

τm1

)]

,

for large enough N . By using the definition (2) and the result of Appendix Appendix

B we have that in the thermodynamic limit P ≤ N → ∞ and P/N = p

κp(v1) ≡ lim
P≤N→∞

(

N

P

)−1
∑

IP

1

2N

∑

{S}

κP,N(v1,S)

≃ exp

{

−1

2

(

[η̂1τ 1] − (1 − 2p) [η̂′
1τ 1]

)T

Q
(

[η̂1τ 1] − (1 − 2p) [η̂′
1τ 1]

)

− 2p(1 − p)[η̂′
1τ 1]

TQ[η̂′
1τ 1]

}

, (A.3)

where [η̂1τ 1]k1
= η̂k1

τk1
, [η̂′

1τ 1]k1
= η̂′k1

τk1
.
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By the use of the Hubbard-Stratonovitch identity, we can simplify this expression.

Observe that

exp



−φ
2
ℓ

2

∑

kℓ





∑

kℓ−1

. . .
∑

k1

vk1





2

 =

∫

Dxℓ exp

(

iφℓ

∑

k1

xkℓ
vk1

)

where φℓ ≡
√

ζ̃ℓ−1 − ζ̃ℓ, φ1 ≡
√

1 − ζ̃1, φL+1 ≡
√

ζ̃L, Dx ≡ dx exp(−x2/2)/
√

2π and

Dxℓ ≡
∏

kℓ
Dxkℓ

. Therefore

exp

(

−1

2
vT

1 Qv1

)

= exp

(

−φ
2
1

2
vT

1 v1

)
∫

(

L+1
∏

ℓ=2

Dxℓ

)

exp

(

i
∑

k1

X [k2]vk1

)

,

where X [k2] ≡
∑L+1

ℓ=2 φℓxkℓ
and xkL+1

≡ xL+1. Given that we have two quadratic terms

in the exponential of (A.3) we will need two sets of integrals. Thus

κp(v1) = exp

{

−φ
2
1

2

[

(

[η̂1τ 1] + (1 − 2p)[η̂′
1τ 1]

)T (

[η̂1τ 1] + (1 − 2p)[η̂′
1τ 1]

)

+ 4p(1 − p)[η̂′
1τ 1]

T[η̂′
1τ 1]

]}

×
∫

[

L+1
∏

ℓ=2

DxℓDx′
ℓ

]

exp

[

i
∑

k1

X [k2]

(

η̂k1
τk1

+ (1 − 2p)η̂′k1
τk1

)

]

× exp

[

i
√

4p(1 − p)
∑

k1

X
′

[k2]
η̂′k1

τk1

]

.

We can integrate over D (η1, η̂1) and D
(

η′
1, η̂

′
1

)

∫

D (η1, η̂1) D
(

η′
1, η̂

′
1

)

κp(v1) =

L+1
∏

ℓ=2

∫

DxℓDx′
ℓ

∏

k1

∫ ∞

0

dη√
2π

exp

[

−1

2

(

η − τk1
X[k2]

)2
]

H
(

τk1

(

β(p) τk1
η +X ′

[k2]

))

,

where X[k2] ≡ X [k2]/φ1, β(p) ≡ (1 − 2p)/
√

4p(1 − p) and H(x) ≡
∫∞

x
Dy is Gardner’s

error function.

Finally

κp(v2) ≡
∑

{τ1,τ1}

exp
[

i
(

[η̂2τ 2]
Tτ 1 + [η̂′

2τ 2]
Tτ 1

)]

∫

D (η1, η̂1) D
(

η′
1, η̂

′
1

)

κp(v1)

=
L+1
∏

ℓ=2

∫

DxℓDx′
ℓ

∏

k2

{

∑

τ,τ=±1

exp
(

iη̂k2
τk2
τ + iη̂′k2

τk2
τ
)

∫ ∞

0

dη√
2π

exp

[

−1

2

(

η − τX[k2]

)2
]

H
(

τ
(

β(p) τη +X ′
[k2]

))

}K1

and by using the identities

1 =

∫ ∞

0

dη√
2π

{

exp

[

−1

2

(

η −X[k2]

)2
]

+ exp

[

−1

2

(

η +X[k2]

)2
]}
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erf

(

X[k2]√
2

)

=

∫ ∞

0

dη√
2π

{

exp

[

−1

2

(

η −X[k2]

)2
]

− exp

[

−1

2

(

η +X[k2]

)2
]}

and the definitions

G+
p (X[k2], X

′
[k2]

) =

∫

Dη sgn(η +X[k2]) erf

(

β(p) (η +X[k2]) +X ′
[k2]√

2

)

(A.4)

G−
p (X[k2], X

′
[k2]

) =

∫

Dη erf

(

β(p) (η +X[k2]) +X ′
[k2]√

2

)

, (A.5)

we can define the function Λp(v;X,X ′), where v = {η̂, τ, η̂′, τ}
Λp(v;X,X ′) ≡ Rp(v;X,X ′) + i Ip(v;X,X ′)

Rp(v;X,X ′) ≡ cos(η̂) cos(η̂′) − τ sin(η̂) τ sin(η̂′)G+
p (X,X ′) (A.6)

Ip(v;X,X ′) ≡ τ sin(η̂) cos(η̂′) erf

(

X√
2

)

+ cos(η̂) τ sin(η̂′)G−
p (X,X ′).

With this definition we have that

κp(v2) =

L+1
∏

ℓ=2

∫

DxℓDx′
ℓ

∏

k2

[

Λp(vk2
;X[k2], X

′
[k2]

)
]K1 , (A.7)

where vk2
represents the set of variables η̂k2

, η̂′k2
, τk2

, τk2
.

By using the kernel of expression (A.7) we can reconstruct the average discrepancy

component

d(p,Q) = 2

∫

D (ηL+1, η̂L+1) D
(

η′L+1, η̂
′
L+1

)

∫

DxL+1Dx′L+1

∑

{τL,τL}

exp

[

i
∑

kL

(

η̂L+1τkℓ
− η̂′L+1τkℓ

)

]

∫

D (ηL, η̂L) D
(

η′
L, η̂

′
L

)

∫

DxLDx′
L

2
∏

ℓ=L−1

∑

{τℓ,τℓ}

exp
[

i
(

[η̂ℓ+1τ ℓ+1]
Tτ ℓ + [η̂′

ℓ+1τ ℓ+1]
Tτ ℓ

)]

∫

D (ηℓ, η̂ℓ) D
(

η′
ℓ, η̂

′
ℓ

)

∫

DxℓDx′
ℓ

∏

k2

[

Λp(vk2
;X[k2], X

′
[k2]

)
]K1 .

Observe that the function Λp(vk2
;X[k2], X

′
[k2]

) depends only on the variables described

by the path k2 and does not depend on any interaction linking variables with different

indexes.

In order to solve the problem analytically in the large number of hidden units

regime, let us define the operators U ℓ for all ℓ = 2, 3, . . . , L+ 1

U ℓ ≡
∑

{τℓ,τℓ}

exp
(

i η̂ℓ+1τℓ+1τℓ + i η̂′ℓ+1τ ℓ+1τ ℓ

)

∫

DxℓDx′ℓ lim
Kℓ−1↑∞

∫

D (ηℓ, η̂ℓ)D (η′ℓ, η̂
′
ℓ)

UL+1 ≡
∑

{τL+1,τL+1}

δτL+1,1 δτL+1,−1

∫

DxL+1Dx′L+1 lim
KL↑∞

∫

D (ηL+1, η̂L+1)D
(

η′L+1, η̂
′
L+1

)

.

With these operators we can write

dp(Q) = 2 UL+1

[

Λp(vL+1;XL+1, X
′
L+1)

]KL
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where

Λp(vℓ+1;Xℓ+1, X
′
ℓ+1) ≡ U ℓ [Λp(vℓ;Xℓ, X

′
ℓ)]

Kℓ−1 (A.8)

where vℓ represent the set of variables η̂ℓ, η̂
′
ℓ, τℓ, τ ℓ and Xℓ ≡ ∑L+1

j=ℓ
φj

φ1
xj (and

equivalently for X ′
ℓ).

The set of equations (A.8) with the iteration of order 1 given by (A.6) can be

analytically solved if the number of hidden units at each layer is large (i.e., in the limit

of Kℓ → ∞ for all ℓ = 1, 2, . . . , L). First of all let us define the variables

X̃ℓ ≡
(

ζℓ−1 −
ζℓ
Kℓ

) 1

2

xℓ +K
− 1

2

ℓ X̃ℓ+1

with X̃L+1 ≡ ζ
1

2

L xL+1 such that

Xℓ =

L+1
∑

j=ℓ

φj

φ1
xj

=

(

1 − ζ1
K1

)− 1

2

K
− 1

2

ℓ−1X̃ℓ

≃ K
−1/2
ℓ−1

[

(

ζℓ−1 −
ζℓ
Kℓ

)
1

2

xℓ +K
− 1

2

ℓ X̃ℓ+1

]

+O
(

(K1Kℓ−1)
− 1

2

)

,

and

Ỹℓ ≡
βX̃ℓ + X̃ ′

ℓ
√

1 + β2
.

Using the fact that the number of hidden units is large we can expand (A.4), (A.5) and

the error function, therefore

G+
p (X2, X

′
2) ≃ G1(p) +O(K−1

1 ) (A.9)

G−
p (X2, X

′
2) ≃ erf

(

α1Ỹ2K
− 1

2

1

)

+O(K
− 3

2

1 ) (A.10)

erf

(

X2√
2

)

= erf(α1X̃2K
− 1

2

1 ), (A.11)

where G1(p) ≡ 1− 2
π
arccos(1−2p) and α1 = 2−

1

2 . Before proceeding with the calculation

let us express the real and imaginary parts of the function Λp using these approximations,

and disregarding terms of O(K−1
1 )

Rp(v2;X2, X
′
2) ≃ cos(η̂2) cos(η̂′2) − τ2τ 2 sin(η̂2) sin(η̂′2)G1(p)

Ip(v2;X2, X
′
2) ≃ τ2 sin(η̂2) cos(η̂′2) erf(α1X̃2K

− 1

2

1 ) + τ 2 cos(η̂2) sin(η̂′2) erf(α1Ỹ2K
− 1

2

1 )

therefore

ΛK1

p (v2;X2, X
′
2) = [Rp(v2;X2, X

′
2) + i Ip(v2;X2, X

′
2)]

K1

=

K1
∑

k=0

K1−k
∑

r=0

k
∑

j=0

ik
(

K1

k

)(

K1 − k

r

)(

k

j

)

τ r+k−j
2 τ r+j

2

(

−G+
p (X2, X

′
2)
)r (G−

p (X2, X
′
2)
)j

erf(α1X̃2K
− 1

2

1 )2m+1 cos(η̂2)
K1−k−r+j sin(η̂2)

k+r−j cos(η̂′2)
K1−r−j sin(η̂′2)

r+j ,



Computational capabilities of multilayer committee machines 17

thus
∫

D (η2, η̂2)D (η′2, η̂
′
2)Λ

K1

p (v2;X2, X
′
2) =

K1
∑

k=0

K1−k
∑

r=0

k
∑

j=0

ik
(

K1

k

)(

K1 − k

r

)(

k

j

)

τ r+k−j
2 τ r+j

2

×
(

−G+
p (X2, X

′
2)
)r (G−

p (X2, X
′
2)
)j

erf(α1X̃2K
− 1

2

1 )k−j

×
∫

D(η2, η̂2) cos(η̂2)
K1−k−r+j sin(η̂2)

k+r−j

∫

D(η′2, η̂
′
2) cos(η̂′2)

K1−r−j sin(η̂′2)
r+j (A.12)

and in agreement with (C.4), (C.5) and (C.6) we have that there are four situations

where the integrals in (A.12) are not zero

(i) k + r − j = r + j = 0, which implies that k = r = j = 0. The correspondent term

to the series evaluates to 1
4
.

(ii) k + r − j = 0 and r + j 6= 0 is odd, which implies that r = 0, given that j ≤ k.

Thus k = j is odd.

(iii) k+r− j 6= 0 is odd, and r+ j = 0 which implies that r = j = 0, given that 0 ≤ r, j.

Thus k is odd.

(iv) k + r − j 6= 0 is odd,and r + j 6= 0 is odd, which implies that k is even and r and j

have different parities.

The first term, with all the indexes equal to 0 is straightforwardly A0 = 1
4
. The second

term has the indexes j = k = 2m+ 1 and r = 0. Thus, using that K1 = 2M + 1

AM
1 (τ 2, Ỹ2) =

M
∑

m=0

(

2M + 1

2m+ 1

)

(iτ 2)
2m+1

(

G−
p (X2, X

′
2)
)2m+1 1

2
aM

m

=
τ 2

22M+2

M
∑

m=0

(−1)m

(

2M + 1

2m+ 1

)(

M

m

)−1(
2m

m

)(

2(M −m)

M −m

)

(

G−
p (X2, X

′
2)
)2m+1

,

where aM
m is given by (C.6)

aM
m = − i

22M+1

(

M

m

)−1(
2m

m

)(

2(M −m)

M −m

)

.

By using (A.10) we can take the limit of K1 → ∞

A1(τ 2, Ỹ2) =
τ 2

4
lim
M↑∞

M
∑

m=0

(−1)m

(

2M+1
2m+1

) (

2m
m

) (

2(M−m)
M−m

)

22M
(

M
m

)

(2M + 1)m+ 1

2

(

2√
π
α1Ỹ2

)2m+1

=
τ 2

4
lim
M↑∞

2√
π

M
∑

m=0





(−1)m

(2m+ 1)m!

(

√

2

π
α1Ỹ2

)2m+1

+O(M−1)





=
τ 2

4
erf

(

√

2

π
α1Ỹ2

)

.

Therefore, the integral over the Hubbard-Stratonovitch variables x2 and x′2 is, using the

recursive nature of X̃2 and X̃ ′
2. Therefore

∫

Dx2Dx′2 A1(τ 2, Ỹ2) =
τ 2

4
A1(Ỹ3),
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such that

A1(Ỹ3) ≡
∫

Dx2Dx′2 erf

(

√

2

π
α1
βX̃2 + X̃ ′

2
√

1 + β2

)

≃
∫

Dx2Dx′2

{

erf

(
√

2ζ1
π
α1
βx2 + x′2
√

1 + β2

)

+
2

3

2α1

π
Ỹ3K

− 1

2

2 exp

[

−2ζ1α
2
1

π

(βx2 + x′2)
2

1 + β2

]}

+O(K
− 3

2

2 )

≃ 2√
π

√

2α2
1

π + 4ζ1α
2
1

Ỹ3K
− 1

2

2 + O(K
− 3

2

2 )

≃ erf(α2Ỹ3K
− 1

2

2 ) +O(K
− 3

2

2 ),

where

α2 ≡
√

2α2
1

π + 4ζ1α2
1

.

The third term is similar to the second. It is formed by the following contributions

AM
2 (τ2, X̃2) =

M
∑

m=0

(

2M + 1

2m+ 1

)

(iτ2)
2m+1 erf(α1X̃2K

− 1

2

1 )2m+1 1

2
aM

m ,

and by expanding the error function, taken the limit of large M and integrating over x2

and x′2, we arrive to
∫

Dx2Dx′2 A2(τ2, X̃2) =
τ2
4

A2(X̃3),

A2(X̃3) ≃ erf(α2X̃3K
− 1

2

2 ) +O(K
− 3

2

2 ).

The last contribution involves terms with even values of k and non-zero, uneven values

of r and j. Therefore

AM
3 (τ2, τ 2, X̃2, Ỹ2) = τ2τ 2

M
∑

m=0

M−m
∑

n=0

m−1
∑

s=0

(−1)m

(

2M + 1

2m

)(

2(M −m) + 1

2n

)(

2m

2s+ 1

)

aM
n+sa

M
m+n−s−1

(

G+
p (X2, X

′
2)
)2n

erf(α1X̃2K
− 1

2

1 )2m−2s−1
(

G−
p (X2, X

′
2)
)2s+1 −

−τ2τ 2

M
∑

m=0

M−m
∑

n=0

m
∑

s=0

(−1)m

(

2M + 1

2m

)(

2(M −m) + 1

2n+ 1

)(

2m

2s

)

aM
n+sa

M
m+n−s

(

G+
p (X2, X

′
2)
)2n+1

erf(α1X̃2K
− 1

2

1 )2m−2s
(

G−
p (X2, X

′
2)
)2s

.

In order to continue the development we introduce the following identity
∫ ∞

−∞

Dy y2ℓ =

{

1 ℓ = 0

(2ℓ− 1)!! otherwise.
(A.13)

Therefore, for large values of M and using the expansions (A.10) and (A.11) we have

that the leading terms in M are
(

2M + 1

2m

)(

2(M −m) + 1

2n

)

aM
n+sa

M
m+n−s−1 erf(α1X̃2K

− 1

2

1 )2m−2s−1
(

G−
p (X2, X

′
2)
)2s+1
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≃ − 1

2π

1

(2m)!(2n)!

(

2√
π
α1X̃2

)2m−2s−1(
2√
π
α1Ỹ2

)2s+1 ∫

DyDz y2(m+n−s−1)z2(n+s)

and
(

2M + 1

2m

)(

2(M −m) + 1

2n+ 1

)

aM
n+sa

M
m+n−s erf(α2X̃2K

− 1

2

1 )2m−2s
(

G−
p (X2, X

′
2)
)2s

≃ − 1

2π

1

(2m)!(2n+ 1)!

(

2√
π
α1X̃2

)2m−2s (
2√
π
α1Ỹ2

)2s ∫

DyDz y2(m+n−s)z2(n+s)

so we can reconstruct the expression for AM
3 such that

AM
3 (τ2, τ 2, X̃2, Ỹ2) ≃ − τ2τ 2

2π

∫ Dy
y

Dz
z

M
∑

m=0

(−1)m

(2m)!

M−m
∑

n=0

(yz G1(p))
2n

(2n)!

×
m−1
∑

s=0

(

2m

2s+ 1

) (

2√
π
yα1X̃2

)2m−2s−1(
2√
π
zα1Ỹ2

)2s+1

+
τ2τ 2

2π

∫ Dy
y

Dz
z

M
∑

m=0

(−1)m

(2m)!

M−m
∑

n=0

(yz G1(p))
2n+1

(2n+ 1)!

×
m
∑

s=0

(

2m

2s

) (

2√
π
yα1X̃2

)2m−2s (
2√
π
zα1Ỹ2

)2s

+O(K−1
1 ).

If M (K1) is large enough, the sums in n can be approximated by the hyperbolic cosine

and sine, respectively. Thus, in the limit,

A3(τ2, τ 2, X̃2, Ỹ2) =
τ2τ 2

2π

∫ Dy
y

Dz
z

∞
∑

m=0

(−1)m

(2m)!

×
[

− cosh(yz G1(p))

m−1
∑

s=0

(

2m

2s+ 1

) (

2√
π
yα1X̃2

)2m−2s−1(
2√
π
zα1Ỹ2

)2s+1

+ sinh(yz G1(p))

m
∑

s=0

(

2m

2s

) (

2√
π
yα1X̃2

)2m−2s(
2√
π
zα1Ỹ2

)2s
]

which can be rearranged such that

A3(τ2, τ 2, X̃2, Ỹ2) =
τ2τ 2

4π

∫ Dy
y

Dz
z

[

exp(yz G1(p)) cos

(

2α1√
π

(yX̃2 − zỸ2)

)

− exp(−yz G1(p)) cos

(

2α1√
π

(yX̃2 + zỸ2)

)]

.(A.14)

The next step involves the integration of the Hubbard-Stratonovitch variables. Observe

that only even functions in such variables will survive the process. A3 can be expressed

as a linear combination of an odd and an even functions in x2 and x′2. The even part

is, disregarding corrections of O(K−1
2 ),

Aeven
3 (τ2, τ 2, X̃2, Ỹ2) ≃

τ2τ 2

4π

∫ Dy
y

Dz
z

{

exp(yz G1(p)) cos

[
√

4ζ1α
2
1

π

(

y − βz
√

1 + β2

)

x2

]

cos

(
√

4ζ1α
2
1

π

z
√

1 + β2
x′2

)
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− exp(−yz G1(p)) cos

[
√

4ζ1α
2
1

π

(

y +
βz

√

1 + β2

)

x2

]

cos

(
√

4ζ1α
2
1

π

z
√

1 + β2
x′2

)}

,

which implies that
τ2τ 2

4
A3(X̃3, Ỹ3) ≡

∫

Dx2Dx′2A3(τ2, τ 2, X̃2, Ỹ2)

A3(X̃3, Ỹ3) ≃
1

π

∫ Dy
y

Dz
z







exp



yz G1(p) −
2ζ1α

2
1

π

(

y − βz
√

1 + β2

)2

− 2ζ1α
2
1

π

z2

1 + β2



−

− exp



−yz G1(p) −
2ζ1α

2
1

π

(

y +
βz

√

1 + β2

)2

− 2ζ1α
2
1

π

z2

1 + β2











+O(K−1
2 )

and by defining the variables u ≡
√

1 + 4
π
ζ1α2

1 y and t ≡
√

1 + 4
π
ζ1α2

1 z, and using that

1 − 2p = β/
√

1 + β2, we have that

A3(X̃3, Ỹ3) ≃
2

π
τ2τ 2

∫ Du
u

Dt
t

sinh

(G2(p) + 4
π
ζ1α

2
1(1 − 2p)

1 + 4
π
ζ1α2

1

u t

)

+O(K−1
2 ).

This integral can be solved by expanding the hyperbolic sine in power series and using

(A.13) backwards. Thus

J (b) ≡ 2

π

∫ Du
u

Dt
t

sinh (b u t)

=
2

π

∞
∑

j=0

b2j+1

(2j + 1)!

(
∫

Du u2j

)2

=
2

π

(

b+
∞
∑

j=1

[(2j − 1)!!]2

(2j + 1)!
b2j+1

)

= 1 − 2

π
arccos(b).

In the end we obtain

A3(X̃3, Ỹ3) ≃ 1 − 2

π
arccos

(G1(p) + 4
π
ζ1α

2
1(1 − 2p)

1 + 4
π
ζ1α2

1

)

+O(K−1
2 )

≃ G2(p) +O(K−1
2 )

where

γ1 ≡ 4ζ1α
2
1

π + 4ζ1α2
1

G2(p) ≡ 1 − 2

π
arccos ((1 − γ1)G1(p) + γ1(1 − 2p))

The last operation we have to perform is the trace over the activation variables,

i.e.,

Λp(v3;X3, X
′
3) = U 2 [Λp(v2;X2, X

′
2)]

K1

=
1

4

∑

{τ2,τ2}

exp (i η̂3τ3τ2 + i η̂′3τ 3τ 2)
(

1 + τ 2 erf(α2Ỹ3K
− 1

2

2 ) + τ2 erf(α2X̃3K
− 1

2

2 ) + τ2τ 2 G2(p)
)

= Rp(v3;X3, X
′
3) + i Ip(v3;X3, X

′
3)
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where the real and imaginary part of the function Λp are, disregarding terms of O(K−1
2 )

and O(K
− 3

2

2 ) respectively

Rp(v3;X3, X
′
3) ≃ cos(η̂3) cos(η̂′3) − τ3τ 3 sin(η̂3) sin(η̂′3)G2(p)

Ip(v3;X3, X
′
3) ≃ τ3 sin(η̂3) cos(η̂′3) erf(α2X̃3K

− 1

2

2 ) + τ 3 cos(η̂3) sin(η̂′3) erf(α2Ỹ3K
− 1

2

2 ).

The iteration the produces the functions of the variables at the ℓ + 1-th layer will

have the following parameters

α2
ℓ ≡ 2α2

ℓ−1

π + 4ζℓ−1α2
ℓ−1

=
1

2

(

2

π

)ℓ−1
[

1 +

ℓ−1
∑

j=1

(

2

π

)j

ζj

]−1

γℓ ≡
4ζℓα

2
ℓ

π + 4ζℓα
2
ℓ

=

(

2

π

)ℓ

ζℓ

[

1 +
ℓ
∑

j=1

(

2

π

)j

ζj

]−1

(A.15)

Gℓ+1(p) ≡ 1 − 2

π
arccos ((1 − γℓ)Gℓ(p) + γℓ(1 − 2p))

with the initial conditions

α2
1 =

1

2

G1(p) = 1 − 2

π
arccos(1 − 2p).

Observe that this process can be repeated until the very last iteration, where X̃L+2 =

ỸL+2 = 0. Therefore

d(p,Q) =
1

π
arccos ((1 − γL)GL(p) + γL(1 − 2p)) .

Appendix B. Calculation of the partial overlap matrix probability

Let us suppose that we have selected K vectors from SN such there is a constraint on

the angle between any pair of them, such that as a result we can construct the matrix

Q. Let us find now the distribution probability of the matrix elements correspondent to

the partial sums of the type 1
N

∑

j∈IP
wk1, jwk′

1
, j. With this end we define the following

quantities

r2
k1

≡ 1

N

∑

j∈IP

w2
k1, j

rk1
rk′

1
cos(ϕk1k

′

1
) ≡ 1

N

∑

j∈IP

wk1, jwk′

1
, j

so the task is to find the distribution of the variables r2
k1

(diagonal elements) and

rk1
rk′

1
cos(ϕk1k

′

1
) (off-diagonal elements).

It is then

P(r2
k1

) =

∫

dwk1
P(r2

k1
|wk1

)P(wk1
)
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∝
∫

dwk1
δ

(

Nr2
k1

−
∑

j∈IP

w2
k1, j

)

δ

(

N
∑

j=1

w2
k1, j −N

)

∝
∫

dwk1
δ

(

Nr2
k1

−
∑

j∈IP

w2
k1, j

)

δ



Nr2
k1

+
∑

j /∈IP

w2
k1, j −N





∝
∫

∏

j∈IP

dwk1, j δ

(

∑

j∈IP

w2
k1, j −Nr2

k1

)

∫

∏

j /∈IP

dwk1, j δ





∑

j /∈IP

w2
k1, j −N(1 − r2

k1
)





∝ rP−1
k1

(1 − r2
k1

)(N−P−1)/2

=

[

NB

(

P + 1

2
,
N − P + 1

2

)]−1

rP−1
k1

(1 − r2
k1

)(N−P−1)/2,

where B(x, y) = Γ (x)Γ (y)/Γ (x+ y) is the beta function. For the off-diagonal elements

we proceed in the same manner

P(rk1
rk′

1
cos(ϕk1k

′

1
)) =

∫

dwk1
dwk′

1
P(rk1

rk′

1
cos(ϕk1k

′

1
)|wk1

,wk′

1
)P(wk1

,wk′

1
)

=

∫

dwk1
dwk′

1
P(rk1

rk′

1
cos(ϕk1k

′

1
)|wk1

,wk′

1
)P(wk′

1
|wk1

)P(wk1
)

∝
∫

dwk1
dwk′

1
δ

(

Nrk1
rk′

1
cos(ϕk1k

′

1
) −

∑

j∈IP

wk1, jwk′

1
, j

)

δ

(

Nr2
k1

−
∑

j∈IP

w2
k1, j

)

×δ
(

Nr2
k′

1
−
∑

j∈IP

w2
k′

1
, j

)

δ

(

N
∑

j=1

wk1, jwk′

1
, j −Nζ̃k1k

′

1

)

×δ
(

N
∑

j=1

w2
k1, j −N

)

δ

(

N
∑

j=1

w2
k′

1
, j −N

)

where ζ̃k1k
′

1
is the overlap between the vectors wk1

and wk′

1
. Observe that as in the case

of the diagonal elements we can separate the variables into two groups, according to

whether their indexes are in IP or not. Thus

P(rk1
rk′

1
cos(ϕk1k

′

1
)) =

∫

∏

j∈IP

dwk1, jdwk′

1
, j δ

(

Nr2
k1

−
∑

j∈IP

w2
k1, j

)

δ

(

Nr2
k′

1
−
∑

j∈IP

w2
k′

1
, j

)

×δ
(

Nrk1
rk′

1
cos(ϕk1k

′

1
) −

∑

j∈IP

wk1, jwk′

1
, j

)

×
∫

∏

j /∈IP

dwk1, jdwk′

1
, j δ





∑

j /∈IP

w2
k1, j −N(1 − r2

k1
)



 δ





∑

j /∈IP

w2
k′

1
, j −N(1 − r2

k′

1
)





×δ





∑

j /∈IP

wk1, jwk′

1
, j −N(ζ̃k1k

′

1
− rk1

rk′

1
cos(ϕk1k

′

1
))



 .
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Let us define the overlap cos(ϕ̃k1k
′

1
) by

cos(ϕ̃k1k
′

1
) ≡

ζ̃k1k
′

1
− rk1

rk′

1
cos(ϕk1k

′

1
)

√

(1 − r2
k1

)(1 − r2
k′

1

)
. (B.1)

The integrals to be solved are of the form

I ≡
∫

Rd

dx1dx2 δ(x1 · x2 −Nr1r2 cos(ϕ)) δ(|x1|2 −Nr2
1) δ(|x2|2 −Nr2

2)

which is proportional to the length of the hyper-ring around x2 with radius |x1| sin(ϕ)

times the length of the hyper-ring around x1 with radius |x2| sin(ϕ). Therefore

I ∝ (r1r2)
d−1 sind−2(ϕ)

thus

P(rk1
rk′

1
cos(ϕk1k

′

1
)) ∝ (rk1

rk′

1
)P−1 sinP−2(ϕk1k

′

1
)
[

(1 − r2
k1

)(1 − r2
k′

1
)
](N−P−1)/2

sinN−P−2(ϕ̃k1k
′

1
),

and, by (B.1) we have that

(1 − r2
k1

)(1 − r2
k′

1
) sin2(ϕ̃k1k

′

1
) = (1 − ζ̃2

k1k
′

1
) − r2

k1
− r2

k′

1
+ 2rk1

rk′

1
ζ̃k1k

′

1
cos(ϕk1k

′

1
) + rk1

rk′

1
sin2(ϕk1k

′

1
).

Therefore

P(r2
k1

) ∝ rP−1
k1

(1 − r2
k1

)(N−P−1)/2

P(rk1
rk′

1
cos(ϕk1k

′

1
)) ∝ (rk1

rk′

1
)P−1 sinP−2(ϕk1k

′

1
)
√

(1 − r2
k1

)(1 − r2
k′

1

)

[

1 − ζ̃2
k1k

′

1
− r2

k1
− r2

k′

1
+ 2rk1

rk′

1
ζ̃k1k

′

1
cos(ϕk1k

′

1
) + r2

k1
r2
k′

1
sin2(ϕk1k

′

1
)
](N−P−2)/2

.

In the thermodynamic limit, where P ≤ N → ∞ and P/N = p, the saddle point

equations of the Laplace’s method are

0 =
p

rk1

− 1 − p

1 − r2
k1

rk1
∀k1 (B.2)

for the diagonal elements, and

0 =
p

rk1

− 1 − p

2

2rk1
− 2rk′

1
ζ̃k1k

′

1
cos(ϕk1k

′

1
) − 2rk1

r2
k′

1

sin2(ϕk1k
′

1
)

1 − ζ̃2
k1k

′

1

− r2
k1

− r2
k′

1

+ 2rk1
rk′

1
ζ̃k1k

′

1
cos(ϕk1k

′

1
) + r2

k1
r2
k′

1

sin2(ϕk1k
′

1
)
(B.3)

0 =
p

rk′

1

− 1 − p

2

2rk′

1
− 2rk1

ζ̃k1k
′

1
cos(ϕk1k

′

1
) − 2r2

k1
rk′

1
sin2(ϕk1k

′

1
)

1 − ζ̃2
k1k

′

1

− r2
k1

− r2
k′

1

+ 2rk1
rk′

1
ζ̃k1k

′

1
cos(ϕk1k

′

1
) + r2

k1
r2
k′

1

sin2(ϕk1k
′

1
)
(B.4)

0 = p cotg(ϕk1k
′

1
)

−1 − p

2

2rk1
rk′

1
ζ̃k1k

′

1
sin(ϕk1k

′

1
) − 2r2

k1
r2
k′

1

cos(ϕk1k
′

1
) sin(ϕk1k

′

1
)

1 − ζ̃2
k1k

′

1

− r2
k1

− r2
k′

1

+ 2rk1
rk′

1
ζ̃k1k

′

1
cos(ϕk1k

′

1
) + r2

k1
r2
k′

1

sin2(ϕk1k
′

1
)
, (B.5)

∀k1 6= k′
1. From (B.2) we have that r2

k1
= p ∀k1. Equations (B.3) and (B.4) are identical,

therefore we can suppose that in the limit rk1
= rk′

1
= r and the system gets reduced
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to only two equations

0 = p− (1 − p)r2
1 − ζ̃k1k

′

1
cos(ϕk1k

′

1
) − r2 sin2(ϕk1k

′

1
)

1 − ζ̃2
k1k

′

1

− 2r2(1 − ζ̃k1k
′

1
cos(ϕk1k

′

1
)) + r4 sin2(ϕk1k

′

1
)

0 = p cotg(ϕk1k
′

1
) − (1 − p)r2

ζ̃k1k
′

1
sin(ϕk1k

′

1
) − r2 cos(ϕk1k

′

1
) sin(ϕk1k

′

1
)

1 − ζ̃2
k1k

′

1

− 2r2(1 − ζ̃k1k
′

1
cos(ϕk1k

′

1
)) + r4 sin2(ϕk1k

′

1
)

which accepts the solution r2 = p and cos(ϕk1k
′

1
) = ζ̃k1k

′

1
∀k1 k′

1. Therefore, in the

thermodynamic limit, we have that

P(r2
k1

) ∝ δ(r2
k1

− p)

P(rk1
rk′

1
cos(ϕk1k

′

1
)) ∝ δ(r2

k1
− p)δ(r2

k′

1
− p)δ(cos(ϕk1k

′

1
) − ζ̃k1k

′

1
)

which implies that the expected value of the matrix of partial overlaps given these

distributions of elements, is

lim
P≤N→∞

(

N

P

)−1
∑

IP

1

N

∑

j∈IP

wk1, jwk′

1
, j = p [Q]k1,k′

1
. (B.6)

Appendix C. Integrals

In here we present the calculation of several integrals that appear in the main

development.

Appendix C.1. Integrals related to (A.12)

In order to simplify the following developments we will suppose that ∃M ∈ N |K =

2M + 1. The integrals to be solved are

bM0 ≡
∫

D (η, η̂) cos(η̂)2M+1

bMm ≡
∫

D (η, η̂) cos(η̂)2(M−m)+1 sin(η̂)2m

aM
m ≡

∫

D (η, η̂) cos(η̂)2(M−m) sin(η̂)2m+1.

Before computing the integrals observe that for all A > 0 and B ≥ 0
∫

D (η, η̂) sin(Aη̂) = − i

4π

∫ ∞

0

dη

∫ ∞

−∞

dη̂ exp (−iη̂η) [exp (iη̂A) − exp (−iη̂A)]

= − i

4π

∫ ∞

0

dη

∫ ∞

−∞

dη̂ [exp [−iη̂(η − A)] − exp [−iη̂(η + A)]]

= − i

2
[Θ(A) − Θ(−A)]

= − i

2
, (C.1)
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similarly
∫

D (η, η̂) cos(Aη̂) cos(Bη̂) =
1

4
[Θ(A+B) +Θ(−A−B) +Θ(A−B) +Θ(−A+B)]

=
1

2
(C.2)

and
∫

D (η, η̂) cos(Aη̂) sin(Bη̂) = − i

4
[Θ(A+B) −Θ(A−B) +Θ(−A+B) −Θ(−A− B)]

= − i

2
Θ(B −A). (C.3)

The first integral is

bM0 =

∫

D (η, η̂) cos(η̂)2M+1 =
1

22M

M
∑

k=0

(

2M + 1

k

)
∫

D (η, η̂) cos[(2M − 2k + 1)η̂]

=
1

22M+1

M
∑

k=0

(

2M + 1

k

)

=
1

2
∀M. (C.4)

The second integral is

bMm =

∫

D (η, η̂) cos(η̂)2(M−m)+1 sin(η̂)2m

=

∫

D (η, η̂)
1

22(M−m)

M−m
∑

k=0

(

2(M −m) + 1

k

)

cos[(2M − 2(k +m) + 1)η̂]

1

22m

{

2
m−1
∑

j=0

(−1)m−j

(

2m

j

)

cos[(2m− 2j)η̂] +

(

2m

m

)

}

=
1

22M

M−m
∑

k=0

(

2(M −m) + 1

k

) m−1
∑

j=0

(−1)m−j

(

2m

j

)

+
1

22m+1

(

2m

m

)

=
1

22M

22(M−m)+1

2

[

−1

2

(

2m

m

)]

+
1

22m+1

(

2m

m

)

= 0 ∀M,m > 0. (C.5)

And the last integral is then

aM
m =

∫

D (η, η̂) cos(η̂)2(M−m) sin(η̂)2m+1

=

∫

D (η, η̂) cos(η̂)2(M−m)
[

1 − cos2(η̂)
]m

sin(η̂)

=

∫

D (η, η̂)
m
∑

ℓ=0

(−1)ℓ

(

m

ℓ

)

cos(η̂)2(M−m+ℓ) sin(η̂)

=

m
∑

ℓ=0

(−1)ℓ

(

m

ℓ

)

(−i)
22(M−m+ℓ)

{

1

2

(

2(M −m+ ℓ)

M −m+ ℓ

)

+

+
M−m+ℓ−1
∑

k=0

(

2(M −m+ ℓ)

k

)

Θ [1 − 2(M −m+ ℓ− k)]

}
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= − i

22(M−m)+1

m
∑

ℓ=0

(

−1

4

)ℓ (
m

ℓ

)(

2(M −m+ ℓ)

M −m+ ℓ

)

= − i

22M+1

(

M

m

)−1(
2m

m

)(

2(M −m)

M −m

)

. (C.6)

Appendix D. Derivation of condition (10)

We start by writing the average discrepancy component as

d
(N)
P [f ] =

1

2
− 1

2

∑

{S},{S′}

P(S,S′) f(S) f(S′)

where P(S,S′) = 2−N
(

N
P

)−1
δSTS′,N−2P . The second term can be then expressed as

∑

{S},{S′}

P(S,S′) f(S) f(S′) = 2−N

(

N

P

)−1
∑

{S},{S′}

δSTS′,N−2P

∑

I,J

f̂If̂J

∏

k∈I

∏

l∈J

SkS
′
l

By expressing the Kronecker delta as

δr,m =
1

2πi

∮

dZ

Zm+1
Zr

we have
∑

{S},{S′}

P(S,S′) f(S) f(S′) =

2−N

(

N

P

)−1
∑

I,J

f̂If̂J

1

2πi

∮

dZ

ZP+1

∏

k∈I

∏

l∈J

N
∏

j=1

1

2

∑

Sj=±1

∑

S′

j=±1

Z
1

2
(1−SjS′

j)SkS
′
l.

Now we have to take the average over the input variables. To do so we define the

following sets: A ≡ I ∩ J, B ≡ I/A, C ≡ J/A and D ≡ [N ]/(I ∪ J). These four sets

completely cover [N ] without intersecting each other. The spin average is then

g(Z) ≡
N
∏

j=1

1

2

∑

Sj=±1

∑

S′

j=±1

Z
1

2
(1−SjS′

j)
∏

k∈I

Sk

∏

l∈J

S ′
l

= (1 − Z)|A| δ
B,Ø δ

C,Ø (1 + Z)|D|.

If B = C = Ø then I = J and then

g(Z) = δI,J (1 − Z)|I|(1 + Z)N−|J|.

Let us write the sum over the sets of indexes
∑

I
as
∑N

r=1

∑

Ir
where |Ir| = r. Then, if

Ar ≡
∑

Ir

f̂ 2
Ir
, (D.1)

we can write

d
(N)
P [f ] =

1

2
− 1

2

(

N

P

)−1 N
∑

r=1

Ar
1

2πi

∮

dZ

ZP+1
(1 − Z)r(1 + Z)N−r
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=
1

2
− 1

2

(

N

P

)−1 N
∑

r=1

Ar

r
∑

j=0

(−1)j

(

r

j

) N−r
∑

k=0

(

N − r

k

)

δj+k,P

=
1

2
− 1

2

(

N

P

)−1 N
∑

r=1

Ar

min{r,P}
∑

j=0

(−1)j

(

r

j

)(

N − r

P − j

)

.

In this case the difference of average discrepancy components is

∆N
P [f ] ≡ d

(N)
P [f ] − d

(N)
P+1[f ] =

1

2

N
∑

r=1

Ar

r
∑

j=0

(−1)j

(

r

j

)

[(

N−r
P−j

)

(

N
P

) −
(

N−r
P+1−j

)

(

N
P+1

)

]

.

Observe that
(

r

j

)

=

∏j−1
k=0(r − k)

j!
=

Pj(r)

j!

where Pj(r) is a polynomial of degree j in r. If P ≪ N then
(

N

P

)

≃ NP

P !
+O(N−1).

Thus
(

N

P

)−1(
r

j

)(

N − r

P − j

)

≃
(

P

j

)

Pj(r) PP−j(N − r)

NP
+O(N−1)

≃
(

P

j

)

aP r
j (N − r)P−j

NP
+O(N−1)

where aP ∈ R is a constant. We then have the following expression (disregarding terms

of O(1/N))

∆N
P [f ] ≃ 1

2

N
∑

r=1

Ar

r
∑

j=0

(−1)j

[(

P

j

)

aP

( r

N

)j (

1 − r

N

)P−j

−
(

P + 1

j

)

aP+1

( r

N

)j (

1 − r

N

)P+1−j
]

and observe that both terms in the sum over j are polynomials of order P and P + 1 in

r/N . Thus

∆N
P [f ] ≃ 1

2

N
∑

r=1

Ar

P+1
∑

j=0

b
(P )
j

( r

N

)j

+O(N−1)

≃ 1

2

P+1
∑

j=1

b
(P )
j

N
∑

r=1

Ar

( r

N

)j

+O(N−1)

where b
(P )
j ∈ R are the polynomial coefficients and depend only on the value of P. From

this expression it is clear that in order to satisfy the condition (7) for all values of P we

need to require that

∀ j ∈ N lim
N→∞

1

N j

N
∑

r=1

Ar r
j = 0, (D.2)

which is the condition (10)
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References

[1] Franco L and Anthony M 2006 IEEE Trans N N 17 578

[2] Neirotti J P 2010 J Phys A 43 015101

[3] Neirotti J P 2010 J Phys A 43 125101

[4] Cybenko G 1988 Math Control Signals Syst 2 303

[5] Engel A 1996 J Phys A 29 L323

[6] Urbanczik R 1997 J Phys A 30 L387

[7] Ahr M Biehl M and Urbanczik R 1999 J Phys A 32 L531

[8] Rosen-Zvi M Engel A and Kanter I 2001 Phys Rev Lett 87 078101

[9] Schwarze H and Hertz J 1993 J Phys A 26 4919

[10] Schwarze H 1993 J Phys A 26 5781

[11] Opper M 1994 Phys Rev Lett 72 2113

[12] Copelli M and Caticha N 1995 J Phys A 28 1615

[13] Urbanczik R 1995 J Phys A 28 7097

[14] Saad D and Solla S A 1995 Phys Rev Lett 74 4337

[15] Monasson R and Zecchina R 1995 Phys Rev Lett 75 2432

[16] V icente R and Caticha N 1997 J Phys A 30 L599

[17] Saad D and Rattray M 1998 Optimal on-line learning in neural networks, On-line learning in

neural networks, D Saad ed, Cambridge

[18] Copelli M and Caticha N 1998 Universal asymptotics in committee machines with tree architecture,

On-line learning in neural networks, D Saad ed, Cambridge

[19] Kinzel W and Kanter I 2002 Interacting Neural Networks and Cryptography, Advances in Solid

State Physics 42, Springer Berlin, Heidelberg

[20] Kurant M and Thiran P 2007 Phys Rev E 76 026102

[21] Cousseau F Mimura K and Okada M 2008 Statistical mechanics of lossy compression for non-

monotonic multilayer perceptrons ISIT pg 509, Toronto Canada.

[22] Cousseau F Mimura K and Okada M 2010 Phys Rev E 81 021104

[23] Church A 1936 Am J Math 58 345

[24] Turing A M 1937 Proc London Math Soc 42 230

[25] Hartmanis J and Stearns R E 1965 Trans Am Math Soc 117 285

[26] Kolmogorov A N 1965 Problems of Information and Transmission 1 1
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