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Integrative models of cardiac physiology are important for understanding disease and planning

intervention. Multimodal cardiovascular imaging plays an important role in defining the

computational domain, the boundary/initial conditions, and tissue function and properties.

Computational models can then be personalized through information derived from in

vivo and, when possible, non-invasive images. Efforts are now established to provide

Web-accessible structural and functional atlases of the normal and pathological heart for clinical,

research and educational purposes. Efficient and robust statistical representations of cardiac

morphology and morphodynamics can thereby be obtained, enabling quantitative analysis of

images based on such representations. Statistical models of shape and appearance can be built

automatically from large populations of image datasets by minimizing manual intervention

and data collection. These methods facilitate statistical analysis of regional heart shape and wall

motion characteristics across population groups, via the application of parametric mathematical

modelling tools. These parametric modelling tools and associated ontological schema also

facilitate data fusion between different imaging protocols and modalities as well as other data

sources. Statistical priors can also be used to support cardiac image analysis with applications

to advanced quantification and subject-specific simulations of computational physiology.
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A major strategy of Cardiac Physiome projects is
to develop mathematical and computer models to
integrate the observations from many laboratories
into quantitative, self-consistent and comprehensive
descriptions (http://www.physiome.org.nz). Many groups
have begun to construct physiological databases, linked
with anatomical, functional and clinical data gleaned
from a variety of sources. This information must be
integrated across many scales, from molecular inter-
actions to organ system function. There have been
several initiatives begun in this endeavour, centred on
different organ systems and pathology targets. Projects
include the Integrative Biology Project (http://www.
integrativebiology.ox.ac.uk), the ECG signal database
(http://www.physionet.org), the Cardiac Gene Expression
database (http://www.cage.wbmei.jhu.edu), the Medical
Image File Archive Project (http://dpi.radiology.uiowa.
edu/mifar/index.php), anatomical ontology databases,

such as the Foundational Model of Anatomy (http://
sig.biostr.washington.edu/projects/fm/AboutFM.html),
and Informatics for Integrating Biology and the Bedside
(http://www.i2b2.org/). In particular, the Biomedical
Informatics Research Network (http://www.nbrin.net)
provides a number of tools to facilitate collaborative
research among neuroscientists and medical scientists,
making use of computational and networking
technologies and addressing issues of user authentication,
data integrity, security and data ownership. These tools,
and those of the Cancer Biomedical Informatics Grid
(https://cabig.nci.nih.gov/) are being exploited by the
Cardiovascular Research Grid (http://www.cvrgrid.org)
to create an infrastructure for sharing cardiovascular data
and data analysis tools. For the brain, the infrastructure for
building atlases and computational anatomy tools are well
developed. For example, the Center for Computational
Biology at UCLA (http://cms.loni.ucla.edu/ccb) provides

DOI: 10.1113/expphysiol.2008.044081 C© 2009 The Authors. Journal compilation C© 2009 The Physiological Society

) by guest on September 28, 2009ep.physoc.orgDownloaded from Exp Physiol (

http://ep.physoc.org/


Exp Physiol 94.5 pp 578–596 Computational cardiac atlases 579

‘middleware’ applications and software required to
provide secure, Web-based access to the underlying
computational and network resources, including
the International Consortium for Brain Mapping
(http://www.loni.ucla.edu/ICBM). At the same time,
a number of initiatives worldwide are looking at the
research and implementation challenges inherent to
all the various organ systems, for example, the IUPS
Physiome Project (http://www.physiome.org.nz) and
the Virtual Physiological Human European Network of
Excellence (http://www.vph-noe.eu).

The vast expansion in the use of the Internet has been
instrumental in bringing together a growing number of
Physiome centres. These centres provide databases on the
functional aspects of biological systems, including the
genome, molecular form and kinetics, and cell biology,
up to complete functioning organ systems. The databases
provide some of the raw information needed to develop
models of physiological systems and to simulate whole
organs. Data on the physiological functions of cell and
tissue structures as well as whole organ systems are
growing at dramatic rates, aided by technical advances,
such as improved biological imaging techniques. Similarly,
modelling resources and software are developing at a
rate fast enough to enable the development of realistic
computer models of whole organs to commence. At the
cellular level, electrophysiological, excitation–contraction
coupling, contractile and metabolic processes have been
described and modelled mathematically. At the tissue
level, the myocardial microstructure and its effects on the
mechanical and electrical properties of the heart have been
characterized. At the organ level, state-of-the-art finite
element analysis methods have been developed to model
the complex geometry, non-linear material properties and
large deformations of the heart, to enable solution of the
biophysical conservation laws linking stress, strain and
energy expenditure.

Since multimodal imaging of both structure and
function at multiple scales is undoubtedly an excellent
technology set for exploring the function of organ systems,
the establishment of large imaging databases is essential
for the development and validation of these physiological
models. Multidimensional image data provide the ability
to customize biomechanical and physiological parameters
to a particular patient’s anatomy and cardiac performance.
Large population-based databases also enable statistical
models of normal and pathological function to be
developed, which in turn facilitates better tools for
construction of computational models from image data.

An atlas is an alignment of data maps from
different domains, either population (statistically) or
individualized (subject specific), which enables querying
of relations from multiple domains to construct ‘the big
picture’. In the brain, for example, atlases have been
successfully developed from spatial representations of

brain structure and/or function, using registration and
warping techniques to align maps between modalities
and representations, and relying on indexing schemes
and nomenclature systems for standardized classification.
Atlases comprised of multiple data sources and many
individuals provide the ability to describe shape and
functional data with statistical and visual power. A
computational cardiac atlas should map the structure
and function of the heart across different domains, e.g.
different scales of observation, multimodal information
sources, across in silico and in vivo data and/or across
patient populations. In this way, computational cardiac
atlases integrate huge amounts of otherwise disconnected
information to discover the patterns that represent their
internal logic or relationships. In this article, we confine
ourselves primarily to computational cardiac atlases as
a methodology for: (a) analysing anatomical phenotypes
across subject populations; (b) performing multimodal
image analysis and fusion based on statistical structural
constraints for diagnostic or prognostic purposes; and
(c) deriving subject-specific physiological models, which
could be used to link in vivo and in silico information about
individuals and populations.

Cardiovascular imaging

Many imaging techniques exist to perform cardiovascular
examinations (Goldin et al. 2000; Reeder et al. 2001).
Ultrasound (US), single-photon emission computed
tomography (SPECT), computed tomography (CT) and
magnetic resonance imaging (MRI) are the most well-
known and established techniques. However, many recent
advances in hardware, contrast agents and postprocessing
algorithms are empowering these methods by extending
the frontiers of their applicability.

For instance, hardware improvements in MRI, CT and
US nowadays allow faster imaging protocols, resulting
in (near) real-time dynamic three-dimensional (3-D)
imaging of the heart. This has been demonstrated with
parallel MRI acquisition strategies (Sodickson & Manning,
1997; Sodickson, 2000; Pruessmann et al. 1999; Weiger
et al. 2000), with multislice CT imaging (Taguchi &
Aradate, 1998; Hu, 1999; Klingenbeck-Regn et al. 1999,
2002) and with piezoelectric two-dimensional arrays or
3-D probe tracking systems in US (Lees, 2001; Fenster &
Downey, 2000; Lange et al. 2001).

Cardiac ultrasound still remains the most ubiquitous
cardiac imaging modality, with applications at the bedside
and during interventions. At the same time, it is the
best modality in terms of temporal resolution and the
only one able to capture specific features of cardiac
dynamics. Albeit with lower temporal resolution, three-
dimensional ultrasound has recently received substantial
attention in cardiology, particularly in cardiac valve
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diseases, which require the imaging of valvular dynamics
in three dimensions.

Cardiac multidetector computed tomography (MDCT)
has established itself as the modality for assessing
the structure of the coronary tree in vivo with
simultaneous acquisition of the dynamic anatomy of the
whole heart and great vessels with great spatial detail
(0.5 mm isotropic voxels). Unfortunately, this modality
still involves substantial radiation, which makes it less
suitable when longitudinal or follow-up scans need to be
performed.

Cardiac MRI provides an abundant source of detailed,
quantitative data on heart structure and function.
Advantages of cardiac MRI include its non-invasive nature,
well-tolerated and safe (non-ionizing) procedures, ability
to modulate contrast in response to several mechanisms,
and ability to provide high-quality functional information
in any plane and any direction. Its 3-D tomographic nature
allows excellent views of the entire heart, irrespective of
cardiac orientation and cardiac chamber shape (Fig. 1).
Cardiac MRI has provided detailed information on
3-D ventricular shape and geometry (Reichek, 1991;
Pattynama et al. 1994), regional systolic (Young et al.
1994) and diastolic strain (Fonseca et al. 2004), material
microstructure (Hsu et al. 1998; Scollan et al. 1998),
blood flow (Kilner et al. 2000), perfusion (Panting et al.
2002) and viability (Kim et al. 2000; Wagner et al.
2003). It is considered to be the most accurate method
for measurement of ventricular volumes and systolic
function (Pattynama et al. 1994). The high precision
and accuracy of cardiac MRI (Myerson et al. 2002;
Bottini et al. 1995) has led to its increasing application

Figure 1. Black blood anatomical images

from the SCMR anatomical cardiac magnetic

resonance atlas

Image panes are a coronal slice (A), a short-axis

slice (B); and an annotated long-axis slice with

applet navigation and viewing tools

(C; http://atlas.scmr.org/).

worldwide in cardiac research trials and clinical
practice.

The Society for Cardiovascular Magnetic Resonance
(SCMR) teaching atlas (http://atlas.scmr.org/), created in
1999 and updated in 2007, is an example of a single
annotated case and consists of a comprehensive range of
cardiac MR images of a healthy volunteer, including cine
function images, myocardial tagging images, T1 weighted
anatomical images and phase contrast flow images
(Fig. 1).

Analysis of shape and motion

Analysis of the ∼500 images which result from a typical
functional study has been typically limited to global
estimates of mass and volume, and qualitative evaluation
of local wall motion. However, these images provide
detailed information on regional wall motion during
diastole and systole, which can be combined with other
imaging or clinical data to yield greater understanding of
underlying disease processes.

Model-based analysis tools (Fig. 2) allow the calculation
of standard cardiac performance indices, such as left
ventricular mass and volume, by efficient customization
of a mathematical model to patient images (Young
et al. 2000). However, they also allow quantitative
parameterization of regional heart wall motion, in a way
that facilitates statistical comparison of cases drawn from
different patient populations (Augenstein & Young, 2001).
The mathematical model also provides a mechanism for
the integration and comparison of information from
different imaging protocols, such as late gadolinium
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enhancement (Oshinski et al. 2001; Rehwald et al. 2002;
Setser et al. 2003) and displacement encoding (Young &
Axel, 1992; Young et al. 1995). For a review of work in this
area, see Frangi et al. (2005).

In addition to the traditional mass and volume analysis,
the mathematical model allows detailed evaluation of
regional wall motion and shape characteristics, in relation
to a standardized co-ordinate system. Figure 3 shows a
bullseye map of regional wall thickness at end-systole,
together with plots of wall thickness against time. The
software enables users to interactively define a region
of interest for wall thickening calculations. Figure 3B
shows an example of remodelling in infarcted and remote
zones in a patient 1 week and 3 months after myocardial
infarction.

Another application of the combination of advanced
cardiac imaging and statistical anatomical modelling
is the evaluation and quantification of asynchronous
contraction of the left ventricle (LV) with applications
in planning and evaluating pacing treatments, such as
cardiac resynchronization therapy (CRT). Figure 4 shows
an anatomical model of the heart where the various nodes
have been labelled according to the standard bullseye
sectorization. Next to it, the time course of wall motion
(WM, upper row) and wall thickening (WT, middle row)
for the various circumferential sectors are displaced for the

Figure 2. Steady-state free precession cine short- (A) and long-axis images (B), at end-diastole, with

3-D view of model and images (C) and functional data showing LV volume plotted against time (D)

Contours show location of the intersection of the 4-dimensional spatio-temporal model with the image plane.

Guide points placed by the user are also shown (A and B; Young et al. 2000).

basal, medial and apical levels, respectively (in columns).
The indices WM and WT attempt to quantify the effect
of the passive and active forces acting on the myocardial
wall. As shown by this figure, these parameters exhibit
a dramatic difference between healthy volunteers and
CRT candidates. The lower row shows how it is possible
to combine the former indices in a WM versus WT
plot, which facilitates the integration of the two pieces
of information for better discrimination of patients and
therefore may aid patient selection for CRT.

Population models

Model-based image analysis procedures provide a
powerful mechanism for the fast, accurate assessment
of cardiac data and facilitate biophysical analyses and
standardized functional mapping procedures. Since the
mathematical models employed for motion analysis are
registered to the anatomy of the heart, they can be used
to derive statistical descriptions of characteristic patterns
of regional wall motion in health and disease. This leads
to the identification of differences in the characteristic
pattern of regional heart wall motion between disease or
treatment groups.

However, the differences in regional wall motion
parameters between groups are difficult to characterize
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succinctly, owing to their multidimensional nature. Many
parameters are required to describe regional performance
(including regional strain, rotation and displacement).
One powerful technique is principal component analysis
(PCA), which describes the major sources of variation
within a multidimensional data set by decomposing the
variability into a set of orthogonal components or ‘modes’
(Cootes et al. 1994). Thus, a database of models of
heart shape and motion can be characterized by a set
of orthogonal modes and their associated variance. The
modes are ranked in order of highest to lowest variability,
thereby showing which variations are most strongly
present in the data and which variations can be neglected.
This reduces the number of significant parameters by
distinguishing the modes that truly differentiate the
groups and eliminating modes that are insignificant. Given
two such database distributions, describing different
patient groups, statistical comparisons can then be made
to determine the differences in shape and motion between
the two groups. Similarly, given a new case, a comparison
could be made with the database distributions to see which
database best describes the patient’s cardiac performance.

Construction of cardiac atlases, comprising
probabilistic maps of heart shape and motion in
health and disease, is now an active area of research.
Frangi et al. (2002) and Lotjonen et al. (2004) developed
right and left ventricle statistical shape models. Ordas

Figure 3. Wall thickness in all regions of the heart can be

determined from the mathematical model

A, bullseye plot of wall thickness in each region of the LV, with

user-defined regions (arrows) allowing interactive calculation of

wall thickness within a non-standard region. B, wall thickness

plotted versus time in a patient at 1 week and 3 months after a

first-time myocardial infarction, showing wall thinning in the

infarct zone owing to remodelling, together with functional

augmentation in the remote zone (Sutton & Sharpe, 2000).

et al. (2007) have developed a whole heart computational
atlas using registration-based techniques for anatomical
correspondence estimation across the population.
Perperidis et al. (2005) and Hoogendorn et al. (2007,
2008) described the construction of a four-dimensional
(space and time) probabilistic atlas from cardiac
MRI examinations. The information about statistical
distributions can then be used to guide image analysis
problems, such as segmentation of the heart from
MR images, by allowing high-level information on the
expected shape and motions of the heart to guide the
segmentation problem. For example, Rueckert & Burger
(1997) developed a method to maximize the posterior
probability of obtaining a model, given an observed
data set, based on the prior likelihood of obtaining the
model from the historical population and the likelihood
of obtaining the data, given the model. van Assen
et al. (2006), in turn, have used high-level statistical
anatomical constraints to recover cardiac models based
on a sparse set of image cross-sections. Beg et al. (2004)
developed a large deformation diffeomorphic metric
mapping strategy to build statistical atlases from MRI. To
date, although these methods have demonstrated their
potential, they have been limited by the relatively small
size of the databases available for training, which might
therefore bias subsequent image analysis, particularly in
pathological situations.

C© 2009 The Authors. Journal compilation C© 2009 The Physiological Society

) by guest on September 28, 2009ep.physoc.orgDownloaded from Exp Physiol (

http://ep.physoc.org/


Exp Physiol 94.5 pp 578–596 Computational cardiac atlases 583

Figure 4. Model-based indices of asynchronous contraction

The left-hand panel shows a diastolic frame of a cardiac MRI sequence where the left ventricle has been segmented

through model-based image analysis. Overlaid on the model are the various sectors of a bullseye representation.

The right-hand panels show contractility patterns of a healthy subject and a cardiac resynchronization therapy

candidate. The upper row plots the wall motion (WM) against time, while the middle row provides the curves of

wall thickening (WT) against time. The lower row plots WM versus WT, showing clearly distinct patterns in both

subject groups, which might aid in patient selection for therapy (Ordas et al. 2006).
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Parametric distribution models

By customizing mathematical models of the anatomy and
function of the heart to individual cases, it is possible
to construct parameter variation models describing the
distribution of regional cardiac shape and function across
patient subgroups. Cootes et al. (1994) pioneered the
application of Point Distribution Models (PDM) in
computer vision problems. Homologous landmarks (i.e.
the points which are aligned to match corresponding
features in the shape) were used to characterize shape and
shape variations with the aid of a principal component
analysis. Since mathematical models, represented by
the model parameters, are a complete and efficient
characterization of cardiac shape and motion, a principal
component analysis of the cardiac shape and motion
models can be formed.

For example, in R dimensions, a set of M parameters
can be defined in homologous locations around the heart.
Bezier control points can be used as the global finite
element parameters, since the scales of these parameters
are all the same (unlike, for example, cubic Hermite
parameters). Scaling between hearts can be corrected
by scaling the parameters with respect to the apex–base
length of the model. The pose (rotation and translation)
is registered with each model due to the definition of
the cardiac co-ordinate system. A database of N shapes
is constructed, each represented by a vector of global
nodal parameters Xn, n = 1, . . . , N , of length M . These
parameters can then be used to construct a Parameter
Distribution Model in the same manner as the traditional
Point Distribution Models (Remme et al. 2005). The mean
shape, Xm, is:

Xm =
1

N

N
∑

n=1

Xn (1)

The modes of variation about the mean can be found by
forming an M × N matrix of deviations from the mean:

B =
[

X1

|
−
|

Xm X2

|
−
|

Xm · · · Xn

|
−
|

Xm

]

(2)

from which the covariance matrix, C, can be calculated:
C = N−1BBT . The eigenvalues and vectors of the
covariance matrix can be found by singular value
decomposition: C = QDQT , where D is a diagonal
matrix of eigenvalues and Q is an orthogonal matrix of
eigenvectors. If the data are distributed normally, the
eigenvalues are the variances of the multidimensional
normal distribution, and the eigenvectors determine
the modes associated with the corresponding variance.
The eigenvectors of the covariance matrix corresponding
to the largest eigenvalues describe the most significant
modes of variation in the dataset. Typically, most of the
variation can be explained by a small number of modes,

K < min(M , N), due to noise and redundancy in the
dataset. In the following, we ignore the small modes of
variation, so that the covariance matrix is then modeled
as Ĉ = Q K �Q T

K , where � is a K × K diagonal matrix
and QK is an M × K matrix of significant shape modes.
Any shape represented by a parameter vector Y can then
be approximated in the PDM by a weighted sum of the
modes, Ŷ = Xm + Q K b, where b is a (K × 1) vector of
weights, one for each mode. The modes are orthogonal, so
QT

K QK = I (K × K) and b = QT
K (Y − Xm) is the least

squares solution to the problem of finding the closest
model in the distribution to the given model Y. We can
generate new shapes by varying the weights b within
suitable limits, which can be derived by examining
the distributions of the values required to generate
the database. If normal distributions are assumed, the
logarithmic probability of obtaining a shape Y from the
distribution is proportional to the Mahalanobis distance

D2
m = (Ŷ − Xm)TĈ−1(Ŷ − Xm)

= (Q K b)TQ K �
−1Q T

K (Q K b) = bT
�

−1b =
K

∑

i=1

b2
i

λi

(3)

where λi is the ith eigenvalue of C.
The main modes of shape and motion variation can be

plotted by looking at the range −2
√

λi ≤ bi ≤ 2
√

λi , i.e.
two standard deviations about the mean, which should
encompass 95% of the shape variation of that mode.
The effectiveness of these methods to detect regional wall
motion abnormalities will be enhanced with the growth
of such databases of normal and abnormal cases.

One of the largest-scale statistical cardiac atlases
built so far has been based on multidetector computed
tomography (MDCT) in a population of over 100 subjects
and 15 phases of the cardiac cycle (Ordas et al. 2007;
Fig. 5).

Clinical functional modes

Although the principal component analysis provides
orthogonal (i.e. mathematically uncoupled) modes of
deformation, the modes may not correspond to any
intuitive or simple deformation. Figure 6A shows the
mean values ± 2 S.D. in the three modes showing the
greatest shape variation in a small database of normal
volunteers (Augenstein & Young, 2001). In this plot, both
end-diastolic and end-systolic models are included in each
Xi parameter vector. The resulting models thus determine
both the shape and the motion between end-diastole and
end-systole. Clinically, these modes can be difficult to
interpret, because they combine longitudinal with radial
and torsional components. In an attempt to provide more
clinically understandable modes of deformation, Remme
et al. (2004) described a set of ‘clinical’ modes of variation
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and used these to characterize the differences between
healthy volunteers and patients with type II diabetes.
The deformation modes were chosen to decompose
the deformation into clinically meaningful components,
including apex–base shortening, wall thickening and
ventricular torsion (Park et al. 1994; Remme et al. 2004).
Figure 6B shows the definition of the modes of ventricular
deformation, and Fig. 6C shows the distribution of
the amount of each mode in a group of 15 healthy
volunteers relative to a group of 30 patients with type II
diabetes who had clinical evidence of diastolic dysfunction
but normal systolic chamber function (Remme et al.
2004).

Related work is that of Suinesiaputra et al. (2009) where,
instead of an a priori selection of modes based on clinical
relevance to a specific disease, Independent Component
Analysis (ICA) was used as a statistical method for
selecting a shape base. Independent Component Analysis
was shown to provide local support shape functions
which, in addition, are independent from each other.
This independence allows efficient estimation of the
probability density function (PDF) of each parameter
based on a training population of normal subjects.
By propagating the PDFs of the ICA components
to the spatial domain, one is able to make a local
estimate of the probabilities of abnormal myocardial
contraction (Fig. 7). The authors showed that areas of
high probability of abnormal myocardial contraction
corresponded to hyperenhancement in gadolinium-
enhanced MR (Suinesiaputra et al. 2004).

Figure 5. Whole-heart statistical atlas based on a population of about 100 subjects scanned with

multidetector computed tomography, each over 15 time points in the cardiac cycle

The right panel shows the overlay of the average model on the CT-based atlas. The left panel shows a 3D surface

rendered version of the average whole-heart model (Ordas et al. 2007). Each model node is labelled based on the

anatomical substructure it belongs to. The statistical model has a representation of the average cardiac anatomy

as well as a parameterization of the principal components of anatomical variations in the population.

Adapting population atlases to patient images

One of the beauties of statistical shape models is that they
coherently unify the concepts of population atlases and
model-based image analysis. In addition to providing a
framework for parameterizing the mean anatomy and
its variability, they also provide iterative schemes for
progressively adapting the average atlas to a subject’s
image by an alternating process of model feature finding
in the images and model parameter regression from
image evidence. A recent algorithmic overview of this
methodology is provided in the book of Davies et al.
(2008), while their applications in medical and cardiac
imaging are overviewed by Lelieveldt et al. (2005) and
Frangi et al. (2005).

A number of techniques are available to perform model-
to-image adaptation within the statistical shape modelling
context applied to cardiac image analysis. Here we focus
primarily on fully 3-D and 3-D+t techniques. Lotjonen
et al. (2004) proposed a 3-D statistical shape model of the
ventricles and atria and used it for segmentation purposes.
van Assen et al. (2008) presented a method which uses
fuzzy-logic techniques to recognize boundary images in
MRI and CT images. van Assen et al. (2006) proposed a
technique, which allows for fitting the models to arbitrarily
oriented image acquisition planes. This is particularly
important in MRI and 3-D ultrasound imaging, where
non-planar image acquisition planes are customary in
certain protocols. Lekadir et al. (2007) propose a technique
for handling outliers during the feature-finding step in
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order to make the fitting robust to missing boundary
evidence. Other variations on statistical shape models
proposed in the literature are the work developed by
Lorenz & von Berg (2006), von Berg & Lorenz (2007)
and Ecabert et al. (2008).

One approach, outlined by Remme et al. (2005),
shows how statistical parameter distribution models
derived from tagged MRI data can be used to guide the
reconstruction of motion from other imaging protocols,
such as cine imaging. Myocardial strains estimated
from tracking features in untagged images matched well
with a mean difference of 0.1 ± 3.2 and 0.3 ± 3.0% in
circumferential and longitudinal strains, respectively. The
calculated apex–base twist angle at end-systole had a mean

Figure 6. Statistical analysis of heart morphology and kinematics

A, principal components of shape and motion showing mean (top) and first three modes ± 2 S.D. (Augenstein

& Young, 2001). B, definition of nine clinical modes of heart deformation. C, distribution of amount of motion

in each clinical mode in patients with type II diabetes (numbers) compared with normal volunteers (means ± S.D.

shown as cross-hairs). Panel B reproduced from Remme et al. (2004; C©, 2004 IEEE).

difference of 1.0 ± 2.3 deg. This shows that sparse feature
tracking in conjunction with a PDM provides accurate
reconstruction of LV deformation in normal subjects.

Tobon-Gomez et al. (2008) have recently proposed a
strategy to train intensity features for statistical models
based on modelling and simulating the physics of
image acquisition. This significantly reduces the burden
associated with manual contouring of training images and
enables reuse of point distribution models built based
on other imaging modalities. In this particular paper,
point distribution models were obtained from MDCT but
applied to the segmentation of gated SPECT images. Ordas
et al. (2007) developed an anatomical population model
which, owing to the labelling of each of its nodes into
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anatomical subparts, lends itself to be restricted to the
cardiac structures which fall within the region of interest
of the target modality. Figure 8 shows how such a model
can be applied to various imaging modalities. A number
of tools are being developed to make these technologies
accessible to the scientific community. One such tool is
the Graphical Interface for Medical Image Analysis and
Simulation (GIMIAS), available at www.gimias.org.

Automated atlas construction from

large databases

Computational cardiac atlases comprising statistical
shape models are an exciting avenue for the coherent
performance of anatomical phenotyping of cardiac
diseases through model-based image analysis and
advanced spatio-temporal morphometrics (Cootes &
Taylor, 2007). However, an inherent weakness is that
potentially, their performance in all these applications
depends heavily on the careful selection of the training
population and the laborious atlas-building procedure.
This usually involves concomitant manual annotation of

Figure 7. Three automated detection results (right panels) compared with the associated myocardial

motion taken from MR image sequences (four frames from end-diastole to end-systole)

Grey shading in the rightmost column shows high probability of having an abnormal motion. White arrows in the

end-systole images show corresponding regional areas of wall motion abnormality with the automated detection.

Adapted from Suinesiaputra et al. (2009; C©, 2009 IEEE).

the images by experts, which is subjective and labour
intensive.

Over the last decade, a number of authors have worked
on developing techniques for automatic atlas building.
A number of methods have been devised and applied
to the cardiac (Frangi et al. 2002; Lorenz & von Berg,
2006) and other domains (Brett & Taylor, 1999; Davies
et al. 2002; Rueckert et al. 2003; Cootes et al. 2004)
that enable automatic landmarking of databases of either
surface or image description of objects. Furthermore,
some recent work has combined such methods with grid
computing techniques in databases of over a thousand
volume samples, therefore demonstrating the feasibility
of large-scale atlas construction (Ordas et al. 2007).
Among the most important recent developments in
statistical shape models are those that aim at building
the statistical models directly on the volumetric image
representation using non-rigid registration techniques.
One of the challenges ahead is to develop both the
methods and the infrastructure to build statistical models
directly from clinical image repositories and for a selective
subpopulation of subjects (e.g. normal subjects or those
affected with a specific disease).
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Multimodal fusion

Mathematical modelling of the heart enables registration
and fusion of data from different imaging modalities
and protocols. In one study, model-based methods for
mapping regional strain and wall motion in relation to
tissue characterization maps were developed and applied
to a mouse model of reperfused myocardial infarction
(Young et al. 2006). Magnetic resonance imaging tissue
tagging was analysed in each short- and long-axis image
using a semi-automated active contour process, and

Figure 8. Examples of mode-to-image fitting to various cardiac imaging modalities involving different

fields of view

A shows model adaptation to MDCT; B shows adaptation to three-dimensional US; C demonstrates model fitting

to left ventricular endocardial borders in MRI; and D shows model fitting to gated SPECT. One could conceive

using the reconstructed models to define a common reference system for mapping the various imaging modalities

so that interrelationships between structure and function can be established. Note that although the underlying

model stays equivalent, the image appearance can be quite different. Note also how gaps and holes in image

information (e.g. those coming from perfusion defects in SPECT) can be effectively handled by using statistical

information on cardiac anatomy.

the 3-D motion reconstructed with the aid of the
finite element model (Young et al. 1995), resulting in
a dynamic model of LV deformation. The Lagrangian
Green strain components between end-diastole and
each subsequent time were calculated at specific finite
element material points using standard methods of
continuum mechanics (Fung, 1965). Previous validation
experiments using a deformable silicone gel phantom have
shown that this procedure produces accurate, unbiased
estimates of displacement and shortening (Young et al.
1995).
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Infarcted regions, as defined by regions of late
gadolinium enhancement, were outlined on each image
in the short-axis stack (Fig. 9e and f ). The image
co-ordinates of the contours were then transformed
into 3-D magnet co-ordinates using the 3-D location of
the image planes. The magnet co-ordinates were then
transformed into a bullseye plot of the left ventricle
(Fig. 9g). A convex perimeter was manually drawn on
the bullseye map so as to enclose the hyperenhance-
ment contours (Fig. 9g). The bullseye co-ordinates of
the perimeter were then converted to 3-D cardiac
co-ordinates and projected in the transmural direction
onto the mid-wall surface of the LV finite element model.
This allowed the calculation of the 3-D infarct geometry
in finite element material co-ordinates. The 3-D infarct
geometry was fixed onto the dynamic finite element model
at end-diastole, and allowed to deform with the beating
model during systole and diastole (Fig. 9h).

Material points within the finite element model were
assigned to regions relative to the 3-D infarct geometry
as follows. Points within the 3-D infarct geometry were
denoted ‘infarct ’, points within 1.0 mm of the 3-D infarct
geometry (but outside it) were denoted ‘adjacent ’, and all
other points were denoted ‘remote’. This procedure also
allowed calculation of the percentage of myocardium in
the infarct, adjacent and remote zones, respectively. Since
the models were defined in a co-ordinate system aligned

Figure 9. Flow chart of the modelling and data

fusion process

Reproduced with permission from Young et al. (2006).

with each heart, a material point could be mapped onto
the corresponding material point at each time point during
remodelling.

Fusion of in vivo MRI tagging and ex vivo diffusion
tensor magnetic resonance imaging (DTMRI) relates
functional stain information with structural fibre
orientation. DTMRI images the diffusion tensor and
the direction of maximal water diffusion (the primary
eigenvector) in each voxel of the DTMRI image directly
relates to the myocardial fibre orientation. Free-form
deformation methods (Fig. 10) have been developed
which enable feature-based registration between image
modalities (Lam et al. 2007).

Biomechanical analysis

Biophysically based computational models of cardiac
structure and function can be customized to individual
patient images by optimizing the biophysical parameters
underlying normal and pathological function. The
LV remodels its structure and function to adapt to
pathophysiological changes in geometry and loading
conditions, and this process can be understood in terms
of adaptation of underlying biophysical parameters.
Computational models have been developed of heart
geometry (Nielsen et al. 1991a; LeGrice et al. 2001),
microstructure (LeGrice et al. 1995, 1997; Hooks et al.
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2002), material properties (Hunter & Smaill, 1988; Nielsen
et al. 1991b; Dokos et al. 2002; Schmid et al. 2008), stress
(Hunter et al. 1996, 1998; Costa et al. 1996a,b; Nash &
Hunter, 2001), perfusion (Smith et al. 2000, 2002), cellular
electromechanics (Nickerson et al. 2001) and activation
(Hunter et al. 1996; Bradley et al. 2000; Mulquiney
et al. 2001; Hooks et al. 2002). Cellular mechanisms,
including membrane channel characteristics, excitation–
contraction coupling and cross-bridge cycling dynamics,
can be incorporated into a continuum description of the
whole organ. Image data can be used to optimize the
parameters of such models, for example determining
the material stiffness of the tissue from knowledge of tissue
deformation and boundary conditions.

Augenstein et al. (2006) developed a method for in
vitro identification of material parameters from MRI tissue
tagging and DTMRI. These methods were extended to the
in vivo situation by Wang et al. (2008). Given information
on the geometry and deformation (from MRI tissue
tagging), and muscle microstructure (DTMRI) pressure
boundary conditions from time-matched recordings,
parameters of an integrated finite element model
simulation of LV mechanics can be optimized to the
data. The observed LV deformation obtained from tagged
MRI data provides the necessary kinematic data required
to validate the model and estimate the constitutive
properties of the passive myocardium (Fig. 11).
These integrated physiological models will allow more
insight into the mechanics of the LV on an individualized
basis, thereby improving our understanding of the
underlying structural basis of mechanical dysfunction in
pathological conditions.

Electrophysiological analysis

As for the individualization of biomechanical models,
subject-specific models of cardiac electrophysiology
and cardiac electromechanics can be constructed by
combining anatomical models derived from structural
imaging, and tissue distributions and their properties
as obtained from functional imaging. In some cases,
the results from these simulations can be compared or

Figure 10. Free form deformation registration

between DTMRI and tagged MRI

Left panels shows that host mesh fitting involved

minimizing the distance between landmark points (DTI

segmented contours, shaded pale grey) and target points

(the projections of DTMRI contours onto the LV model,

shaded dark grey) using a simple 8−element tri-Cubic

Hermite host mesh. Right panel shows the deformed host

mesh with transformed DTMRI surface data.

informed with measurements obtained through dynamic
imaging or body surface or intracavitary potential
mapping. Ultimately, the goal of such combination
of imaging and electrophysiological/electromechanical
models is to extend the diagnostic capabilities of
the present imaging systems with predictive capacity
for variables which usually require invasive electro-
physiological mapping procedures. In addition, this
predictive capacity will contribute to the interventional
planning and to the customization and optimization of
interventional procedures (Rhode et al. 2005) such as radio
frequency ablation (Sermesant et al. 2003, 2005; Reumann
et al. 2008; Plank et al. 2008) or cardiac resynchronization
therapy (CRT; Reumann et al. 2007; Sermesant et al. 2008;
Romero et al. 2008).

The present available electrophysiological models,
ranging from single cell (Noble & Rudy, 2001; ten Tusscher
et al. 2004; Fenton et al. 2005; ten Tusscher & Panfilov
2006) to tissue level (Henriquez & Papazoglou 1996;
Pollard & Barr, 1991; Pollard et al. 1993) and organ
level (Noble, 2004, 2007; Trayanova, 2006; Vigmond
et al. 2008a), have proved sufficiently accurate to model
complex processes, including ion kinetics in healthy and
pathological conditions. In many cases, cardiac modelling
can be used to investigate phenomena such as drug effects
on the electromechanical response and arrhythmogenesis
(Henriquez & Papazoglou, 1996; Packer, 2004; Rodriguez
et al. 2005), which are difficult to study in vivo.

When the main goal of such modelling approaches
is their application in diagnostic or treatment planning
settings, it is essential to be able to personalize them with
patient-specific data, for instance, by data assimilation
techniques (Sermesant et al. 2006). This has been shown,
for instance, in the influence of a number of parameters
in the activation sequence of the paced heart, such
as the geometry of the heart (e.g. induced by specific
pathologies such as dilated cardiomyopathies or cardiac
hypertrophy) or specific assumptions in the Purkinje
System model (Vigmond et al. 2008a,b). Recently, these
effects have been investigated by analysing and comparing
the activation pattern in biventricularly paced hearts, both
in normal hearts and in hypertrophic and dilated hearts.
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The main conclusion of this work is that pathology-
induced anatomical distortions can provoke important
changes in the activation sequences and thus they need
to be accounted for when planning the positioning of
pacing leads (Fig. 12). Therefore, therapy optimization
requires the use of advanced image analysis and simulation
tools either on a per subject basis or, at least, performing
population studies in silico. Such studies can lead to the
identification of interventional guidelines or treatment
criteria that minimize the effect of subject-specific
variations, thus optimizing treatment outcome at a
population level.

Figure 11. Data fusion and stress estimation

A, Zinc Digitizer screenshot showing segmented contours from short-axis images. B, posterior view of the LV

(r.m.s. error = 0.3 mm) with fitted fibre vectors. Also shown are anterior (C) and posterior views (D) of the stress

distribution at each Gauss point of the predicted end-diastolic model.

Conclusions

The creation and application of statistical atlases is a
mature technology with some very promising results in
the cardiac domain. Cardiac atlases provide a consistent
framework for phenotyping disease in populations and
individuals by parameterizing morphodynamic features,
both in terms of average patterns and their population
variability. A number of methods exist for automated
atlas building and for their instantiation in multimodal
imaging. The trend is towards unified model-to-image
instantiation mechanisms that work across imaging
modalities while sharing a common shape model to
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act as a common co-ordinate system. Among the
applications of such models are a number of advanced
image analysis tasks, as well as their integration
into a computational physiology framework, yielding
biomechanical or electrophysiological information.

Future work will include further automation and
scalability of model-building procedures so that they
can be used in large-scale image databases of the
order of tens of thousands of images. Creation and
curation of large-scale annotated reference databases will
require emerging standards, such as FieldML (http://www.
physiome.org.nz/xml languages/fieldml). Incorporation
into the statistical framework of physical and physiological
constraints will facilitate or regularize subsequent
exploitation in simulation applications. Incorporation of
critical cardiac structures, such as the Purkinje system,
fibre orientation and the coronary artery tree, will facilitate
further biophysical modelling. Computational physiology
models provide an exciting avenue for the integration
and fusion of multimodal imaging and signals through
physics- and physiology-based domain knowledge, which
usually is preceded by more conventional image and

Figure 12. Activation of the hypertrophic and dilated models from a biventricular pacemaker with

simultaneous activation of the pacemaker leads

A and B correspond to the hypertrophic and C and D to the dilated model. The activations are displayed 40

(A and C) and 60 ms (B and D) after the CRT lead stimulus. Colours represent the transmembrane potential at

each point of the mesh. The inset for each panel depicts the progress of the Purkinje system activation at the same

time points. All the views are basal. Image courtesy of D. Romero and R. Sebastian, based on the CARP Software

Package (Vigmond et al. 2008).

signal registration steps to bring all this information
into a coherent spatio-temporal co-ordinate system. We
anticipate that an increased cross-fertilization between
the imaging, modelling and simulation communities, in
close dialogue with concrete diagnostic and interventional
problems, will lead to focused and translational use
of all these technologies and thus to a more effective
exploitation of the currently available clinical data. Finally,
the possibility of defining population subgroups, both in
the atlas building and in the statistical modelling stages,
may enable automatic identification of clusters of cardiac
morphological patterns (e.g. resulting from changes in
the topological structure of the parts) so that they can be
modelled with non-linear statistical methods.
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