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We present a survey of fractional di�erential equations and in particular of the computational cost for their numerical solutions
from the view of computer science. 
e computational complexities of time fractional, space fractional, and space-time fractional
equations are O(N2M), O(NM2), and O(NM(M + N)) compared with O(MN) for the classical partial di�erential equations with
�nite di�erence methods, where M, N are the number of space grid points and time steps. 
e potential solutions for this
challenge include, but are not limited to, parallel computing, memory access optimization (fractional precomputing operator),
shortmemory principle, fast Fourier transform (FFT) based solutions, alternating direction implicitmethod,multigridmethod, and
preconditioner technology.
e relationships of these solutions for both space fractional derivative and time fractional derivative are
discussed. 
e authors pointed out that the technologies of parallel computing should be regarded as a basic method to overcome
this challenge, and some attention should be paid to the fractional killer applications, high performance iteration methods, high
order schemes, and Monte Carlo methods. Since the computation of fractional equations with high dimension and variable order
is even heavier, the researchers from the area of mathematics and computer science have opportunity to invent cornerstones in the
area of fractional calculus.

1. Introduction


e idea of fractional is natural. If ��/�� and �2�/��2 exist,�1.5�/��1.5maybe exists too. Fractional equations can be used
to describe some physical phenomena more accurately than
the classical integer order di�erential equation [1]. Fractional
di�erential equations (FDEs) provide a powerful instrument
for the description of memory and hereditary properties of
di�erent substances. 
e fractional di�usion equations play
an important role in dynamical systems of semiconductor
research, hydrogeology, bioinformatics, �nance [2], and other
research areas [3–6]. Rajeev and Kushwaha [7] presented a
mathematical model describing the time fractional anoma-
lous di�usion process of a generalized Stefan problem which
is a limiting case of a shoreline problem. Space fractional
advection-di�usion equations arise when velocity variations
are heavy tailed and describe particle motion that account for

variation in the �ow �eld over the entire system [8]. FDEs
may be divided into two fundamental types: time fractional
di�erential equations and space fractional di�erential equa-
tions. For the fractional ordinary equations and fractional
order control systems are also studied [9, 10]. 
e stability of
fractional order control systems attracts many attentions [11,
12]. For example, Laguerre continued fraction expansion of
the Tustin fractional discrete-time operator was investigated
by Maione [13].

Some analytical methods were proposed for fractional
di�erential equation [14, 15]. Saha Ray [16] presented the
analytical solutions of the space fractional di�usion equa-
tions by two-step Adomian decomposition method. Momani
and Odibat [17] gave a comparison between the homotopy
perturbation method and the variational iteration method
for linear fractional partial di�erential equations. By using
initial conditions, the explicit solutions of the equations have
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been presented in the closed form and then their solutions
have been represented graphically. Becausemost of fractional
problems cannot be solved analytically,more andmoreworks
focus on their numerical solutions.
ere aremany numerical
solutions proposed for fractional equations [18], such as
�nite di�erence method (FDM) [18]. FDM is intuitive to
understand and easy to learn for inexperienced researcher
from the areas rather than mathematics. So this survey
focuses on FDM for fractional equations.

For the numerical solutions of di�erent di�erential equa-
tions, the area ofmathematics paysmuch attention to approx-
imating the equation more accurately and faster (accuracy
and speed). 
e area of computer science mainly focuses on
the runtime (speed) and code reuse (so�ware).
enumerical
methods (mathematic area) have eternal value and may
exist along with the existence of human culture [19–21]. 
e
implementations (computer area) are closer to the human
society and the real applications but vary quickly along
with the computer architecture [22–28]. 
e computational
cost of the numerical solutions for fractional equations is
much heavier than that for the traditional integer order
equations. In the near future, the fractional problems with
high dimension, long time iterations, and huge grid points
will need to be solved. 
ese problems are real challenge for
today’s computer technologies and algorithms.

2. Fractional Differential Equations

2.1. Origins. In 1695, L’Hopital wrote to Leibniz asking him
about a particular notation he had used in his publications for
the nth-derivative of the linear function �(�) = �, ���/���
[29, 30]. L’Hopital’s posed the question to Leibniz: whatwould
the result be if � = 1/2? Leibniz’s response was “An apparent
paradox, from which one day useful consequences will be
drawn.” In these words fractional calculus was born [31].
Later, Fourier, Euler, and Laplace dabbled with fractional
calculus [32].

2.2. A Short Summary of FDE. 
ere are mainly three kinds
of FDEs:

(1) time fractional [33, 34],

(2) space fractional [35],

(3) space-time fractional [36].

One of the main challenges in fractional di�erential equation
is the nonlocality of the fractional operator. In the case of a
time fractional derivative, one needs to store all the history,
whereas in the case of a space fractional derivative, one needs
to deal with almost-dense matrices.


e partial di�erential equations (PDEs) mainly have
three categories: parabolic, hyperbolic, and elliptic. 
ere are
corresponding FDEs to deal with the fractional conditions.

ere are various FDEs listed below:

(1) the parabolic, widely studied fractional di�usion
equation [37, 38],

(2) the hyperbolic Telegraph equation [39],

(3) the elliptic fractional Laplace equation [40],

(4) fractional Black-Scholes equation in computational
�nance [41],

(5) fractional wave equation for sound, light, and water
waves [42],

(6) fractional Fokker-Planck equations describing the
time evolution of the probability density function of
the velocity of a particle [43],

(7) fractional Euler equations and fractional Navier-
Stokes equations [44] for �uid dynamics [45],

(8) fractional kinetic equations for motion of objects
[46],

(9) the perfect, fractionalMaxwell’s equations for electro-
dynamics [47],

(10) fractional Boltzmann equations for particle transport
[48].

We can suppose that if there is a PDE, there will be
a FDE. 
e reason is that replacing the integer derivative
with fractional derivative and solving the FDE with di�erent
numerical methods is not a hard job.


e numerical schemes [49] for these FDEs are listed
below:

(1) �nite di�erence method (FDM) [18, 50, 51],

(2) �nite element method [52–54],

(3) �nite volume method [55–57],

(4) Adomian decomposition method [58],

(5) Fourier transform method [59],

(6) spectral method [60],

(7) meshless method [61–63],

(8) exponential di�erence method [64, 65],

(9) Monte Carlo method [66].


eMonte Carlo (MC)method, which uses repeated random
sampling to obtain numerical results, belongs to undeter-
mined computational methods.

2.3. AHot Topic in Recent Years. Machado et al. [29] collected
20 special issues on fractional calculus. In 2011 and 2012, there
are about 7 special issues on this topic.
ere are more special
issues in the nearby four years (2011–2014) than those of 1999
to 2010 [29]. And there are additional 20 special issues in
the years of 2013 and 2014. So the researches on fractional
calculus can be regarded as a collective revelry.

3. Computational Challenge

3.1. A Classical Partial Di	erential Equation (PDE)

3.1.1. Heat Equation/Di	usion Equation. 
e heat equation
is a parabolic PDE which describes the distribution of heat
(or variation in temperature) in a given region over time,
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shown in (1). 
is equation is also known as the di�usion
equation: �� (�, �)�� = 	 (�) �2� (�, �)��2 + � (�, �) ,� (�, 0) = 
 (�) , � ∈ [��, ��] ,� (��, �) = � (�) , � ∈ [0, �] ,� (��, �) = � (�) , � ∈ [0, �] ,

(1)

where the 	(�) is the di�usion constant.

3.1.2. Numerical Method. De�ne �� = ��, �� = �ℎ for 0 ≤ � ≤�, 0 ≤ � ≤ �, where� and � are positive integer and � =�/�, ℎ = (�� − ��)/� are time step size and space step size,
respectively. De�ne ��� ,��� ,	� as the numerical approximation
to �(��, ��), �(��, ��), and 	(��). Using a forward di�erence at
time �� and a second-order central di�erence for the space
derivative at position ��, we get the explicit �nite di�erence
approximation for the one-dimensional heat equation:��+1� − ���� = 	� ���+1 − 2��� + ���−1ℎ2 + ��� . (2)


e ��+1� can be obtained by this way:��+1� = �1���+1 + �2��� + �3���−1 + ���� , (3)

where �1 = �3 = −	��/ℎ2 and �2 = 1 − 2	��/ℎ2.
If we use the backward di�erence at time ��+1 and a

second-order central di�erence for the space derivative at
position �� we get the explicit �nite di�erence approximation
for (1): ��+1� − ���� = 	� ��+1�+1 − 2��+1� + ��+1�−1ℎ2 + ��+1� . (4)


e ��+1� can be obtained by this way:�1��+1�+1 + �2��+1� + �3��+1�−1 = ��� + ���� , (5)

where �1 = �3 = 	��/ℎ2 and �2 = 1 + 2	��/ℎ2.

e classical PDE is used to compare the fractional

equations. For convenience, there are several hypotheses for
this paper.

(1) We just focus on the explicit FDM of (3), because
these kinds of comparisons between fractional equa-
tions and classical equations are straightforward. 
e
comparison between implicit FDE of (5) and implicit
schemes of fractional equations ismore complex [67].

(2) 
e computational cost of di�usion coe�cient 	� and
source��� (or��+1� ) is ignored, because they only need
compute once. And they are di�erent with di�erent
equations and make the comparison complicated.

3.1.3. Computational Cost. Each grid point of time step ��+1
needs 4 multiplications and 3 additions.
ere are�−1 grid
points in each time step. So each time step needs 7(� − 1)
arithmetic logic operations. 
ere are about � time steps.
So the total computational cost is about 7�(� − 1). 
e
computational cost will vary linearly along the number of
time steps and grid points.

3.2. Time Fractional Di	usion Equation

3.2.1. Numerical Method. Liu et al. [63] developed an implicit
radial basis function (RBF) meshless approach for time
fractional di�usion equations and found that the presented
meshless formulation is very e�ective for modeling and
simulation of fractional di�erential equations. Murillo and
Yuste developed an explicit di�erence method for solving
fractional di�usion with Caputo form [68]:��� (�, �)��� = �2� (�, �)��2 (0 < � < 1) ,� (�, 0) = � (�) , � ∈ (0, ��) ,� (0, �) = � (��, �) = 0 (6)

on a �nite domain 0 < � < �� and 0 ≤ � ≤ �.

e explicit �nite di�erence approximation for (6) is

described as follows [69]:

�−��+1∑
�=0
�� (��+1−�� − �0�) = 1ℎ2 (���+1 − 2��� + ���−1) , (7)

where �� is the normalized Grünwald weight de�ned with�� = (−1)� (��) . (8)

De�ne " = ��/ℎ2, #� = ∑�−1�=0 ��, and %� = (��1 , ��2 , . . . ,���−1)	; we can get

%�+1 = #�+1%0 − �+1∑
�=1
��%�+1−� + "&%�, (9)

where matrix & is a tridiagonal matrix, de�ned by

&�−1×�−1 =(−2 11 −2 1∙ ∙∙ ∙ 11 −2). (10)

3.2.2. Computational Cost. In order to get %�+1, the right-
sided computation of (9) should be performed. 
ere are
mainly one tridiagonal matrix-vector multiplication, many
constant-vector multiplications, and many vector-vector
additions in the right-sided computation.

(1) 
e tridiagonal matrix-vector multiplication is &%�
and a new vector %�+1 = &%� is got.
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(2) 
e constant-vector multiplications are 3' = #�+1%0,3

 = "31, 3� = ��%�+1−�.
(3) 
e vector-vector additions are %�+1 = %�+1 + 3' +3

 − ∑�+1�=1 3�.

ere are about 5(� − 1) operations for tridiagonal

matrix-vector multiplication. For time step ��+1 needs (� +8)(� − 1) arithmetic logic operations with � = 1 → �. So
the total computational cost for (9) is about8� (� − 1) + (1 + 2 + ⋅ ⋅ ⋅ + � − 1) (� − 1)= 8� (� − 1) + � (� − 1) (� − 1)2= �(�2 + 7.5) (� − 1) . (11)


e computational cost varies linearly along the number
of grid points but squares with the number of time steps.

3.3. Space Fractional Di	usion Equation

3.3.1. Numerical Method. A classical numerical scheme for
the space fractional di�usion equation is the second-order
fractional Crank-Nicolson method proposed by Tadjeran et
al. [38, 70], where the Richardson extrapolation technique
is used to the �rst order shi� Grünwald formula for space
fractional derivative. Tadjeran et al. [70] presented a practical
numerical method in time and space to solve a class of initial-
boundary value with variable coe�cients on a �nite domain
for �� (�, �)�� = 	 (�) ��� (�, �)��� + ; (�, �) (12)

on a �nite domain �� < � < �� with 1 < � < 2 and 0 ≤ � ≤ �.

e case of 1 < � < 2models a super-di�usive �ow in which
a cloud of di�using particles spreads at a faster rate than the
classical di�usion model predictions [71, 72].


e explicit �nite di�erence approximation for (12) is��+1� − ���� = 	�ℎ� ( �+1∑�=0��,����−�+1) + ;�� , (13)

where ��� = �(��, ��), 	� = 	(��), and ;�� = ;(��, ��). 
e ��,� is
the normalized Grünwald weight [70, 73]:

��,� = Γ (A − �)Γ (−�) Γ (A + 1) . (14)


ese normalized weights only depend on the order � and
the index A. 
e resulting equation can be explicitly solved

for ��+1� to give

��+1� = ��� + 	��ℎ� ( �+1∑�=0��,����−�+1) + �;�� . (15)

3.3.2. Computational Cost. 
e �th grid point of time step ��+1
needs � + 6 multiplication, addition, and division. 
ere are�− 1 grid points in each time step. So each time step needs(� − 1)6 + (1 + 2 + ⋅ ⋅ ⋅ + � − 1) = (� − 1)((�/2) + 6)
arithmetic logic operations. 
ere are about� time steps. So
the total computational cost is about�(� − 1)((�/2) + 6).
3.4. Riesz Space Fractional Di	usion Equation

3.4.1. Numerical Method. Shen et al. [74] investigated the
Green function and a discrete random walk model for Riesz
fractional advection-dispersion equation on in�nite domain
with an initial condition and also presented implicit and
explicit �nite di�erences to this problem on a �nite domain.
Çelik andDuman [75] applied theCrank-Nicolsonmethod to
a fractional di�usion equation which has the Riesz fractional
derivative and obtained that the method is unconditionally
stable and convergent. 
e Riesz space fractional reaction-
di�usion equation [76, 77] is�� (�, �)�� = −� (�, �) +���0� (�, �) + ; (�, �) ,� (�, 0) = � (�) , � ∈ (��, ��) ,� (��, �) = � (��, �) = 0 (16)

with 1 < � ≤ 2 and 0 ≤ � ≤ �. Both �(�, �) and �(�) are real
valued and su�ciently well-behaved function. ���0�(�, �) is
the Riesz space fractional derivative.

With adopting an Euler approximation in time, the
explicit di�erence approximation can be got:��+1� − ���� = −��� − 1Cℎ�× [ �+1∑

�=0
�����+1−� + �−�+1∑

�=0
�����−1+�] + ��� , (17)

where �0 = 1, �� = (−1)�� (� − 1) ⋅ ⋅ ⋅ (� − A + 1) /A!, A = 1, 2,3, . . . is the normalized Grünwald weight, C = 1/2 cos(�H/2),
and ��� = ;(��, ��).

Equation (17) results in a linear system of equations%�+1 = &%� + I�, (18)

where %� = (��1 , ��2 , . . . , ���−1)	, I� = (���1 , ���2 , . . . , ����−1)	
with ;�� = ���� (1 ≤ � < � − 1), and & = (���)(�−1)×(�−1) is a
matrix of coe�cient. & is de�ned by

��,� =
{{{{{{{{{{{{{{{{{{{{{{{{{{{

− �Cℎ���+1−�, for 1 ≤ N < � − 1,− �Cℎ� (�0 + �2) , for N = � − 1,(1 − �) − 2 �Cℎ��1, for N = �,− �Cℎ� (�0 + �2) , for N = � + 1,− �Cℎ���−�+1, for � + 1 < N < � − 1.
(19)
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3.4.2. Computational Cost. From (18), the � − 1 results are
produced by &%� for each time step. 
e inner product of

vectors V1 and V2 with sizeO hasOmultiplications andO−1
additions. &%� for each time step needs (� − 1)(2� − 3)
operations. Assuming ���� is pre-performed, each time step
needs (�−1)(2�−2) arithmetic logic operations.
ere are
about � time steps. So the total computational cost is about�(�−1)(2�− 2). 
e computational cost will vary linearly
along the number of time steps but square with the number
of grid points. From analytical view, the computation of (18)
is about four times heavier than that of (15).

3.5. Space-Time Riesz-Caputo Fractional Convection-Di	usion
Equation. 
e fractional advection-di�usion (dispersion)
equation has been applied to many problems. Fractional
advection-dispersion equations are used in groundwater
hydrology to model the transport of passive tracers carried
out by �uid �ow in a porous medium [78]. Shen et al.
[79] presented an explicit di�erence approximation and
an implicit di�erence approximation for the space-time
Riesz-Caputo fractional advection-di�usion equation with
initial and boundary conditions in a �nite domain. 
ey
proved that the implicit di�erence approximation is uncon-
ditionally stable and convergent, but the explicit di�erence
approximation is conditionally stable and convergent. Liu
et al. [80] proposed an implicit di�erence method and an
explicit di�erence method to solve the space-time fractional
advection-di�usion equation and discussed the stability and
convergence of the method.

3.5.1. Numerical Method. We consider the following space-
time Riesz-Caputo fractional advection-di�usion equation
(STRCFADE) studied by Shen et al. [79]. 
is equation is
obtained by replacing the space-derivative in the advection-
di�usion equation with a generalized derivative of order P1,P2 with 0 < P1 < 1, 1 < P2 < 2 and time-derivative with a
generalized derivative of order �with 0 < � < 1. We consider

0��
 � (�, �) = Q1 ��1� (�, �)� |�|�1 + Q2 ��2� (�, �)� |�|�2 + � (�, �) ,� (�, 0) = 
 (�) , � ∈ [0, ��] ,� (0, �) = � (��, �) = 0, � ∈ [0, �] (20)

on a �nite domain 0 ≤ � ≤ �� and 0 ≤ � ≤ �. 
e coef-
�cients Q1 and Q2 are both positive constants and represent
the di�usion (dispersion) coe�cient and the average �uid

velocity. 
e ��1�(�, �)/�|�|�1 and ��2�(�, �)/�|�|�2 are Riesz
space fractional derivatives of order P1 and P2, respectively.

en we can get the explicit �nite di�erential approximation
for (20) [79]:

��+1� = �−1∑
�=0

(#� − #�+1) ��−�� + #��0� + Q1"1(�−�∑
�=−�

R�1� ���+�)
+ Q2"2(�−�∑

�=−�
R�2� ���+�) + "0��� , � = 1, . . . , � − 1,

��+10 = ��+1� = 0,�0� = 
�,
(21)

where "0 = ��Γ(2 − �), "1 = "0/ℎ�1 , and "2 = "0/ℎ�2 . More
information can be referred to in [79].

3.5.2. Computational Cost. From Section 3.4.2, we know

that the computational cost of Q1"1(∑�−��=−� R�1� ���+�) +Q2"2(∑�−��=−� R�2� ���+�) + "0��� of � time steps is about�(� − 1)(2� − 2) operations. From Section 3.2.2, we know

that the computational cost of ∑�−1�=0 (#� − #�+1)��−�� + #��0�
of � time steps with � ranging from 1 to � is about�(�/2)(� − 1). So the total computational cost is about�(� − 1)(2� − 2 + (�/2)). 
e computational cost varies
quadratically with the number of time steps or the number
of grid points.

For �xed � = 4097, the comparison between the com-
putational costs of the numerical solution among classical
PDE, time fractional, space fractional, Riesz space fractional,
and space-time Riesz-Caputo fractional equations is shown
in Figure 1. For �xed � = 2048, the computational cost is
shown in Figure 2.

3.6. More Challenges. 
ere are more computational chal-
lenges listed below:

(1) high dimensional problems [55, 81],

(2) implicit schemes [67, 82],

(3) high order schemes [33, 83],

(4) variable order problems [84],

(5) huge memory space requirement.


e high dimensional problems are more computation
expensive [55, 81, 85, 86]. For example, the two-dimensional
time fractional di�usion equation (2D-TFDE) [67, 87] is

0��
 � (�, U, �) = � (�, U, �) �2� (�, U, �)��2+ � (�, U, �) �2� (�, U, �)�U2 + � (�, U, �) ,� (�, U, 0) = 
 (�, U) , (�, U) ∈ Ω,� (�, U, �)WWWW�Ω = 0, � ∈ [0, �] ,
(22)

where Ω = {(�, U) | 0 ≤ � ≤ X1, 0 ≤ U ≤ X2, �(�, U, �) > 0,
and #(�, U, �) > 0}.
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Figure 1: Comparison of the computational cost with di�erent grid
points for �xed � = 4097 among classical, time fractional, space
fractional, Riesz space fractional, and space-time Riesz-Caputo
fractional equations.
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Figure 2: Comparison of the computational cost with di�erent time
step for �xed � = 2048 among classical, time fractional, space
fractional, Riesz space fractional, and space-time Riesz-Caputo
fractional equations.


e approximating scheme is [87]

��+1�,� − ���,� + �∑
�=1
(#�) (��+1−��,� − ��−��,� )= "1Γ (2 − �) ���,� (���+1,� − 2���,� + ���−1,�)+ "2Γ (2 − �) #��,� (���,�+1 − 2���,� + ���,�−1)+ ��Γ (2 − �) ���,�,

(23)

where "1 = ��/ℎ2� and "2 = ��/ℎ2�. 
e ℎ� and ℎ� are
the step size along Z and \ directions. 
e computational

complexity is about ^(�2�2), which is much bigger than

the computational complexity of one-dimensional problems
when the number of grid points is bigger enough.


e direct Gauss elimination for implicit scheme of
FDE is not convenient. Solving unsteady FDE with implicit
schemes relies on the iteration method at each time step. 
e
variable order problems [84, 88] have complex coe�cients,
which need more arithmetic logic operations.
e high order
schemes [33, 38, 70] need more arithmetic logic operations
too.


e memory usage belongs to the computing resources.
So the hugememory requirement of FDE is a kind of compu-
tational challenge in the broader sense. 
is is especially true
for time fractional problems. Ignoring the memory usage of
the coe�cients and source terms, the one-dimensional equa-
tion (9) needs 8(�−1)� bytes ofmemory space and the two-

dimensional equation (23) needs 8�2� bytes of memory
space. For three-dimensional problems, the memory usage is8�3� at least. It needs 15.625 PB (1 PB = 10245 bytes) mem-
ory space with� = 10240,� = 2048 for three-dimensional
problems.Maybe only themost powerful supercomputer [89]
can satisfy the huge memory requirement.

4. Potential Solutions


ere are several ways which can be used to overcome the
computational challenge of FDEs.

4.1. Parallel Computing. Large scale applications and algo-
rithms in science and engineering such as neutron transport
[90–92], light transport [93], computational �uid dynamics
[94, 95],molecular dynamics [96], and computational �nance
and di�erent numerical methods [97] rely on parallel com-
puting [98, 99].

Gong et al. [77] present a parallel algorithm for Riesz
space fractional di�usion equation based on MPI parallel
programming model at the �rst time. 
e parallel algo-
rithm is as accurate as the serial algorithm and achieves
79.39% parallel e�ciency compared with 8 processes on
a distributed memory cluster system. 
e parallel implicit
iterative algorithm was studied for two-dimensional time
fractional problem and a task distribution model is shown
in Figure 3 [67]. ��, ��, _�, _� stand for the discrete grid
points, parallel processes alongZ, \ directions.

Domain decomposition method is regarded as the basic
mathematical background for many parallel applications
[100–102]. A domain decomposition algorithm for time frac-
tional reaction-di�usion equation with implicit �nite di�er-
encemethodwas proposed [103].
e domain decomposition
algorithm keeps the same parallelism as Jacobi iteration but
needs much fewer iterations.

Diethelm [104] implemented the fractional version of
the second-order Adams-Bashforth-Moulton method on a
parallel computer and discussed the precise nature of the par-
allelization concept. Parallel computing has already appeared
in some studies on FDEs, but until today their power for
approximating fractional derivatives and solving FDEs has
not been fully recognized.
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Figure 3: 
e two-dimensional task distribution model for 2D-
TFDE.

4.2. Memory Access Optimization (Fractional Precomput-
ing Operator). Memory access optimization is generally
regarded as a technology of computer architecture. It is
also useful from the view of applications. One feature of
the modern computer architecture is multilayer memory.
For example, the traditional CPU has fast cache and slow
main memory. 
e new graphics processing unit (GPU) has
fast shared memory and slow memory. Reusing the data in
shared memory is a key point to improve the performance
of GPU applications [105–109]. A very useful optimization is
presented for fractional derivative [69, 110].We can name this
fractional precomputing operator, which will be a very basic
and useful optimizing technology for the implementation
of fractional algorithms and applications. 
e example of
fractional precomputing operator can refer to Algorithms 4
and 5 in reference [69].

OnCPUplatform, an optimization of the sum of constant
vector multiplication is presented and 2-time speedup can be
got for both serial and parallel algorithm for the time frac-
tional equation [69]. 
e key technology is reusing the data
in cache through loop unrolling. Zhang et al. [110] presented
code optimization for fractional Adams-Bashforth-Moulton
method by loop fusion and loop unrolling.

On GPU platform, Liu et al. [111] presented an optimized
CUDA kernel for the numerical solution of time frac-
tional equation and 1.2–2.7-time performance improvement
is achieved.

4.3. Short Memory Principle. 
e short memory principle
[3] means the unknown grid points only rely on the recent
past (in time) or near neighbors (in space). 
is principle
has been proved to be an easy and powerful way for
various kinds of fractional di�erential equations [112, 113].

e short memory principle is also called �xed memory
principle or logarithmic memory principle. 
e idea of short
memory principle is simple. Taking time fractional equation
as an example in Section 3.2.1, the value of �� becomes
smaller while � is increasing. In (9), the accumulation of

∑�+1�=1 ��%�+1−� is replaced with∑�+1�=min{1,�+1−�} ��%�+1−�.` is a
positive integer, whichmeans if � is very big, the computation
of the accumulation is �xed.

Based on short memory principle, some principles with
better balance of computation speed and computation accu-
racy are presented. 
e logarithmic memory principle is
developed with a good approximation to the true solution
at reasonable computational cost [114]. Another principle is
equal-weight memory principle, in which an equal-weight is
applied to all past data in history, and the result is reserved
instead of being discarded [115]. 
e equal-weight memory
principle is an interesting and useful approximation method
to fractional derivative.

4.4. FFT Based Solution. Because of the nonlocal property
of fractional di�erential operators, the numerical methods
have full coe�cient matrices which require computational
cost of ^(�3) for implicit scheme per time step, where� is the number of grid points. Ford and Simpson [114]
developed a faster scheme for the calculation of fractional
integrals. A reduction in the amount of computational work
can be achieved by using a graded mesh, thereby making

the ^(�2)method to a ^(� log�)method. 
e underlying
idea is based on the fact that the fractional integral possesses
a fundamental scaling property that can be exploited in a
natural way [114].

Wang et al. [116, 117] developed a fast �nite di�er-
ence method for fractional di�usion equations, which only
requires computational cost of ^(�log2�) while retaining
the same accuracy and approximation property as the regular
�nite di�erence method. Numerical experiments show that
the fast method has a signi�cant reduction of CPU time [86].

e fast method should have a banded coe�cient matrix
instead of the full matrix. 
e properties of Toeplitz and
circulant matrices, fast Fourier transform (FFT), and inverse
FFT are used to reduce the computational cost. 
e method
is also called superfast-preconditioned iterative method for
steady-state space fractional di�usion equations [118].

An e�cient iteration method for Toeplitz-plus-band tri-
angular systems, which may produced by fractional ordi-
nary di�erential equations, was developed. Some methods
such as matrix splitting, FFT, compress memory storage,
and adjustable matrix bandwidth are used in the presented
solution. 
e interesting technologies are the adjustable
matrix bandwidth and solving fractional ordinary di�erential
equations with iteration method. 
e experimental results
show that the presented e�cient iteration method is 4.25
times faster than the regular solution [10].

4.5. Alternating Direction Implicit Method. 
e alternating
direction implicit (ADI) method is a �nite di�erence method
for solving traditional PDEs. 
e approximation methods
for fractional equations result in a very complicated set of
equations inmultiple dimensions, which are hard to solve [67,
81, 85]. So the ADImethod is developed for high dimensional
problems [33, 117]. 
e advantage of the fractional ADI
method is that the equations that have to be solved in each
step have a simpler structure. 
e time fractional problems
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can be solved e�cientlywith the tridiagonalmatrix algorithm
[33]. 
e space fractional problems can use the FFT to
accelerate the computation [117].

4.6. Multigrid Method. 
e multigrid method is usually
exploited for solving ill-conditioned systems. 
e main idea
of multigrid is to accelerate the convergence of a basic
iterative method by global correction form, accomplished
by solving a coarse problem. Pang and Sun [119] proposed
a multigrid method to solve the initial-boundary value
problem of a fractional di�usion equation. 
e experimental
results show that the multigrid + FFT method runs hundred
times faster than Gaussian elimination method and the
conjugate gradient normal residual (CGNR) method. A full
V-cycle multigrid method is proposed for the stationary
fractional advection dispersion equation [120] and ten-time
performance improvement is achieved.

4.7. Preconditioning Technology. Preconditioning is typically
related to reducing a condition number of the problem with
iterative methods. It shows that both the average number of
iterations and the CPU time by the PCGNR (preconditioner
CGNR) method with circulant preconditioners are much
less than those by the CGNR method and less than that
by the multigrid method [121]. 
e circulant preconditioner
[121], banded preconditioner [122], fast Poisson precondi-
tioners [123], and preconditioned conjugate gradient squared
method plus FFT [118] are developed for di�erent FDEs.

4.8. Relationships among �ese Potential Solutions. 
e
potential solutions for the computational challenge of FDE
are investigated above. Many people will be curious about
these relationships: canwe combine thesemethods to develop
a fastest solution for FDEs? 
e answer is still unknown.

e performance of these solutions varies from di�erent
FDE applications. 
eir relationships are shown in Table 1.

e PC, MAO, SMP, FFT, ADI, MGM, and PT stand
for parallel computing, memory access optimization, short
memory principle, FFT based solution, alternating direction
implicit method, multigrid method, and preconditioning
technology.
e score means the degrees of the two solutions
are harmonious. Higher score means using two solutions can
achieve better performance.

For time fractional derivative [124], only memory access
optimization [69, 111] and short memory principle [3] are
useful. Here, the time fractional derivative is di�erent from
time fractional problems. For example, the one- and two-
dimensional FDEs are parallelized by Gong et al. [67, 69].

ese parallel algorithms are based on the partition of space
not time.

5. Future Directions

5.1. Fractional Killer Applications. Killer application is a kind
of application that is so necessary or desirable that it proves
the core value of some larger technology. A killer application
is something like Project Apollo in space technology, the
IBM 360 in personal computer industry, and the IPhone in

Table 1: Relationships among the potential solutions for space
fractional derivative.

PC MAO SMP FFT ADI MGM FT

PC — 3 3 2a 3 2a 2a

MAO — 3 1b 3 3 3

SMP — 1c 3 3 3

FFT — 3 3 3

ADI — 3 3

MGM — 2d

PT —
a
e parallel e�ciency of FFT, multigrid, preconditioner is limiting.
bIt is hard to use MAO within FFT.
cBecause of the Toeplitz structure, FFT cannot use short memory principle.
d
e philosophy of multigrid and preconditioning technology are di�erent.
But there are some multigrid preconditioners.

the smart phone industry. 
e fractional research still lacks
these kinds of killer applications. It needs fractional applica-
tions to solve scienti�c or engineering problems in physical
world, such as the fractional �ow/control of hypersonic
vehicle, not only the academical problems. 
e fractional
killer application should be proved that it is more useful than
the traditional classical application. Solving real problems
in physical world will build an economic foundation for
fractional researches.

5.2. Parallel Computing. 
e technologies of parallel comput-
ing should be regarded as a basic method to overcome the
computational challenge for FDEs. 
ere are three potential
solutions for the computational challenge of FDEs. 
e short
memory principle is an experimentalmethod, which is useful
in real fractional applications.
e^(� log�)methods [117]
used the property of Toeplitz matrices and FFT technology.
Parallel computing is a foundational technology for scienti�c
and engineering computation. Fortunately, the shortmemory
principle and^(� log�)methods are compatiblewith paral-
lel computing. So it is interesting to develop algorithmswhich
is faster than^(� log�)methods.
enumericalmethods of
space fractional equations with global dependence are much
harder to be parallelized than that of the time fractional
equations. So the task distribution model, load balance of the
parallel algorithm for space fractional equations should be
paid attention to.

5.3. High Performance Iteration Methods. Di�erent kind of
numerical methods is very easily found for FDEs. 
e direct
methods such as Gauss elimination are not suitable for large
scale fractional applications. 
e iterative methods for these
numerical methods are not fully studied and very few works
can be found [118, 125]. We think that di�erent iterative
methods, such as Jacobimethod andGauss-Seidel andKrylov
subspace method, are e�ective for fractional linear systems
which are produced from FDEs. Does the coe�cient matrix
of FDEs have some other special properties or not? 
e
answer is still unknown. 
e convergence and stability of
these iterative methods should be proved as well.
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5.4. High Order Schemes for Fractional Derivatives. 
e
traditional partial derivatives have many high order schemes.
For time fractional equation, the high order schemes for
traditional integer derivative are not hard to build. But for
fractional derivatives, the high order schemes are under
developing [70, 126–128]. High order schemes will be used
in the numerical solutions of FDEs where high accuracy is
required in the presence of shocks or discontinuities.

5.5. Monte Carlo Method. 
e Monte Carlo method has
advantage in solving nonlinear, high dimensional, complex
geometry problems. In order to get the approximation of a
small domain, the determined methods, such as FDM, must
resolve the total de�nition domainwith boundary conditions.

e Monte Carlo method only focuses on the small domain.

is property is very useful if we are only interested in
this small domain. 
e Monte Carlo method is easy to
be parallelized and needs much less memory space than
determined methods. 
e fractional equations are a kind
of nonlinear problem and their high dimensional problems
are very computation intensive. So Monte Carlo method for
FDEs needs to be studied in the future. Because of the high
nonlinear and nonlocal property of FDEs, the sampling e�-
ciency will be the key point ofMonte Carlomethod for FDEs.

6. Conclusions

In this paper, we give a comprehensive review of FDEs and its
computational challenge. 
is kind of challenge will become
an incoming problem for the computer industry if the real
fractional problems need to be approximated. We reviewed
a wide range of computational costs that come from di�erent
kinds of fractional equations.While we have collected several
potential solutions on this challenge, we believe that the long-
term legacy of solutionswill allow the real world scienti�c and
engineering applications come true.

Conflict of Interests


e authors declare that there is no con�ict of interests
regarding the publication of this paper.

Acknowledgments


is research work is supported in part by the National
Natural Science Foundation of China under Grants no.
61402039, no. 61303265, and no. 60970033, in part by Spe-
cialized Research Fund for the Doctoral Program of Higher
Education underGrant no. 20114307110001, and in part by 973
Program of China under Grants no. 2014CB430205 and no.
61312701001. 
e authors would like to thank the anonymous
reviewers for their helpful comments as well.

References

[1] R. Klages, G. Radons, and I. Sokolov, Anomalous Transport:
Foundations and Applications, Wiley-VCH, Weinheim, Ger-
many, 2008.

[2] R. R. Nigmatullin, T. Omay, and D. Baleanu, “On fractional
�ltering versus conventional �ltering in economics,” Communi-
cations in Nonlinear Science and Numerical Simulation, vol. 15,
no. 4, pp. 979–986, 2010.

[3] I. Podlubny, Fractional Di	erential Equations, Academic Press,
San Diego, Calif, USA, 1999.

[4] G. Maione and A. Punzi, “Combining di�erential evolution
and particle swarm optimization to tune and realize fractional-
order controllers,” Mathematical and Computer Modelling of
Dynamical Systems, vol. 19, no. 3, pp. 277–299, 2013.

[5] D. Baleanu, A. K. Golmankhaneh, R. Nigmatullin, and A.
K. Golmankhaneh, “Fractional Newtonian mechanics,” Central
European Journal of Physics, vol. 8, no. 1, pp. 120–125, 2010.

[6] C. Farges, M. Moze, and J. Sabatier, “Pseudo-state feedback
stabilization of commensurate fractional order systems,” Auto-
matica, vol. 46, no. 10, pp. 1730–1734, 2010.

[7] Rajeev andM. Kushwaha, “Homotopy perturbationmethod for
a limit case Stefan problem governed by fractional di�usion
equation,” Applied Mathematical Modelling, vol. 37, no. 5, pp.
3589–3599, 2013.

[8] R. Schumer, M. M. Meerschaert, and B. Baeumer, “Fractional
advectiondispersion equations for modeling transport at the
Earth surface,” Journal of Geophysical Research: Earth Surface,
vol. 114, no. 4, Article ID F00A07, 2009.

[9] G. Maione, “High-speed digital realizations of fractional oper-
ators in the delta domain,” IEEE Transactions on Automatic
Control, vol. 56, no. 3, pp. 697–702, 2011.

[10] C. Gong, W. Bao, G. Tang, C. Min, and J. Liu, “An e�cient
iteration method for toeplitz -plus-band triangular systems
generated from fractional ordinary di�erential equation,”Math-
ematical Problems in Engineering, vol. 2014, Article ID 194249, 5
pages, 2014.

[11] J. C. Trigeassou, N. Maamri, J. Sabatier, and A. Oustaloup,
“A Lyapunov approach to the stability of fractional di�erential
equations,” Signal Processing, vol. 91, no. 3, pp. 437–445, 2011.

[12] J. Sabatier, M. Moze, and C. Farges, “LMI stability conditions
for fractional order systems,” Computers and Mathematics with
Applications, vol. 59, no. 5, pp. 1594–1609, 2010.

[13] G. Maione, “On the Laguerre rational approximation to frac-
tional discrete derivative and integral operators,” IEEE Transac-
tions on Automatic Control, vol. 58, no. 6, pp. 1579–1585, 2013.

[14] H. Jiang, F. Liu, I. Turner, and K. Burrage, “Analytical solutions
for the multi-term time-fractional di�usion-wave/di�usion
equations in a �nite domain,” Computers and Mathematics with
Applications, vol. 64, no. 10, pp. 3377–3388, 2012.

[15] M. Alipour and D. Baleanu, “Approximate analytical solution
for nonlinear system of fractional di�erential equations by BPs
operational matrices,” Advances in Mathematical Physics, vol.
2013, Article ID 954015, 9 pages, 2013.

[16] S. Saha Ray, “Analytical solution for the space fractional dif-
fusion equation by two-step adomian decomposition method,”
Communications in Nonlinear Science and Numerical Simula-
tion, vol. 14, no. 4, pp. 1295–1306, 2009.

[17] S. Momani and Z. Odibat, “Comparison between the homotopy
perturbation method and the variational iteration method for
linear fractional partial di�erential equations,” Computers and
Mathematics with Applications, vol. 54, no. 7-8, pp. 910–919,
2007.

[18] S. Chen, F. Liu, and V. Anh, “A novel implicit �nite di�erence
method for the one-dimensional fractional percolation equa-
tion,” Numerical Algorithms, vol. 56, no. 4, pp. 517–535, 2011.



10 Mathematical Problems in Engineering

[19] J. Yan, G.-M. Tan, and N.-H. Sun, “Optimizing parallel Sn
sweeps on unstructured grids for multi-core clusters,” Journal
of Computer Science and Technology, vol. 28, no. 4, pp. 657–670,
2013.

[20] H. Yang and X.-C. Cai, “Parallel fully implicit two-gridmethods
for distributed control of unsteady incompressible �ows,” Inter-
national Journal for Numerical Methods in Fluids, vol. 72, no. 1,
pp. 1–21, 2013.

[21] X. Liu, T. Gu, X. Hang, and Z. Sheng, “A parallel version of
QMRCGSTAB method for large linear systems in distributed
parallel environments,” Applied Mathematics and Computation,
vol. 172, no. 2, pp. 744–752, 2006.

[22] D. Ming, “A parallel Attainable Region construction method
suitable for implementation on a graphics processing unit
(GPU),” Computers and Chemical Engineering, vol. 67, pp. 103–
120, 2014.

[23] X. Liao, L. Xiao, C. Yang, and Y. Lu, “Milkyway-2 supercom-
puter: system and application,” Frontiers of Computer Science,
vol. 8, no. 3, pp. 345–356, 2014.

[24] W. Xu, Y. Lu, Q. Li et al., “Hybrid hierarchy storage system in
MilkyWay-2 supercomputer,” Frontiers of Computer Science, vol.
8, no. 3, pp. 367–377, 2014.

[25] F. Aquotte and A. F. da Silva, “PSIM: a modular particle system
on graphics processing unit,” IEEE Latin America Transactions,
vol. 12, no. 2, pp. 321–329, 2014.

[26] S. J. Pennycook, S. D. Hammond, S. A. Jarvis, and G. R.
Mudalige, “Performance analysis of a hybrid MPI/CUDA
implementation of the NASLU benchmark,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 38, no. 4, pp. 23–29,
2011.

[27] D. Mu, P. Chen, and L. Wang, “Accelerating the discontinuous
Galerkin method for seismic wave propagation simulations
using the graphic processing unit (GPU)-single-GPU imple-
mentation,” Computers and Geosciences, vol. 51, pp. 282–292,
2013.

[28] S. Mauger, G. C. de Verdière, L. Bergé, and S. Skupin, “GPU
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