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The establishment of quantitative relationships between numerous molecular properties and chem-
ical structures is now of great importance to society in understanding and improving environmental,
medicinal and technological aspects of life. Quantitative structure-activity (property) relationships
(QSA(P)R) relate physical, chemical, physico-chemical, technological and biological properties of
compounds to their structure. A major factor driving the widespread use of QSP(A)R models is the
rational estimation of properties of new compounds, without first synthesizing and testing them. Some
of our recent findings in the field are briefly discussed below.
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Overview

All properties of a compound — physical, chemi-
cal, biological, and technological — depend on the way
its atoms, (the “building blocks”), are connected to
form the individual molecule. Theory provides insight
on how the molecular structure (composition) deter-
mines the behavior of substances: e. g. hydrocarbon
molecules containing from one to four carbon atoms
are gases at r.t., but as more carbons are added, they
exist as liquids (starting at CgH4) and finally as solids
(starting at CigHsg). With the advance of computa-
tional techniques, it is now possible to calculate a
wide range of physicochemical characteristics: ioniza-
tion energies, polarizabilities, heats of formation, efc.
However, it should be noted that in most cases such cal-
culations relate to isolated individual molecules rather
than to bulk matter, which corresponds to real experi-
mental situations.

The vastly increased computational power of mod-
ern computers has enabled the application of new
powerful alternative methods to model and under-

* Based on a lecture to be presented by A. R. Katritzky at the
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stand more complex physicochemical, chemical, tech-
nological, and biochemical properties. In particular,
this applies to the quantitative structure-activity (prop-
erty) relationship approach, abbreviated QSA(P)R.
The methodology used to generate QSPR for predict-
ing a physical property (such as solubility in water) or
QSAR for biochemical property (such as insect repel-
lency) is similar.

Progress in QSA(P)R methodology has led to the
development of various software products aimed at
the automation of the modeling procedures. Among
the packages currently available are: SYBYL [1],
CODESSA (later CODESSA PRO [2]), DRAGON [3],
AuUuTODOCK [4], OPENEYE [5], TSAR [6], and others.
For more than 15 years now, our group has actively
contributed to this field by developing, supporting and
applying the methodology encoded in CODESSA and
CODESSA PRO software. Some recent successful ap-
plications are discussed below.

Validation of QSA(P)R Methodology

A recent criticism [7] stating that a “chance” cor-
relation was involved in our earlier work was rebut-
ted [8]. Using sets of “natural” and generated “ran-
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dom” descriptor values, applying comprehensive sta-
tistical and comparative techniques, we demonstrated
that large descriptor pools could be used legitimately
and advantageously for QSPR/QSAR modeling. The
ability of our Best Multi-Linear Regression algorithm
to produce robust correlations was discussed in detail.

Physical and Physico-chemical Properties

UV spectral absorbance

High performance liquid chromatography (HPLC)
combined with ultraviolet (UV) spectrophotometric
detection is the method most applied in organic chem-
istry for analyzing reaction products. UV is also
considered a nearly universal detector for drug-like
molecules: 85 % of the structures in the MDDR (a
database of drugs and candidate drugs [9]) contain an
aromatic group and most of the remaining 15 % con-
tain an alternative chromophore. The NIST Chemistry
WebBook database was used to extract the UV absorp-
tion intensities for a diverse set of 805 organic com-
pounds at 260 nm and 25 °C in water. CODESSA PRO
descriptors were utilized to generate a five-parameter
multilinear model with R% = 0.692 [10]. Concurrently,
a neural networks approach was used to develop a cor-
responding nonlinear model. The UV absorption in-
tensity is mostly determined by the overlap of the ex-
cited and ground state wavefunctions of the molecule.
Most of the descriptors were related to the symmetry
of the molecule, the degree of unsaturation and the
HOMO-LUMO energy gap. Since mixtures of com-
pounds identified by HPLC UV method usually have
Ag values bigger than 1-2 log units, we believe that
even this imperfect correlation (R% = 0.692) could be
useful for identification purposes.

Critical micelle concentrations

Surfactants are amphiphilic molecules that contain a
nonpolar segment, named “tail”, and a polar segment,
called “head”. When the surfactant concentration is
low, the molecules exist as individual entities, but when
the concentration increases the presence of two very
different substructural features (tail and head) causes
aggregation. The simplest of such aggregates, having
approximately spherical shape, are called micelles.

The transition from premicellar to micellar solu-
tions occurs at a concentration called the “critical mi-
celle concentration” (CMC). Many important proper-
ties of a surfactant solution undergo sharp change at

the CMC including surface tension, interfacial tension,
conductivity, osmotic pressure, detergency, emulsifica-
tion, and foaming. The CMC is therefore a very useful
parameter for characterization of surfactants and can
be correlated with many industrially important proper-
ties.

Non-ionic surfactants

Employing the general QSPR approach encoded in
CODESSA, our group [11] proposed a three-parameter
logCMC model for a set of 77 non-ionic surfactants
(R? = 0.983, F = 1433, s? = 0.0313) using topological
descriptors calculated for the hydrophobic “tail” and
constitutional descriptors for the hydrophilic “head”.
Two of the three descriptors represent contributions
from the size and structural complexity of the hy-
drophobic group; the third is related to the size of the
hydrophilic group.

Later [12] we updated and extended this model by
applying linear and nonlinear modeling techniques to a
larger dataset of 162 nonionic surfactants. The descrip-
tors in the derived models were again related to the
molecular shape and size and to the presence of het-
eroatoms participating in donor-acceptor and dipole-
dipole interactions. The steric hindrance in the hy-
drophobic domain was also identified as important for
the micellization phenomena.

Anionic surfactants

In our early studies we reported a three-parameter
QSPR correlation (R? = 0.940, F = 597, s> = 0.0472)
for the logCMC values of 119 anionic surfactants (sul-
fates and sulfonates) [13]. The Kier and Hall index
(0™ order) calculated for the hydrophobic tails, the rel-
ative number of the carbon atoms in the head, and
the total dipole of the molecule were found to control
the CMC.

We again updated and extended this work in a re-
cently conducted research [14]. A larger and more di-
verse dataset of 181 diverse anionic surfactants was
used to relate the logarithm of CMC to the molecu-
lar structure using CODESSA PRO software. A frag-
ment approach produced a five-parameter linear QSPR
model of superior statistical characteristics and pre-
dictive ability (R*> = 0.897). The regression equation
allowed insight into the structural features that influ-
ence the CMC of surfactants. The contributions from
the hydrophobic fragments were expressed by topolog-
ical and geometrical descriptors, while the hydrophilic
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fragment was represented by constitutional, geometri-
cal, and charge-related descriptors. Topological, solva-
tional, and charge-related descriptors were significant
in the preferred QSPR models representing the driv-
ing force of the intermolecular interactions between
anionic surfactants and water.

Cationic surfactants

We also examined cationic surfactants, utilizing a
dataset of 50 ammonium and quaternary pyridinium
derivatives [15]. Multilinear models were developed
for both the first CMC at which spherical micelles
(R? =0.977) were formed and the second (R? = 0.965)
CMC formation of larger aggregates. A general ANN
model for the first CMC with R? = 0.974 was also pro-
posed. Most of the descriptors in these models were
related to the size and charge distribution of the hy-
drophobic tail and to the size of the head. The multi-
linear model for the second CMC was more closely re-
lated to the hydrophobic domain of the surfactant than
that of the first CMC.

Flash points

Recent work by our group [16] reported MLR and
ANN QSPR models for the flash points of a data set
of 758 diverse organics. The best four-descriptor linear
model was characterized by R? = 0.849 and an average
error of 13.9 K. Descriptors appearing in the model
mostly reflect the electrostatic and hydrogen bonding
interactions in the bulk compound as well as the elab-
orate molecular shape. The ANN modelling produced
slightly better statistical parameters: R? = 0.878 and
an average error of 12.6 K. This work extended studies
previously conducted by Zefirov and coworkers [17].

Universal solvation equation

Understanding factors determining solubility in wa-
ter is important both for its own sake, and because
solvation interactions play a crucial role in the ratio-
nal modeling of various physicochemical processes.
The construction of reliable theoretical models for
the quantitative estimation of partition processes has
been of particular interest. We participated with the
groups of Oliferenko and Zefirov in the development
[18] of a Universal Solvation Equation (USE) us-
ing a dataset consisting of 525 diverse small organic
molecules including mono-, di-, and polyfunctional
aliphatic and aromatic species, heterocycles, amino

acids, nucleotides, and pharmaceuticals. This incor-
porates descriptors which were fashioned to repre-
sent (i) the hydrogen bond acidity A, (ii) the effective
atomic basicity B, (iii) the total molecular polarizabil-
ity «, (iv) the polarity P, (v) the hydrophobicity H,
(vi) the steric correction S, and (vii) the total energy of
the w-system Ep:

LogSP = Const+ 1A + BB+ B30 + B4 P W
+ BsH + P6S + BrEx

Coefficients 8, of Eq. 1 are found by the method
of multiple linear regression, and SP means some
solvation-related property. Applications of USE were
demonstrated to estimate diverse properties, includ-
ing gas/water and octanol/water partition coefficients,
aqueous solubilities, and solvation of ionic species.

The reliability of USE was proven by Oliferenko
who applied it to the “challenge” [19] posed by the
Journal of Chemical Information and Modeling (Issue
48 of 2008) to the modeling community. Among 99
models entered for this competition to predict the aque-
ous solubilities of 32 drugs, based on a training set of
100 drug and drug-like molecules, USE was ranked as
second best in terms of predictive power. The average
prediction of S from the 99 attempts was R? = 0.158
(standard deviation 0.184). The best prediction for §
(mg/mL) had R? = 0.642 while USE predicted R? =
0.631.

Biological Properties

Attractants and repellents

The quest to make humans less attractive to
mosquitoes has fueled decades of scientific research
on mosquito behavior and control. In the United States,
most mosquito bites are merely a nuisance. Worldwide,
however, mosquitoes transmit disease to more than 700
million people annually, and statistics suggest that they
will be responsible for 6 % of the deaths of the current
world population.

The factors involved in attracting mosquitoes to
the host are complex and not yet fully understood.
Mosquitoes use visual, thermal, and olfactory stimuli
to locate the host. Of these, olfactory cues are proba-
bly most important. It was found that lactic acid — one
of the natural odorants produced by the human body —
attracts mosquitoes by activating the chemoreceptors
on their antennae. These same receptors may be inhib-
ited by synthetic (DEET) or plant derived (Citronella)
chemicals called repellents.
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The repellents currently in use may cause skin irri-
tation and stinging sensation when in contact with eye-
lids or lips. Thus, there is a long standing interest in the
design of chemicals that would be effective repellents
against a wide range of insects, with as few as possible
adverse effects.

Our continuing interest to develop more efficient
mosquito repellents in a long-term collaboration with
the USDA (US Department of Agriculture) led to the
development of several QSAR models describing re-
pellency in terms of molecular descriptors.

A successful QSAR model for a dataset of 31
amides with R% = 0.80, F = 26, and s = 0.47 was re-
ported [20]. The descriptors involved were related to
the duration of repellent action, the geometrical com-
plimentarity of the molecule to the binding site and to
the formation of hydrogen bonds between the receptor
(possibly AgOr7) and the ligand.

Further studies on a dataset of 200 N-acylpiperid-
ines resulted in the development of a predictive ANN
model [21], which was able to estimate the efficiency
of the most active 55 repellents in the dataset with
an accuracy exceeding 70 %. The input neurons re-
flected the geometrical and topological features of the
N-acylpiperidines, and the distribution of charge in
these molecules which is mainly related to the ability
of non-covalent bond (e. g. hydrogen bonding) forma-
tion important in ligand-receptor interactions. Using
the above model we proposed a set of 34 acylpiperid-
ine derivatives, which were synthesized and provided
for testing at the USDA facilities. At the lower concen-
tration screened (2.5 pmol/cm?) all but 3 compounds
were found to be more active than DEET, with some
having even five times higher activity.

Antifungal activity

Since the 1980s, complications from fungal infec-
tions have been recognized as a major cause of mor-
bidity and mortality in immunocompromized patients.
Thus, the development of new and effective antifun-
gal agents is highly sought. Our team investigated
[22] antifungal activity against the dimorphic fungus
Candida albicans of a series of 83 cyanoboranes, flu-
conazoles, carbonylaminobenzoxazoles and imidazol-
ylmethylindoles, obtaining a multilinear QSAR model
with R? = 0.788, F = 47.144, s> = 0.130, R?, = 0.749.
The six descriptors which entered the final equation
were: “relative number of C atoms”, “hydrogen donors
charged surface area”, “average valency of an H atom”,
“RNCG relative negative charge”, (LogP)? and “aver-

age electrophilic reactivity index for atom C”. These
are related to the transport properties and the binding
affinity of the compounds.

Anti-invasive activity

A major challenge in current cancer research is
the development of anti-invasive and anti-metastasis
drugs. The anti-invasive activity index (I index) mea-
sures the anti-tumor cell activity at given concentra-
tion (UM). A set of 139 structures [23] was split into 4
categories (low, fair, good, and active) each assigned a
discrete value (1, 2, 3, and 4, respectively) according to
the anti-invasive activity level of the compounds. The
BMLR method implemented in CODESSA PRO was
used to pre-select a set of relevant descriptors which
were further utilized as inputs for the construction of a
nonlinear artificial neural network (ANN) model. The
descriptors employed in the model relate to the essen-
tial electrostatic, conformational interactions and hy-
drogen acceptor/donor abilities of a compound in the
biological system. The resulting ANN QSAR model
predicted the class precisely for 66 (71 %) of the train-
ing set of 93 compounds and 32 (70 %) of the valida-
tion set of 46 compounds.

Drug transfer into human breast milk

Many women need to take various types of med-
ications while breast feeding. The bio-accumulation
of a specific medication in milk is associated with a
risk to the infant that can exceed the benefits of breast
feeding. Because of the significant role of breast milk,
the investigation of transfer of contamination from a
mother’s medication into her breast milk is important.
The milk to plasma concentration ratio (M/P ratio) of
a drug is an attempt to quantify the equilibrium con-
centration between breast milk and blood and is gen-
erally used to estimate the infant’s exposure to drugs
through breast milk. A set of experimentally measured
M/P ratio values was collected from the literature for
115 widely used pharmaceuticals of different chemical
nature. Based on the dataset, a satisfactory (R2=0.791)
seven-parameter QSAR model was derived [24]. The
descriptors appearing in the model were primarily re-
lated to the electrostatic and hydrogen bonding interac-
tions between the drug molecule and the surrounding
media.

Conclusions

In conclusion, we believe that the QSA(P)R tech-
niques will continue to expand with many applications
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and will help us understand better how chemical struc-

ture determines properties.
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