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COMPUTATIONAL COMPARISON OF TWO METHODS
FOR FINDING THE SHORTEST COMPLETE CYCLE
OR CIRCUIT IN A GRAPH (*) (")

by P. MiLioTis (%), G. LAPORTE () and Y. NOBERT (*)

Abstract. — Two methods for finding the shortest complete cycle or circuit in a graph are compared.
The first method which is well known transforms the problem into a travelling salesman problem. Under
the second approach, the problem is formulated directly as an integer linear program and then solved by
relaxing most of its constraints. The results show the superiority of the second method.

Keywords: Cycles, circuits, travelling salesman problem, integer programming.

Résumé. — Cet article compare deux méthodes pour la découverte du cycle ou circuit complet le plus
court dans un graphe. La premiére de ces méthodes est bien connue et consiste a transformer le probléme
en un probléme du voyageur de commerce. Avec la seconde approche, on formule le probléme directement
comme un programme linéaire en nombres entiers; ce programme est résolu par un algorithme de
relaxation de contraintes. Les résultats démontrent la supériorité de la seconde méthode.

Mots clés : Cycles, circuits, probléme du voyageur de commerce, programmation en nombres
entiers.

1. INTRODUCTION

The Travelling Salesman Problem (TSP) is well known. The practical problem
to which the TSP is generally related consists in finding the shortest route for a
salesman wishing to visit n cities once and only once. To each pair (i, j) of cities,
one associates a distance c;;. The problem is said to be symmetrical whenever
¢;j=c;; (i#j) and asymmetrical otherwise. It is Euclidean if ¢;; +c¢,;2c;; for
i,j, k=1, ..., n

The problem can also be defined in terms of graph theory. We consider the
symmetrical case first. Let G=(N, E) be a graph consisting of a set N of nodes
and of a set E of edges. A Hamiltonian cycle is defined as a cycle which goes
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through each node of G exactly once. The TSP consists in finding the shortest
Hamiltonian cycle in G. In asymmetrical problems, E is a set of arcs (directed
edges) and the TSP consists in finding the shortest Hamiltonian circuit in G.

The TSP is a special case of the more general problem which consists in finding
the shortest complete cycle (circuit) in G, i.e. the shortest cycle (circuit) going
through each node of G at least once. This problem will be referred to as the
CCP.

When G is not complete (i. e. when not all possible edges or arcs are defined),
there does not necessarily exists a Hamiltonian cycle (circuit) in G and one may
wish, in some instances, to find the shortest complete cycle (circuit) in G. Even
when G is complete, the TSP solution does not always yield the shortest
complete cycle (circuit) in G.

This paper compares two algorithms for the CCP.

2. METHOD 1: TRANSFORMING THE CCP INTO A TSP

CD A +lan T T M L 4l
There exists a close relationship between the TSP and the CCP. If € has the

Euclidean property and if G is complete, there is a solution to the CCP which is a
Hamiltonian cycle (circuit) [1]. Using this property, Hardgrave and
Nembhauser [6] have shown that a CCP solution can be obtained by solving a
TSP, even if G is not complete, with the Euclidean distance matrix C’=(c;;)
derived from C by replacing each c;; by the length of the shortest path between i
and j.

This method may be described in three basic steps.

Step 1: Transform G into G’ by finding all the shortest paths in G (see [10}).

Step 2: Solve the TSP associated with G'.

Step 3: Identify the solution to the original problem from the solution
obtainedinstep 2.If(i, k, ..., [, j)istheshortest path fromito jin G andif (i, j)
is contained in the optimal Hamiltonian cycle found in step 2, then the optimal
complete cycle or circuit in G contains the sequence (i, k, ..., 1, j).

3. METHOD 2: SOLVING THE CCP DIRECTLY

There has been, to our knowledge, no serious attempt to solve the CCP
directly, without first transforming it into a TSP. Our aim is to show that it is
more efficient to use a more direct approach.

We suggest the following formulation for the CCP. Let us first eliminate from
G all edges or arcs (i, j) which are not themselves the shortest path between i
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TWO METHODS FOR SHORTEST COMPLETE CYCLE OR CIRCUIT 235

and j. Such edges or arcs will indeed never be used in the optimal CCP solution.
Let G” be the resulting graph. Then, the CCP can be formulated as(P1) or (P2)
according to whether the problem is symmetrical or not.
(P1) Symmetrical problems:

Minimize Y cijxij

i<j

subjetc to:
ink+ zxk,“'zh'—fz k=1, ..., n), (1)
i<k >k

Y ox;22  (2518|€n-2,5¢ {1, ..., n}), @)

ieS,jeE

orjsS,ie§
x;;=0,10r2, (3a)
¥ non negative and integer (3b)

In this formulation, variables x; ; are only defined for the edges of G''=(N, E"")
and for i<j. Consider the graph G*=(N, E*) where E* is the set of edges
obtained by taking each (i, j) of E" x;; times. G* is meaningful only if (3 a) is
satisfied; if (2) is also satisfied, G* is connected [3], and if (1) and (3b) are
satisfied, the degree of each node is even. Therefore, from [5], G* possesses an
Euler cycle which is also a complete cycle.

At this point, it is worth noticing that we imposed constraints:

Y ox;22  (2IS(2n-2,8<{1,...,n}), @)
ieS,je§
orjsS,ieE

in order to ensure that G* is connected. The following constraints would have
been adequate:

Y ox;2l (2=18isn-2,8¢ {1, ..., n}), @)
z'eS,jeE
orjsS,ieE

but are weaker than (2). Note that constraints {2') can never be satisfied as
equalities whenever (1) and (3) are imposed, hence (2) can be used instead
of 2).

It is interesting to note that in (P1), an optimal solution exists in which
variables x;; only take the values 0, 1 or 2. Although the formal proof of this
property is not very complex, it is rather tedious because many cases have to be
considered. In simple terms, it can be understood as follows: if a feasible solution
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contains a value of x;;= 3, for given i and j, then a solution at least as good with
X;;=X;;—2 can be found. This is illustrated in the following figure: ¢;;=1 for all
arcs shwon of the diagrams; c;; is arbitrarily large otherwise. Arrows have been
included only to facilitate the reading of the solution. One could reverse all

arrows in figure since the graph is symmetrical.

can be
replaced
by

The formulation for the asymmetrical case is similar to that of (P1).
(P2) Asymmetrical problem:

Minimize Z CijXij
LJ

subject to:

ink—)"k=1 (k=1, ...,n),
' (1)
Zxkj—ykzl (k=1, ..., n),
J

Y x;zl  (2=1S1£n-2,8{1,...,n}), )

ieS,js§

x;; non negative and integer, 3a)
¥, non negative and integer. (3b)

In this formulation, the y, variables ensure that at each node, the incoming
flow is equal to the outgoing flow. Merely imposing:

X1 and Xz 1,
- - J
i 7

would not be sufficient. As in (P1) connectedness is garanteed by constraints (2)
and, as in the previous case, the optimal solution possesses a complete circuit.
Moreover, variables x;; can this time take any non negative integer values.

Using these formulations, we suggest the following procedure for solving the
CCP.
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Step 1: Reduce G to G'' by dropping every edge or arc (i, j) which is not the
shortest path between i and j.

Step 2: Solve the CCP associated with G’ by using P1 or P2. As in the case of
the TSP [8, 9], we suggest that (P1) or (P2) be solved by first relaxing
constraints (2) and (3) which should only be introduced as they are found to be
violated. Integer solutions are obtained either by using Gomory cutting planes

- modified for integer arithmetic [9] or a branch and bound procedure [8]. As was
shown in [9], the integrality and connectedness tests may be carried out in any
order; however, it is more efficient to test connectedness first when using a cutting
planes algorithm. With the branch and bound algorithm, tests for illegal
subtours are only made once an integer solution is obtained.

Step 3: Identify the solution to the original problem: this is done by finding an
Euler cycle or circuit associated with the optimal solution of step 2. (Here, one
may use the algorithm proposed by Edmonds and Johnson [4].)

4. COMPUTATIONAL RESULTS

In order to compare the relative efficiency of the two methods, symmetrical
and asymmetrical test problems were randomly generated by taking the c;;’s
uniformly on the interval ]0, 100[. All distance matrices were complete. Five
problems of each type (symmetrical and asymmetrical) and of each size
(n=20, 30, 40, ...) were attempted by each of four possible algorithms:

— method 1, cutting planes;

— method 1, branch and bound;

— method 2, cutting planes;

— method 2, branch and bound.

In order to make the comparison between the two methods as fair as possible,
the same type of algorithm was used in both cases: Miliotis’ algorithms [8, 9]
were applied directly in the case of method 1 and adjusted wherever appropriate
to take into account the particular structure of the problems to be solved by
method 2. (Christofides [2] advocates the use of LP based methods for
symmetrical TSPs; for asymmetrical problems, the choice is less obvious.) In all
cases, the same policies were used for branching, generating cuts, ‘“‘purging” [7]
ineffective constraints, etc. The computer used was the University of Montreal
Cyber 173. The main results are presented in the following table.

Some attempts were unsuccessful. Failures occurred for two main reasons:
either the preset time limit of S00 seconds was reached (this happened mainly
with the branch and bound algorithm) or there was a lack of computer memory
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TABLE

Computational results

Method 1 Method 2
Transforming the'CCP into a TSP Solving the CCP directly
-~ 5 . o s 185
Tl g= ) | =~ — |8 =< = B~ = '—é 3
" sg| 25| 58 |5%| € |sgl|c%|ss| 5% € | 5%
Q 2 » w»n =] Q 2L D wn =1 bt
ES| 25| €5 [s5| § |52 EE|es| 55| 8 |=¢8
3ol B2 38 | 5% 2 SS|Ez2| 5% - 5 83
Za| 851728 85| o |#7E|E5|Z2s| 85| & | =%
s|=22]| §~‘= E| s({=2| 5|57 | & |§%
o G 4 -
s s £E
)
Type of problem/algorithm: symmetrical/cutting planes
20 5 25 190 65 2.2 S 30 60 0 09 | 684
30 S 40 435 | 118 10.7 S 47 94 53 31| 784
40 S 49 780 | 150 20.1 5 60 | 138 93 6.1 | 823
50 3, 62 | 1,225 | 184 409 4 76 | 180 | 125 13.0 | 853
60 3 73 | 1,770 | 215 66.6 4 94 | 222 | 166 258 | 875
70 3 87 | 2,415 | 346 | 161.1 3 106 | 252 192 39.2 | 89.6
80 1 93 | 3,160 | 279 | 134.8 2 118 | 308 | 212 51.8 | 903
90 - - - - - 2 125 1 355 253 747 1 909
100 -1 - - - - 2 148 | 386 | 409 | 3123 | 922
Type of problem/algorithm: symmetrical/branch and bound
20 5 24 190 74 22| S 40 60 76 19| 68.4
30 4 37 435 | 282 238 5 S8 94 99 26| 784
40 4 47 780 | 538 77.6 5 82 | 138 212 12.1 | 823
50 4 60 | 1,225 | 383 | 1185 S 102 | 181 228 14.1 | 85.2
60 4 72 | 1,770 | 694 | 356.8 5 121 | 223 | 320 | 272 874
70 - - - - - 4 103 | 252 977 | 111.7 | 89.6
80 - - - - - 3 116 | 307 | 1,212 | 152.8 | 90.3
90 - - - - - 1 131 | 365 | 2,449 | 441.0 | 90.9
' Type of problem/ algorithm: asymmetrical /cutting planes
20 5 43 380 73 5.3 S 58 96 60 20 747
30 5 59 870 92 132 5 58 | 162 98 54| 814
40 S 82 | 1,560, 157 444 5 82 245 153 160} 84.3
50 5 107 | 2,450 { 221 | 1203 S 103 | 302 195 278 | 87.7
60 5 125 | 3,540 | 307 | 194.8 4 120 | 360 227 419 | 89.8
70 - - - = - 5 139 | 444 273 64.0 [ 90.8]
80 - - - - - 3 160 | 515} 330 | 1033 919
Type of problem/algorithm: asymmetrical/branch and bound
20 5 42 380 83 6.1 5 30 96 46 0.7 | 747
30 5 58 870 94 103 5 45 | 162 111 34| 814
40 5 82 | 1,560 | 177 41.8 5 60 245 134 54| 843
50 B 105 | 2,450 | 367 [ 179.3 5 75 | 302 233 13.5 | 87.7
60 4 124 | 3,540.| 281 | 1437 5 87 | 363 798 68.9 | 89.6
70 - - - - - S 139 | 444 273 18.6 | 90.8
80 - - - - - 5 160 | 518 302 | 26.7 |'91.8
90 - - - - - ‘S .179 | 576 396 | 369 92.8
100 - - - - - 4 200 | 637 486 | 515 93.6
110 - - - - - 4 219 | 729 S27 | 63.0| 939

(*) Number of successful problems out of 5.

(?) Maximum number of effective constraints during the course of the algorithm. (For

further details. see Land and Powell [7]).

(3) Average value.
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(mainly with the cutting planes algorithm). In some odd cases, the problems were
badly conditioned (for example, the determinant of the inverse basis became too
large, resulting in very weak cuts and in practically non convergence).

A simple examination of table confirms the superiority of method 2 over
method 1: computation times are much smaller with method 2, less computer
space is needed, larger problems can be solved and, on the whole, fewer failures
occur.

The reason for this success lies in the relatively small number of variables
contained in problems solved by method 2, and this, in spite of the fact that all
distance matrices were complete (when G is not complete, the passage to G’
actually increases the number of variables with method 1, thus making the
comparison even more favourable to method 2). The last column of table shows
that when n= 50, at least 85%; of the variables are eliminated by method 2. The
percentage of eliminated variables grows up steadily as n increases.

A smaller number of variable helps reducing the number of simplex iterations;
its major effect however, is on the amount of memory needed to store the
contraints and on the average time per iteration.

Finally, the branch and bound algorithm appears to be more reliable than the
cutting planes algorithms. This is especially true in the case of asymmetrical
problems.
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