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Language equations


ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)

...
ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

Xi : subset of Σ∗.

ϕi : variables, constants, operations on sets.

Solutions: least, greatest, unique.

Example

X = XX ∪ {a}X{b} ∪ {ε}

Least solution: the Dyck language.
Greatest solution: Σ∗.
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Research on language equations

Ginsburg and Rice (1962): representation of CFGs.

Conway (1971); Karhumäki et al. (2000–); Kunc (2005): LX = XL.

Brzozowski/Leiss (1980): alternating finite automata.

Charatonik (1994): undecidability for equations with {·,∪,∩,∼}.
Baader/Narendran (1998), Bala (2004): complexity.

Okhotin (2001–present): equations with Boolean operations.

Leiss (1995), Okhotin/Yakimova (2006), Jeż (2007),
Jeż/Okhotin (2007–present): equations over {a}.
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Jeż/Okhotin (2007–present): equations over {a}.
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Artur Jeż, Alexander Okhotin Equations over sets of numbers July 7, 2008 3 / 15



Computational completeness of language equations

Language equations over Σ, with |Σ| > 2.

Theorem (Okhotin, ICALP 2003)

L ⊆ Σ∗ is given by unique solution of a system with {∪,∩,∼, ·}
if and only if

L is recursive.

X ⊆ Y : written as X ∪ Y = Y .

VALC(T ) = {w]CT (w)|w ∈ L(T )}: accepting computations.

VALCrej(T ) = {w]CT (w)|w /∈ L(T )}: rejecting computations.

L(T ) is a unique solution of

VALC(T ) ⊆ X ]Σ∗

X ]Σ∗ ⊆ VALCrej(T )

Multiple-letter alphabet essentially used.

X Remaking the argument for the unary case!
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Unary languages as sets of numbers

Σ = {a}.

an ←→ number n

Language ←→ set of numbers

K · L ←→ X + Y = {x + y | x ∈ X , y ∈ Y }
Regular ←→ ultimately periodic

X Equations over sets of numbers.


ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)

...
ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

Xi : subset of N0 = {0, 1, 2, . . .}.
ϕi : variables, singleton constants, operations on sets.
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Resolved systems with {∪, +} and {∪,∩, +}
X1 = ϕ1(X1, . . . ,Xn)

...
Xn = ϕn(X1, . . . ,Xn)

Example

X =
(
X + {2}

)
∪ {0}

Unique solution: the even numbers
S → aaS | ε

Representing sets by unique solutions.
With {∪,+}: context-free grammars.

Theorem (Bar-Hillel et al., 1961)

Every context-free language over {a} is regular.

With {∪,∩,+}: conjunctive grammars.
The power of conjunctive grammars over {a}?
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Conjunctive grammars

Quadruple G = (Σ,N,P,S), where. . .

Context-free grammars: Rules of the form

A→ α

“If w is generated by α, then w is generated by A”.

X Multiple rules for A: disjunction.

Conjunctive grammars (Okhotin, 2000) Rules of the form

A→ α1& . . .&αm

“If w is generated by each αi , then w is generated by A”.
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Definition of conjunctive grammars

Semantics by language equations:

A =
⋃

A→α1&...&αm∈P

m⋂
i=1

αi

I LG (A) is the A-component of the least solution.

Equivalent semantics by term rewriting.

Generated languages are in DTIME (n3) ∩ DSPACE (n).

Efficient parsing: Generalized LR, recursive descent.

Greater expressive power.

I Conjunctive grammar for {a4n | n > 0}.
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Using positional notation

Numbers in base-k notation: strings over Σk = {0, 1, . . . , k − 1}.

Set of numbers ↔ formal language over Σk

Example (Jeż, DLT 2007)

X1 = (X2+X2 ∩ X1+X3) ∪ {1}
X2 = (X12+X2 ∩ X1+X1) ∪ {2}
X3 = (X12+X12 ∩ X1+X2) ∪ {3}

X12 = X3+X3 ∩ X1+X2

((10∗)4, (20∗)4, (30∗)4, (120∗)4)

X2 + X2 = (20∗)4 + (20∗)4 =

(10+)4 ∪ (20∗20∗)4

X1 + X3 = (10∗)4 + (30∗)4 =

(10+)4 ∪ (10∗30∗)4 ∪ (30∗10∗)4

(X2 + X2) ∩ (X1 + X3) =

(10+)4
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Example (Jeż, DLT 2007)

X1 = (X2+X2 ∩ X1+X3) ∪ {1}
X2 = (X12+X2 ∩ X1+X1) ∪ {2}
X3 = (X12+X12 ∩ X1+X2) ∪ {3}

X12 = X3+X3 ∩ X1+X2

((10∗)4, (20∗)4, (30∗)4, (120∗)4)

X2 + X2 = (20∗)4 + (20∗)4 =

(10+)4 ∪ (20∗20∗)4

X1 + X3 = (10∗)4 + (30∗)4 =

(10+)4 ∪ (10∗30∗)4 ∪ (30∗10∗)4

(X2 + X2) ∩ (X1 + X3) =

(10+)4
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Artur Jeż, Alexander Okhotin Equations over sets of numbers July 7, 2008 9 / 15



Using positional notation

Numbers in base-k notation: strings over Σk = {0, 1, . . . , k − 1}.
Set of numbers ↔ formal language over Σk

Example (Jeż, DLT 2007)
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Automata recognizing positional notation

Theorem (Jeż, Okhotin, CSR 2007)

∀ trellis automaton M over Σk with L(M) ⊆ Σ∗
k \ 0Σ∗

k ,
∃ a system with {∪,∩,+} representing (L(M))k .

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a
M = (Σ,Q, I , δ,F ) where:

Σ: input alphabet;

Q: finite set of states;

I : Σ→ Q sets initial states;

δ : Q × Q → Q, transition function;

F ⊆ Q: accepting states.

Can recognize {wcw}, {anbncn}, {anb2n}, VALC.
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Artur Jeż, Alexander Okhotin Equations over sets of numbers July 7, 2008 10 / 15



Outline of the construction

Turing machine (Turing, 1936)

VALC(T ): intersection of two LinCFLs
(Hartmanis, 1967; Baker, Book, 1978)

VALC(T ) = {CT (w)\w | w ∈ L(T )}
CT (w) = q0w#u1q1a1v1# . . .#u`q`a`v`

Trellis automata (1970s–80s)

Extracting L(T ) from VALC(T ) (Okhotin, ICALP 2003)

Trellis automata → equations over sets of numbers
(Jeż, Okhotin, CSR 2007)

Extracting numbers with notation L(T )
from numbers with notation VALC(T )
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(Jeż, Okhotin, CSR 2007)

Extracting numbers with notation L(T )
from numbers with notation VALC(T )
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Arithmetization of Turing machines

R: recursive set of numbers recognized by TM T .

Σ6 = {0, 1, 2, 3, 4, 5}, using base-6 notation.

Computation of T on numbers (1w)6.

. . . encoded by C 1
T ∈ {30, 300}∗.

VALC1(T ) = {C 1
T (iw)1w | 1w ∈ L(T )}.

(30300300 . . . 30300︸ ︷︷ ︸
C1

T (123450)

123450)6 ∈ VALC1(T )

As formal language: recognized by trellis automaton.

As set of numbers: given by equations.
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Artur Jeż, Alexander Okhotin Equations over sets of numbers July 7, 2008 12 / 15



Arithmetization of Turing machines

R: recursive set of numbers recognized by TM T .

Σ6 = {0, 1, 2, 3, 4, 5}, using base-6 notation.

Computation of T on numbers (1w)6.

. . . encoded by C 1
T ∈ {30, 300}∗.

VALC1(T ) = {C 1
T (iw)1w | 1w ∈ L(T )}.

(30300300 . . . 30300︸ ︷︷ ︸
C1

T (123450)

123450)6 ∈ VALC1(T )

As formal language: recognized by trellis automaton.

As set of numbers: given by equations.
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Constructing the equations

For TM T recognizing L:

VALC1(T ) = {C 1
T (iw)︸ ︷︷ ︸

{30,300}∗

1w | 1w ∈ L(T )}

Two equations:

Y1 ⊆ (1Σ+
6 )6

VALC1(T ) ⊆ ({30, 300}∗3000∗)6 + Y1

Equivalent to:

{(1w)6 | (1w)6 ∈ L(T )} ⊆ Y1 ⊆ (1Σ+
6 )6

Least solution: Y1 = {1w | 1w ∈ L(T )}.
Equation with greatest solution Z1 = {1w | 1w ∈ L(T )}.
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Results for unresolved equations with {∪, +} or {∩, +}
ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)

...
ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

Theorem

S ⊆ N0 is given by unique/least/greatest solution of such a system
if and only if

S is recursive/r.e./co-r.e.

Theorem

Decision problems are undecidable, namely:

“Exists a solution?”: Π1-complete.

“Exists a unique solution?”: Π2-complete.

“Exist finitely many solutions?”: Σ3-complete.

Artur Jeż, Alexander Okhotin Equations over sets of numbers July 7, 2008 14 / 15



Results for unresolved equations with {∪, +} or {∩, +}
ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)

...
ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

Theorem

S ⊆ N0 is given by unique/least/greatest solution of such a system
if and only if

S is recursive/r.e./co-r.e.

Theorem

Decision problems are undecidable, namely:

“Exists a solution?”: Π1-complete.

“Exists a unique solution?”: Π2-complete.

“Exist finitely many solutions?”: Σ3-complete.
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Conclusion

Results on language equations over Σ with |Σ| > 2.

. . . extended to Σ = {a}.
cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.

1 A Diophantine equation with PRIMES as the range of x .

2 A system over sets of numbers with PRIMES as the unique value of
X .

Problem

Construct any simple system using {∪,+} with a non-periodic solution.

Artur Jeż, Alexander Okhotin Equations over sets of numbers July 7, 2008 15 / 15



Conclusion

Results on language equations over Σ with |Σ| > 2.

. . . extended to Σ = {a}.

cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.

1 A Diophantine equation with PRIMES as the range of x .

2 A system over sets of numbers with PRIMES as the unique value of
X .

Problem

Construct any simple system using {∪,+} with a non-periodic solution.
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