Computational completeness of equations over sets of natural numbers

Artur Jeż Alexander Okhotin

Wrocław, Poland
Turku, Finland

July 7, 2008

Language equations

$$
\left\{\begin{aligned}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Language equations

$$
\left\{\begin{array}{rc}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{array}\right.
$$

- X_{i} : subset of Σ^{*}.

Language equations

$$
\left\{\begin{array}{rc}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{array}\right.
$$

- X_{i} : subset of Σ^{*}.
- φ_{i} : variables, constants, operations on sets.

Language equations

$$
\left\{\begin{array}{rc}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{array}\right.
$$

- X_{i} : subset of Σ^{*}.
- φ_{i} : variables, constants, operations on sets.

Solutions: least, greatest, unique.

Language equations

$$
\left\{\begin{array}{rc}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{array}\right.
$$

- X_{i} : subset of Σ^{*}.
- φ_{i} : variables, constants, operations on sets.

Solutions: least, greatest, unique.

> Example
> $X=X X \cup\{a\} X\{b\} \cup\{\varepsilon\}$

Language equations

$$
\left\{\begin{array}{rc}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{array}\right.
$$

- X_{i} : subset of Σ^{*}.
- φ_{i} : variables, constants, operations on sets.

Solutions: least, greatest, unique.

$$
\begin{aligned}
& \text { Example } \\
& X=X X \cup\{a\} X\{b\} \cup\{\varepsilon\} \\
& \text { Least solution: the Dyck language. }
\end{aligned}
$$

Language equations

$$
\left\{\begin{array}{rc}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{array}\right.
$$

- X_{i} : subset of Σ^{*}.
- φ_{i} : variables, constants, operations on sets.

Solutions: least, greatest, unique.

Example

$X=X X \cup\{a\} X\{b\} \cup\{\varepsilon\}$
Least solution: the Dyck language.
Greatest solution: Σ^{*}.

Research on language equations

- Ginsburg and Rice (1962): representation of CFGs.

Research on language equations

- Ginsburg and Rice (1962): representation of CFGs.
- Conway (1971); Karhumäki et al. (2000-); Kunc (2005): $L X=X L$.

Research on language equations

- Ginsburg and Rice (1962): representation of CFGs.
- Conway (1971); Karhumäki et al. (2000-); Kunc (2005): $L X=X L$.
- Brzozowski/Leiss (1980): alternating finite automata.

Research on language equations

- Ginsburg and Rice (1962): representation of CFGs.
- Conway (1971); Karhumäki et al. (2000-); Kunc (2005): $L X=X L$.
- Brzozowski/Leiss (1980): alternating finite automata.
- Charatonik (1994): undecidability for equations with $\{\cdot, \cup, \cap, \sim\}$.

Research on language equations

- Ginsburg and Rice (1962): representation of CFGs.
- Conway (1971); Karhumäki et al. (2000-); Kunc (2005): $L X=X L$.
- Brzozowski/Leiss (1980): alternating finite automata.
- Charatonik (1994): undecidability for equations with $\{\cdot, \cup, \cap, \sim\}$.
- Baader/Narendran (1998), Bala (2004): complexity.

Research on language equations

- Ginsburg and Rice (1962): representation of CFGs.
- Conway (1971); Karhumäki et al. (2000-); Kunc (2005): $L X=X L$.
- Brzozowski/Leiss (1980): alternating finite automata.
- Charatonik (1994): undecidability for equations with $\{\cdot, \cup, \cap, \sim\}$.
- Baader/Narendran (1998), Bala (2004): complexity.
- Okhotin (2001-present): equations with Boolean operations.

Research on language equations

- Ginsburg and Rice (1962): representation of CFGs.
- Conway (1971); Karhumäki et al. (2000-); Kunc (2005): $L X=X L$.
- Brzozowski/Leiss (1980): alternating finite automata.
- Charatonik (1994): undecidability for equations with $\{\cdot, \cup, \cap, \sim\}$.
- Baader/Narendran (1998), Bala (2004): complexity.
- Okhotin (2001-present): equations with Boolean operations.
- Leiss (1995), Okhotin/Yakimova (2006), Jeż (2007), Jeż/Okhotin (2007-present): equations over $\{a\}$.

Computational completeness of language equations

- Language equations over Σ, with $|\Sigma| \geqslant 2$.

Computational completeness of language equations

- Language equations over Σ, with $|\Sigma| \geqslant 2$.

Theorem (Okhotin, ICALP 2003)
$L \subseteq \Sigma^{*}$ is given by unique solution of a system with $\{\cup, \cap, \sim, \cdot\}$ if and only if
L is recursive.

Computational completeness of language equations

- Language equations over Σ, with $|\Sigma| \geqslant 2$.

Theorem (Okhotin, ICALP 2003)
$L \subseteq \Sigma^{*}$ is given by unique solution of a system with $\{\cup, \cap, \sim, \cdot\}$ if and only if
L is recursive.

- $X \subseteq Y$: written as $X \cup Y=Y$.

Computational completeness of language equations

- Language equations over Σ, with $|\Sigma| \geqslant 2$.

Theorem (Okhotin, ICALP 2003)
$L \subseteq \Sigma^{*}$ is given by unique solution of a system with $\{\cup, \cap, \sim, \cdot\}$ if and only if
L is recursive.

- $X \subseteq Y$: written as $X \cup Y=Y$.
- $\operatorname{VALC}(T)=\left\{w \sharp C_{T}(w) \mid w \in L(T)\right\}$: accepting computations.

Computational completeness of language equations

- Language equations over Σ, with $|\Sigma| \geqslant 2$.

Theorem (Okhotin, ICALP 2003)

$L \subseteq \Sigma^{*}$ is given by unique solution of a system with $\{\cup, \cap, \sim, \cdot\}$ if and only if
L is recursive.

- $X \subseteq Y$: written as $X \cup Y=Y$.
- $\operatorname{VALC}(T)=\left\{w \sharp C_{T}(w) \mid w \in L(T)\right\}$: accepting computations.
- $\operatorname{VALC}^{r e j}(T)=\left\{w \sharp C_{T}(w) \mid w \notin L(T)\right\}$: rejecting computations.

Computational completeness of language equations

- Language equations over Σ, with $|\Sigma| \geqslant 2$.

Theorem (Okhotin, ICALP 2003)

$L \subseteq \Sigma^{*}$ is given by unique solution of a system with $\{\cup, \cap, \sim, \cdot\}$ if and only if
L is recursive.

- $X \subseteq Y$: written as $X \cup Y=Y$.
- $\operatorname{VALC}(T)=\left\{w \sharp C_{T}(w) \mid w \in L(T)\right\}$: accepting computations.
- $\operatorname{VALC}^{r e j}(T)=\left\{w \sharp C_{T}(w) \mid w \notin L(T)\right\}$: rejecting computations.
- $L(T)$ is a unique solution of

$$
\begin{aligned}
\operatorname{VALC}(T) & \subseteq X \sharp \Sigma^{*} \\
X \sharp \Sigma^{*} & \subseteq \overline{\operatorname{VALC}^{r e j}(T)}
\end{aligned}
$$

Computational completeness of language equations

- Language equations over Σ, with $|\Sigma| \geqslant 2$.

Theorem (Okhotin, ICALP 2003)

$L \subseteq \Sigma^{*}$ is given by unique solution of a system with $\{\cup, \cap, \sim, \cdot\}$ if and only if
L is recursive.

- $X \subseteq Y$: written as $X \cup Y=Y$.
- $\operatorname{VALC}(T)=\left\{w \sharp C_{T}(w) \mid w \in L(T)\right\}$: accepting computations.
- $\operatorname{VALC}^{r e j}(T)=\left\{w \sharp C_{T}(w) \mid w \notin L(T)\right\}$: rejecting computations.
- $L(T)$ is a unique solution of

$$
\begin{aligned}
\operatorname{VALC}(T) & \subseteq X \sharp \Sigma^{*} \\
X \sharp \Sigma^{*} & \subseteq \overline{\operatorname{VALC}^{r e j}(T)}
\end{aligned}
$$

- Multiple-letter alphabet essentially used.

Computational completeness of language equations

- Language equations over Σ, with $|\Sigma| \geqslant 2$.

Theorem (Okhotin, ICALP 2003)

$L \subseteq \Sigma^{*}$ is given by unique solution of a system with $\{\cup, \cap, \sim, \cdot\}$ if and only if
L is recursive.

- $X \subseteq Y$: written as $X \cup Y=Y$.
- $\operatorname{VALC}(T)=\left\{w \sharp C_{T}(w) \mid w \in L(T)\right\}$: accepting computations.
- $\operatorname{VALC}{ }^{r e j}(T)=\left\{w \sharp C_{T}(w) \mid w \notin L(T)\right\}$: rejecting computations.
- $L(T)$ is a unique solution of

$$
\begin{aligned}
\operatorname{VALC}(T) & \subseteq X \sharp \Sigma^{*} \\
X \sharp \Sigma^{*} & \subseteq \overline{\operatorname{VALC}^{r e j}(T)}
\end{aligned}
$$

- Multiple-letter alphabet essentially used.
\checkmark Remaking the argument for the unary case!

Unary languages as sets of numbers

- $\Sigma=\{a\}$.

Unary languages as sets of numbers

- $\Sigma=\{a\}$.
- a^{n}

number n

Unary languages as sets of numbers

- $\Sigma=\{a\}$.
- a^{n}
- Language

number n
set of numbers

Unary languages as sets of numbers

- $\Sigma=\{a\}$.
- a^{n}
- Language
- K $\cdot L$

Unary languages as sets of numbers

- $\Sigma=\{a\}$.
- a^{n}
- Language
- K $\cdot L$
- Regular

Unary languages as sets of numbers

- $\Sigma=\{a\}$.
- a^{n}

- K $\cdot L$
$\longleftrightarrow X+Y=\{x+y \mid x \in X, y \in Y\}$
- Regular

ultimately periodic
\checkmark Equations over sets of numbers.

Unary languages as sets of numbers

- $\Sigma=\{a\}$.
- a^{n}
- Language
- K $\cdot L$
- Regular

$\longleftrightarrow X+Y=\{x+y \mid x \in X, y \in Y\}$ \longleftrightarrow ultimately periodic
\checkmark Equations over sets of numbers.

$$
\left\{\begin{array}{rc}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{array}\right.
$$

Unary languages as sets of numbers

- $\Sigma=\{a\}$.
- a^{n}
- Language
- K $\cdot L$
- Regular

$$
\begin{array}{rr}
\longleftrightarrow & \text { number } n \\
\longleftrightarrow & \text { set of numbers } \\
\longleftrightarrow & X+Y=\{x+y \mid x \in X, y \in Y\} \\
\longleftrightarrow & \text { ultimately periodic }
\end{array}
$$

\checkmark Equations over sets of numbers.

$$
\left\{\begin{array}{rc}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{array}\right.
$$

- X_{i} : subset of $\mathbb{N}_{0}=\{0,1,2, \ldots\}$.

Unary languages as sets of numbers

- $\Sigma=\{a\}$.
- a^{n}
$\longleftrightarrow \quad$ number n
- Language
- K $\cdot L$
- Regular

$\longleftrightarrow X+Y=\{x+y \mid x \in X, y \in Y\}$
$\longleftrightarrow \quad$ ultimately periodic
\checkmark Equations over sets of numbers.

$$
\left\{\begin{array}{rc}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right)= & \psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{array}\right.
$$

- X_{i} : subset of $\mathbb{N}_{0}=\{0,1,2, \ldots\}$.
- φ_{i} : variables, singleton constants, operations on sets.

Resolved systems with $\{\cup,+\}$ and $\{\cup, \cap,+\}$

$$
\left\{\begin{aligned}
X_{1} & =\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
X_{n} & =\varphi_{n}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Resolved systems with $\{\cup,+\}$ and $\{\cup, \cap,+\}$

$$
\left\{\begin{aligned}
X_{1} & =\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
X_{n} & =\varphi_{n}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Example

$X=(X+\{2\}) \cup\{0\}$

Resolved systems with $\{\cup,+\}$ and $\{\cup, \cap,+\}$

$$
\left\{\begin{aligned}
X_{1} & =\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
X_{n} & =\varphi_{n}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Example

$X=(X+\{2\}) \cup\{0\}$
Unique solution: the even numbers

Resolved systems with $\{\cup,+\}$ and $\{\cup, \cap,+\}$

$$
\left\{\begin{aligned}
X_{1} & =\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
X_{n} & =\varphi_{n}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Example

$X=(X+\{2\}) \cup\{0\}$
Unique solution: the even numbers $S \rightarrow a \mathrm{aS} \mid \varepsilon$

Resolved systems with $\{\cup,+\}$ and $\{\cup, \cap,+\}$

$$
\left\{\begin{aligned}
X_{1} & =\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
x_{n} & =\varphi_{n}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Example

$X=(X+\{2\}) \cup\{0\}$
Unique solution: the even numbers $S \rightarrow a a S \mid \varepsilon$

- Representing sets by unique solutions.

Resolved systems with $\{\cup,+\}$ and $\{\cup, \cap,+\}$

$$
\left\{\begin{aligned}
X_{1} & =\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
x_{n} & =\varphi_{n}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Example

$X=(X+\{2\}) \cup\{0\}$
Unique solution: the even numbers $S \rightarrow a a S \mid \varepsilon$

- Representing sets by unique solutions.
- With $\{\cup,+\}$: context-free grammars.

Resolved systems with $\{\cup,+\}$ and $\{\cup, \cap,+\}$

$$
\left\{\begin{array}{c}
X_{1}=\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
\\
\vdots \\
X_{n}=\varphi_{n}\left(X_{1}, \ldots, X_{n}\right)
\end{array}\right.
$$

Example

$X=(X+\{2\}) \cup\{0\}$
Unique solution: the even numbers $S \rightarrow a a S \mid \varepsilon$

- Representing sets by unique solutions.
- With $\{\cup,+\}$: context-free grammars.

Theorem (Bar-Hillel et al., 1961)
Every context-free language over $\{\mathrm{a}\}$ is regular.

Resolved systems with $\{\cup,+\}$ and $\{\cup, \cap,+\}$

$$
\left\{\begin{array}{c}
X_{1}=\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
\\
\vdots \\
X_{n}=\varphi_{n}\left(X_{1}, \ldots, X_{n}\right)
\end{array}\right.
$$

Example

$X=(X+\{2\}) \cup\{0\}$
Unique solution: the even numbers $S \rightarrow a a S \mid \varepsilon$

- Representing sets by unique solutions.
- With $\{\cup,+\}$: context-free grammars.

Theorem (Bar-Hillel et al., 1961)
Every context-free language over $\{\mathrm{a}\}$ is regular.

- With $\{\cup, \cap,+\}$: conjunctive grammars.

Resolved systems with $\{\cup,+\}$ and $\{\cup, \cap,+\}$

$$
\left\{\begin{aligned}
X_{1} & =\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
x_{n} & =\varphi_{n}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Example

$X=(X+\{2\}) \cup\{0\}$
Unique solution: the even numbers $S \rightarrow a a S \mid \varepsilon$

- Representing sets by unique solutions.
- With $\{\cup,+\}$: context-free grammars.

Theorem (Bar-Hillel et al., 1961)
Every context-free language over $\{\mathrm{a}\}$ is regular.

- With $\{\cup, \cap,+\}$: conjunctive grammars.
- The power of conjunctive grammars over $\{a\}$?

Conjunctive grammars

Quadruple $G=(\Sigma, N, P, S)$, where. .
Context-free grammars: Rules of the form

$$
A \rightarrow \alpha
$$

"If w is generated by α, then w is generated by A ".

Conjunctive grammars

Quadruple $G=(\Sigma, N, P, S)$, where...
Context-free grammars: Rules of the form

$$
A \rightarrow \alpha
$$

"If w is generated by α, then w is generated by A ".
\checkmark Multiple rules for A : disjunction.

Conjunctive grammars

Quadruple $G=(\Sigma, N, P, S)$, where. .
Context-free grammars: Rules of the form

$$
A \rightarrow \alpha
$$

"If w is generated by α, then w is generated by A ".
\checkmark Multiple rules for A : disjunction.
Conjunctive grammars (Okhotin, 2000) Rules of the form

$$
A \rightarrow \alpha_{1} \& \ldots \& \alpha_{m}
$$

"If w is generated by each α_{i}, then w is generated by A ".

Definition of conjunctive grammars

- Semantics by language equations:

$$
A=\bigcup_{A \rightarrow \alpha_{1} \& \ldots \& \alpha_{m} \in P} \bigcap_{i=1}^{m} \alpha_{i}
$$

Definition of conjunctive grammars

- Semantics by language equations:

$$
A=\bigcup_{A \rightarrow \alpha_{1} \& \ldots \& \alpha_{m} \in P} \bigcap_{i=1}^{m} \alpha_{i}
$$

- $L_{G}(A)$ is the A-component of the least solution.

Definition of conjunctive grammars

- Semantics by language equations:

$$
A=\bigcup_{A \rightarrow \alpha_{1} \& \ldots \& \alpha_{m} \in P} \bigcap_{i=1}^{m} \alpha_{i}
$$

- $L_{G}(A)$ is the A-component of the least solution.
- Equivalent semantics by term rewriting.

Definition of conjunctive grammars

- Semantics by language equations:

$$
A=\bigcup_{A \rightarrow \alpha_{1} \& \ldots \& \alpha_{m} \in P} \bigcap_{i=1}^{m} \alpha_{i}
$$

- $L_{G}(A)$ is the A-component of the least solution.
- Equivalent semantics by term rewriting.
- Generated languages are in $\operatorname{DTIME}\left(n^{3}\right) \cap \operatorname{DSPACE}(n)$.

Definition of conjunctive grammars

- Semantics by language equations:

$$
A=\bigcup_{A \rightarrow \alpha_{1} \& \ldots \& \alpha_{m} \in P} \bigcap_{i=1}^{m} \alpha_{i}
$$

- $L_{G}(A)$ is the A-component of the least solution.
- Equivalent semantics by term rewriting.
- Generated languages are in $\operatorname{DTIME}\left(n^{3}\right) \cap \operatorname{DSPACE}(n)$.
- Efficient parsing: Generalized LR, recursive descent.

Definition of conjunctive grammars

- Semantics by language equations:

$$
A=\bigcup_{A \rightarrow \alpha_{1} \& \ldots \& \alpha_{m} \in P} \bigcap_{i=1}^{m} \alpha_{i}
$$

- $L_{G}(A)$ is the A-component of the least solution.
- Equivalent semantics by term rewriting.
- Generated languages are in $\operatorname{DTIME}\left(n^{3}\right) \cap \operatorname{DSPACE}(n)$.
- Efficient parsing: Generalized LR, recursive descent.
- Greater expressive power.

Definition of conjunctive grammars

- Semantics by language equations:

$$
A=\bigcup_{A \rightarrow \alpha_{1} \& \ldots \& \alpha_{m} \in P} \bigcap_{i=1}^{m} \alpha_{i}
$$

- $L_{G}(A)$ is the A-component of the least solution.
- Equivalent semantics by term rewriting.
- Generated languages are in $\operatorname{DTIME}\left(n^{3}\right) \cap \operatorname{DSPACE}(n)$.
- Efficient parsing: Generalized LR, recursive descent.
- Greater expressive power.
- Conjunctive grammar for $\left\{a^{4^{n}} \mid n \geqslant 0\right\}$.

Using positional notation

- Numbers in base- k notation: strings over $\Sigma_{k}=\{0,1, \ldots, k-1\}$.

Using positional notation

- Numbers in base- k notation: strings over $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Set of numbers \leftrightarrow formal language over Σ_{k}

Using positional notation

- Numbers in base- k notation: strings over $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Set of numbers \leftrightarrow formal language over Σ_{k}

Example (Jeż, DLT 2007)

$$
\begin{aligned}
& X_{1}=\left(X_{2}+X_{2} \cap X_{1}+X_{3}\right) \cup\{1\} \\
& X_{2}=\left(X_{12}+X_{2} \cap X_{1}+X_{1}\right) \cup\{2\} \\
& X_{3}=\left(X_{12}+X_{12} \cap X_{1}+X_{2}\right) \cup\{3\} \\
& X_{12}=X_{3}+X_{3} \cap X_{1}+X_{2}
\end{aligned}
$$

Using positional notation

- Numbers in base- k notation: strings over $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Set of numbers \leftrightarrow formal language over Σ_{k}

Example (Jeż, DLT 2007)

$$
\begin{aligned}
X_{1} & =\left(X_{2}+X_{2} \cap X_{1}+X_{3}\right) \cup\{1\} \\
X_{2} & =\left(X_{12}+X_{2} \cap X_{1}+X_{1}\right) \cup\{2\} \\
X_{3} & =\left(X_{12}+X_{12} \cap X_{1}+X_{2}\right) \cup\{3\} \\
X_{12} & =X_{3}+X_{3} \cap X_{1}+X_{2}
\end{aligned}
$$

Using positional notation

- Numbers in base- k notation: strings over $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Set of numbers \leftrightarrow formal language over Σ_{k}

Example (Jeż, DLT 2007)

$$
\begin{aligned}
X_{1} & =\left(X_{2}+X_{2} \cap X_{1}+X_{3}\right) \cup\{1\} \\
X_{2} & =\left(X_{12}+X_{2} \cap X_{1}+X_{1}\right) \cup\{2\} \\
X_{3} & =\left(X_{12}+X_{12} \cap X_{1}+X_{2}\right) \cup\{3\} \\
X_{12} & =X_{3}+X_{3} \cap X_{1}+X_{2}
\end{aligned}
$$

- $X_{2}+X_{2}=\left(20^{*}\right)_{4}+\left(20^{*}\right)_{4}=$

Using positional notation

- Numbers in base- k notation: strings over $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Set of numbers \leftrightarrow formal language over Σ_{k}

Example (Jeż, DLT 2007)

$$
\begin{aligned}
& X_{1}=\left(X_{2}+X_{2} \cap X_{1}+X_{3}\right) \cup\{1\} \\
& X_{2}=\left(X_{12}+X_{2} \cap X_{1}+X_{1}\right) \cup\{2\} \\
& X_{3}=\left(X_{12}+X_{12} \cap X_{1}+X_{2}\right) \cup\{3\} \\
& X_{12}=X_{3}+X_{3} \cap X_{1}+X_{2}
\end{aligned}
$$

- $X_{2}+X_{2}=\left(20^{*}\right)_{4}+\left(20^{*}\right)_{4}=\left(10^{+}\right)_{4} \cup$

Using positional notation

- Numbers in base- k notation: strings over $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Set of numbers \leftrightarrow formal language over Σ_{k}

Example (Jeż, DLT 2007)

$$
\begin{aligned}
& X_{1}=\left(X_{2}+X_{2} \cap X_{1}+X_{3}\right) \cup\{1\} \\
& X_{2}=\left(X_{12}+X_{2} \cap X_{1}+X_{1}\right) \cup\{2\} \\
& X_{3}=\left(X_{12}+X_{12} \cap X_{1}+X_{2}\right) \cup\{3\} \\
& X_{12}=X_{3}+X_{3} \cap X_{1}+X_{2}
\end{aligned}
$$

- $X_{2}+X_{2}=\left(20^{*}\right)_{4}+\left(20^{*}\right)_{4}=\left(10^{+}\right)_{4} \cup\left(20^{*} 20^{*}\right)_{4}$

Using positional notation

- Numbers in base- k notation: strings over $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Set of numbers \leftrightarrow formal language over Σ_{k}

Example (Jeż, DLT 2007)

$$
\begin{aligned}
& X_{1}=\left(X_{2}+X_{2} \cap X_{1}+X_{3}\right) \cup\{1\} \\
& X_{2}=\left(X_{12}+X_{2} \cap X_{1}+X_{1}\right) \cup\{2\} \\
& X_{3}=\left(X_{12}+X_{12} \cap X_{1}+X_{2}\right) \cup\{3\} \\
& X_{12}=X_{3}+X_{3} \cap X_{1}+X_{2}
\end{aligned}
$$

- $X_{2}+X_{2}=\left(20^{*}\right)_{4}+\left(20^{*}\right)_{4}=\left(10^{+}\right)_{4} \cup\left(20^{*} 20^{*}\right)_{4}$
- $X_{1}+X_{3}=\left(10^{*}\right)_{4}+\left(30^{*}\right)_{4}=$

Using positional notation

- Numbers in base- k notation: strings over $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Set of numbers \leftrightarrow formal language over Σ_{k}

Example (Jeż, DLT 2007)

$$
\begin{aligned}
& X_{1}=\left(X_{2}+X_{2} \cap X_{1}+X_{3}\right) \cup\{1\} \\
& X_{2}=\left(X_{12}+X_{2} \cap X_{1}+X_{1}\right) \cup\{2\} \\
& X_{3}=\left(X_{12}+X_{12} \cap X_{1}+X_{2}\right) \cup\{3\} \\
& X_{12}=X_{3}+X_{3} \cap X_{1}+X_{2}
\end{aligned}
$$

- $X_{2}+X_{2}=\left(20^{*}\right)_{4}+\left(20^{*}\right)_{4}=\left(10^{+}\right)_{4} \cup\left(20^{*} 20^{*}\right)_{4}$
- $X_{1}+X_{3}=\left(10^{*}\right)_{4}+\left(30^{*}\right)_{4}=\left(10^{+}\right)_{4} \cup$

Using positional notation

- Numbers in base- k notation: strings over $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Set of numbers \leftrightarrow formal language over Σ_{k}

Example (Jeż, DLT 2007)

$$
\begin{aligned}
& X_{1}=\left(X_{2}+X_{2} \cap X_{1}+X_{3}\right) \cup\{1\} \\
& X_{2}=\left(X_{12}+X_{2} \cap X_{1}+X_{1}\right) \cup\{2\} \\
& X_{3}=\left(X_{12}+X_{12} \cap X_{1}+X_{2}\right) \cup\{3\} \\
& X_{12}=X_{3}+X_{3} \cap X_{1}+X_{2}
\end{aligned}
$$

- $X_{2}+X_{2}=\left(20^{*}\right)_{4}+\left(20^{*}\right)_{4}=\left(10^{+}\right)_{4} \cup\left(20^{*} 20^{*}\right)_{4}$
- $X_{1}+X_{3}=\left(10^{*}\right)_{4}+\left(30^{*}\right)_{4}=\left(10^{+}\right)_{4} \cup\left(10^{*} 30^{*}\right)_{4} \cup$

Using positional notation

- Numbers in base- k notation: strings over $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Set of numbers \leftrightarrow formal language over Σ_{k}

Example (Jeż, DLT 2007)

$$
\begin{aligned}
& X_{1}=\left(X_{2}+X_{2} \cap X_{1}+X_{3}\right) \cup\{1\} \\
& X_{2}=\left(X_{12}+X_{2} \cap X_{1}+X_{1}\right) \cup\{2\} \\
& X_{3}=\left(X_{12}+X_{12} \cap X_{1}+X_{2}\right) \cup\{3\} \\
& X_{12}=X_{3}+X_{3} \cap X_{1}+X_{2}
\end{aligned}
$$

- $X_{2}+X_{2}=\left(20^{*}\right)_{4}+\left(20^{*}\right)_{4}=\left(10^{+}\right)_{4} \cup\left(20^{*} 20^{*}\right)_{4}$
- $X_{1}+X_{3}=\left(10^{*}\right)_{4}+\left(30^{*}\right)_{4}=\left(10^{+}\right)_{4} \cup\left(10^{*} 30^{*}\right)_{4} \cup\left(30^{*} 10^{*}\right)_{4}$

Using positional notation

- Numbers in base- k notation: strings over $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Set of numbers \leftrightarrow formal language over Σ_{k}

Example (Jeż, DLT 2007)

$$
\begin{aligned}
& X_{1}=\left(X_{2}+X_{2} \cap X_{1}+X_{3}\right) \cup\{1\} \\
& X_{2}=\left(X_{12}+X_{2} \cap X_{1}+X_{1}\right) \cup\{2\} \\
& X_{3}=\left(X_{12}+X_{12} \cap X_{1}+X_{2}\right) \cup\{3\} \\
& X_{12}=X_{3}+X_{3} \cap X_{1}+X_{2}
\end{aligned}
$$

- $X_{2}+X_{2}=\left(20^{*}\right)_{4}+\left(20^{*}\right)_{4}=\left(10^{+}\right)_{4} \cup\left(20^{*} 20^{*}\right)_{4}$
- $X_{1}+X_{3}=\left(10^{*}\right)_{4}+\left(30^{*}\right)_{4}=\left(10^{+}\right)_{4} \cup\left(10^{*} 30^{*}\right)_{4} \cup\left(30^{*} 10^{*}\right)_{4}$
- $\left(X_{2}+X_{2}\right) \cap\left(X_{1}+X_{3}\right)=$

Using positional notation

- Numbers in base- k notation: strings over $\Sigma_{k}=\{0,1, \ldots, k-1\}$.
- Set of numbers \leftrightarrow formal language over Σ_{k}

Example (Jeż, DLT 2007)

$$
\begin{aligned}
& X_{1}=\left(X_{2}+X_{2} \cap X_{1}+X_{3}\right) \cup\{1\} \\
& X_{2}=\left(X_{12}+X_{2} \cap X_{1}+X_{1}\right) \cup\{2\} \\
& X_{3}=\left(X_{12}+X_{12} \cap X_{1}+X_{2}\right) \cup\{3\} \\
& X_{12}=X_{3}+X_{3} \cap X_{1}+X_{2}
\end{aligned}
$$

- $X_{2}+X_{2}=\left(20^{*}\right)_{4}+\left(20^{*}\right)_{4}=\left(10^{+}\right)_{4} \cup\left(20^{*} 20^{*}\right)_{4}$
- $X_{1}+X_{3}=\left(10^{*}\right)_{4}+\left(30^{*}\right)_{4}=\left(10^{+}\right)_{4} \cup\left(10^{*} 30^{*}\right)_{4} \cup\left(30^{*} 10^{*}\right)_{4}$
- $\left(X_{2}+X_{2}\right) \cap\left(X_{1}+X_{3}\right)=\left(10^{+}\right)_{4}$

Automata recognizing positional notation

Theorem (Jeż, Okhotin, CSR 2007)
\forall trellis automaton M over Σ_{k} with $L(M) \subseteq \Sigma_{k}^{*} \backslash 0 \Sigma_{k}^{*}$,
\exists a system with $\{\cup, \cap,+\}$ representing $(L(M))_{k}$.

Automata recognizing positional notation

Theorem (Jeż, Okhotin, CSR 2007)
\forall trellis automaton M over Σ_{k} with $L(M) \subseteq \Sigma_{k}^{*} \backslash 0 \Sigma_{k}^{*}$,
\exists a system with $\{\cup, \cap,+\}$ representing $(L(M))_{k}$.
Definition (Culik, Gruska, Salomaa, 1981)
A trellis automaton is a
$M=(\Sigma, Q, I, \delta, F)$ where:

Automata recognizing positional notation

Theorem (Jeż, Okhotin, CSR 2007)
\forall trellis automaton M over Σ_{k} with $L(M) \subseteq \Sigma_{k}^{*} \backslash 0 \Sigma_{k}^{*}$,
\exists a system with $\{\cup, \cap,+\}$ representing $(L(M))_{k}$.

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a
$M=(\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;

Automata recognizing positional notation

Theorem (Jeż, Okhotin, CSR 2007)
\forall trellis automaton M over Σ_{k} with $L(M) \subseteq \Sigma_{k}^{*} \backslash 0 \Sigma_{k}^{*}$,
\exists a system with $\{\cup, \cap,+\}$ representing $(L(M))_{k}$.

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a
$M=(\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;

Automata recognizing positional notation

Theorem (Jeż, Okhotin, CSR 2007)
\forall trellis automaton M over Σ_{k} with $L(M) \subseteq \Sigma_{k}^{*} \backslash 0 \Sigma_{k}^{*}$,
\exists a system with $\{\cup, \cap,+\}$ representing $(L(M))_{k}$.

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a $M=(\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- I: $\Sigma \rightarrow Q$ sets initial states;

Automata recognizing positional notation

Theorem (Jeż, Okhotin, CSR 2007)
\forall trellis automaton M over Σ_{k} with $L(M) \subseteq \Sigma_{k}^{*} \backslash 0 \Sigma_{k}^{*}$, \exists a system with $\{\cup, \cap,+\}$ representing $(L(M))_{k}$.

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a $M=(\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- I: $\Sigma \rightarrow Q$ sets initial states;

Automata recognizing positional notation

Theorem (Jeż, Okhotin, CSR 2007)
\forall trellis automaton M over Σ_{k} with $L(M) \subseteq \Sigma_{k}^{*} \backslash 0 \Sigma_{k}^{*}$, \exists a system with $\{\cup, \cap,+\}$ representing $(L(M))_{k}$.

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a $M=(\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- I: $\Sigma \rightarrow Q$ sets initial states;
- $\delta: Q \times Q \rightarrow Q$, transition function;

Automata recognizing positional notation

Theorem (Jeż, Okhotin, CSR 2007)
\forall trellis automaton M over Σ_{k} with $L(M) \subseteq \Sigma_{k}^{*} \backslash 0 \Sigma_{k}^{*}$, \exists a system with $\{\cup, \cap,+\}$ representing $(L(M))_{k}$.

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a $M=(\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- I: $\Sigma \rightarrow Q$ sets initial states;
- $\delta: Q \times Q \rightarrow Q$, transition function;

Automata recognizing positional notation

Theorem (Jeż, Okhotin, CSR 2007)
\forall trellis automaton M over Σ_{k} with $L(M) \subseteq \Sigma_{k}^{*} \backslash 0 \Sigma_{k}^{*}$, \exists a system with $\{\cup, \cap,+\}$ representing $(L(M))_{k}$.

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a $M=(\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- l: $\Sigma \rightarrow Q$ sets initial states;
- $\delta: Q \times Q \rightarrow Q$, transition function;

Automata recognizing positional notation

Theorem (Jeż, Okhotin, CSR 2007)
\forall trellis automaton M over Σ_{k} with $L(M) \subseteq \Sigma_{k}^{*} \backslash 0 \Sigma_{k}^{*}$, \exists a system with $\{\cup, \cap,+\}$ representing $(L(M))_{k}$.

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a $M=(\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- I: $\Sigma \rightarrow Q$ sets initial states;
- $\delta: Q \times Q \rightarrow Q$, transition function;
- $F \subseteq Q$: accepting states.

Automata recognizing positional notation

Theorem (Jeż, Okhotin, CSR 2007)
\forall trellis automaton M over Σ_{k} with $L(M) \subseteq \Sigma_{k}^{*} \backslash 0 \Sigma_{k}^{*}$, \exists a system with $\{\cup, \cap,+\}$ representing $(L(M))_{k}$.

Definition (Culik, Gruska, Salomaa, 1981)

A trellis automaton is a $M=(\Sigma, Q, I, \delta, F)$ where:

- Σ : input alphabet;
- Q : finite set of states;
- I: $\Sigma \rightarrow Q$ sets initial states;
- $\delta: Q \times Q \rightarrow Q$, transition function;
- $F \subseteq Q$: accepting states.

- Can recognize $\{w c w\},\left\{a^{n} b^{n} c^{n}\right\},\left\{a^{n} b^{2^{n}}\right\}$, VALC.

Outline of the construction

- Turing machine
(Turing, 1936)

Outline of the construction

- Turing machine (Turing, 1936)
- $\operatorname{VALC}(T)$: intersection of two LinCFLs
(Hartmanis, 1967; Baker, Book, 1978)

$$
\begin{aligned}
\operatorname{VALC}(T) & =\left\{C_{T}(w) \downarrow w \mid w \in L(T)\right\} \\
C_{T}(w) & =q_{0} w \# u_{1} q_{1} a_{1} v_{1} \# \ldots \# u_{\ell} q_{\ell} a_{\ell} v_{\ell}
\end{aligned}
$$

Outline of the construction

- Turing machine
(Turing, 1936)
- $\operatorname{VALC}(T)$: intersection of two LinCFLs
(Hartmanis, 1967; Baker, Book, 1978)

$$
\begin{aligned}
\operatorname{VALC}(T) & =\left\{C_{T}(w) \downarrow w \mid w \in L(T)\right\} \\
C_{T}(w) & =q_{0} w \# u_{1} q_{1} a_{1} v_{1} \# \ldots \# u_{\ell} q_{\ell} a_{\ell} v_{\ell}
\end{aligned}
$$

- Trellis automata
(1970s-80s)

Outline of the construction

- Turing machine
(Turing, 1936)
- $\operatorname{VALC}(T)$: intersection of two LinCFLs
(Hartmanis, 1967; Baker, Book, 1978)

$$
\begin{aligned}
\operatorname{VALC}(T) & =\left\{C_{T}(w) দ w \mid w \in L(T)\right\} \\
C_{T}(w) & =q_{0} w \# u_{1} q_{1} a_{1} v_{1} \# \ldots \# u_{\ell} q_{\ell} a_{\ell} v_{\ell}
\end{aligned}
$$

- Trellis automata
(1970s-80s)
- Extracting $L(T)$ from $\operatorname{VALC}(T)$
(Okhotin, ICALP 2003)

Outline of the construction

- Turing machine
(Turing, 1936)
- $\operatorname{VALC}(T)$: intersection of two LinCFLs
(Hartmanis, 1967; Baker, Book, 1978)

$$
\begin{aligned}
\operatorname{VALC}(T) & =\left\{C_{T}(w) \downarrow w \mid w \in L(T)\right\} \\
C_{T}(w) & =q_{0} w \# u_{1} q_{1} a_{1} v_{1} \# \ldots \# u_{\ell} q_{\ell} a_{\ell} v_{\ell}
\end{aligned}
$$

- Trellis automata
(1970s-80s)
- Extracting $L(T)$ from VALC (T)
(Okhotin, ICALP 2003)
- Trellis automata \rightarrow equations over sets of numbers
(Jeż, Okhotin, CSR 2007)

Outline of the construction

- Turing machine
(Turing, 1936)
- $\operatorname{VALC}(T)$: intersection of two LinCFLs
(Hartmanis, 1967; Baker, Book, 1978)

$$
\begin{aligned}
\operatorname{VALC}(T) & =\left\{C_{T}(w) \natural w \mid w \in L(T)\right\} \\
C_{T}(w) & =q_{0} w \# u_{1} q_{1} a_{1} v_{1} \# \ldots \# u_{\ell} q_{\ell} a_{\ell} v_{\ell}
\end{aligned}
$$

- Trellis automata
(1970s-80s)
- Extracting $L(T)$ from $\operatorname{VALC}(T)$
(Okhotin, ICALP 2003)
- Trellis automata \rightarrow equations over sets of numbers
(Jeż, Okhotin, CSR 2007)
- Extracting numbers with notation $L(T)$ from numbers with notation $\operatorname{VALC}(T)$

Arithmetization of Turing machines

- R : recursive set of numbers recognized by TM T.

Arithmetization of Turing machines

- R : recursive set of numbers recognized by TM T.
- $\Sigma_{6}=\{0,1,2,3,4,5\}$, using base- 6 notation.

Arithmetization of Turing machines

- R : recursive set of numbers recognized by TM T.
- $\Sigma_{6}=\{0,1,2,3,4,5\}$, using base- 6 notation.
- Computation of T on numbers $(1 w)_{6}$.

Arithmetization of Turing machines

- R : recursive set of numbers recognized by TM T.
- $\Sigma_{6}=\{0,1,2,3,4,5\}$, using base- 6 notation.
- Computation of T on numbers $(1 w)_{6}$.
- ...encoded by $C_{T}^{1} \in\{30,300\}^{*}$.

Arithmetization of Turing machines

- R : recursive set of numbers recognized by TM T.
- $\Sigma_{6}=\{0,1,2,3,4,5\}$, using base- 6 notation.
- Computation of T on numbers $(1 w)_{6}$.
- ...encoded by $C_{T}^{1} \in\{30,300\}^{*}$.
- $\operatorname{VALC}_{1}(T)=\left\{C_{T}^{1}(i w) 1 w \mid 1 w \in L(T)\right\}$.

$$
(\underbrace{30300300 \ldots 30300}_{C_{T}^{1}(123450)} 123450)_{6} \in \mathrm{VALC}_{1}(T)
$$

Arithmetization of Turing machines

- R : recursive set of numbers recognized by TM T.
- $\Sigma_{6}=\{0,1,2,3,4,5\}$, using base- 6 notation.
- Computation of T on numbers $(1 w)_{6}$.
- ...encoded by $C_{T}^{1} \in\{30,300\}^{*}$.
- $\operatorname{VALC}_{1}(T)=\left\{C_{T}^{1}(i w) 1 w \mid 1 w \in L(T)\right\}$.

$$
(\underbrace{30300300 \ldots 30300}_{C_{T}^{1}(123450)} 123450)_{6} \in \mathrm{VALC}_{1}(T)
$$

- As formal language: recognized by trellis automaton.

Arithmetization of Turing machines

- R : recursive set of numbers recognized by TM T.
- $\Sigma_{6}=\{0,1,2,3,4,5\}$, using base- 6 notation.
- Computation of T on numbers $(1 w)_{6}$.
- ...encoded by $C_{T}^{1} \in\{30,300\}^{*}$.
- $\operatorname{VALC}_{1}(T)=\left\{C_{T}^{1}(i w) 1 w \mid 1 w \in L(T)\right\}$.

$$
(\underbrace{30300300 \ldots 30300}_{C_{T}^{1}(123450)} 123450)_{6} \in \operatorname{VALC}_{1}(T)
$$

- As formal language: recognized by trellis automaton.
- As set of numbers: given by equations.

Constructing the equations

- For TM T recognizing L :

$$
\operatorname{VALC}_{1}(T)=\{\left.\underbrace{C \frac{1}{T}(i w)}_{\{30,300\}^{*}} 1 w \right\rvert\, 1 w \in L(T)\}
$$

Constructing the equations

- For TM T recognizing L :

$$
\operatorname{VALC}_{1}(T)=\{\left.\underbrace{C \frac{1}{T}(i w)}_{\{30,300\}^{*}} 1 w \right\rvert\, 1 w \in L(T)\}
$$

- Two equations:

$$
\begin{aligned}
Y_{1} & \subseteq\left(1 \Sigma_{6}^{+}\right)_{6} \\
\operatorname{VALC}_{1}(T) & \subseteq\left(\{30,300\}^{*} 3000^{*}\right)_{6}+Y_{1}
\end{aligned}
$$

Constructing the equations

- For TM T recognizing L :

$$
\operatorname{VALC}_{1}(T)=\{\left.\underbrace{C \frac{1}{T}(i w)}_{\{30,300\}^{*}} 1 w \right\rvert\, 1 w \in L(T)\}
$$

- Two equations:

$$
\begin{aligned}
Y_{1} & \subseteq\left(1 \Sigma_{6}^{+}\right)_{6} \\
\operatorname{VALC}_{1}(T) & \subseteq\left(\{30,300\}^{*} 3000^{*}\right)_{6}+Y_{1}
\end{aligned}
$$

- Equivalent to:

$$
\left\{(1 w)_{6} \mid(1 w)_{6} \in L(T)\right\} \subseteq Y_{1} \subseteq\left(1 \Sigma_{6}^{+}\right)_{6}
$$

Constructing the equations

- For TM T recognizing L :

$$
\operatorname{VALC}_{1}(T)=\{\underbrace{C_{T}^{1}(i w)}_{\{30,300\}^{*}} 1 w \mid 1 w \in L(T)\}
$$

- Two equations:

$$
\begin{aligned}
Y_{1} & \subseteq\left(1 \Sigma_{6}^{+}\right)_{6} \\
\operatorname{VALC}_{1}(T) & \subseteq\left(\{30,300\}^{*} 3000^{*}\right)_{6}+Y_{1}
\end{aligned}
$$

- Equivalent to:

$$
\left\{(1 w)_{6} \mid(1 w)_{6} \in L(T)\right\} \subseteq Y_{1} \subseteq\left(1 \Sigma_{6}^{+}\right)_{6}
$$

- Least solution: $Y_{1}=\{1 w \mid 1 w \in L(T)\}$.

Constructing the equations

- For TM T recognizing L :

$$
\operatorname{VALC}_{1}(T)=\{\underbrace{C_{T}^{1}(i w)}_{\{30,300\}^{*}} 1 w \mid 1 w \in L(T)\}
$$

- Two equations:

$$
\begin{aligned}
Y_{1} & \subseteq\left(1 \Sigma_{6}^{+}\right)_{6} \\
\operatorname{VALC}_{1}(T) & \subseteq\left(\{30,300\}^{*} 3000^{*}\right)_{6}+Y_{1}
\end{aligned}
$$

- Equivalent to:

$$
\left\{(1 w)_{6} \mid(1 w)_{6} \in L(T)\right\} \subseteq Y_{1} \subseteq\left(1 \Sigma_{6}^{+}\right)_{6}
$$

- Least solution: $Y_{1}=\{1 w \mid 1 w \in L(T)\}$.
- Equation with greatest solution $Z_{1}=\{1 w \mid 1 w \in L(T)\}$.

Results for unresolved equations with $\{\cup,+\}$ or $\{\cap,+\}$

$$
\left\{\begin{aligned}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Results for unresolved equations with $\{\cup,+\}$ or $\{\cap,+\}$

$$
\left\{\begin{aligned}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Theorem
$S \subseteq \mathbb{N}_{0}$ is given by unique/least/greatest solution of such a system if and only if
S is recursive/r.e./co-r.e.

Results for unresolved equations with $\{\cup,+\}$ or $\{\cap,+\}$

$$
\left\{\begin{aligned}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Theorem
$S \subseteq \mathbb{N}_{0}$ is given by unique/least/greatest solution of such a system if and only if
S is recursive/r.e./co-r.e.

Theorem

Decision problems are undecidable, namely:

Results for unresolved equations with $\{\cup,+\}$ or $\{\cap,+\}$

$$
\left\{\begin{aligned}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Theorem

$S \subseteq \mathbb{N}_{0}$ is given by unique/least/greatest solution of such a system if and only if
S is recursive/r.e./co-r.e.
Theorem
Decision problems are undecidable, namely:

- "Exists a solution?":
Π_{1}-complete.

Results for unresolved equations with $\{\cup,+\}$ or $\{\cap,+\}$

$$
\left\{\begin{aligned}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Theorem

$S \subseteq \mathbb{N}_{0}$ is given by unique/least/greatest solution of such a system if and only if
S is recursive/r.e./co-r.e.
Theorem
Decision problems are undecidable, namely:

- "Exists a solution?":
Π_{1}-complete.
- "Exists a unique solution?":
Π_{2}-complete.

Results for unresolved equations with $\{\cup,+\}$ or $\{\cap,+\}$

$$
\left\{\begin{aligned}
\varphi_{1}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{1}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
\varphi_{m}\left(X_{1}, \ldots, X_{n}\right) & =\psi_{m}\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}\right.
$$

Theorem

$S \subseteq \mathbb{N}_{0}$ is given by unique/least/greatest solution of such a system if and only if
S is recursive/r.e./co-r.e.
Theorem
Decision problems are undecidable, namely:

- "Exists a solution?":
Π_{1}-complete.
- "Exists a unique solution?":
- "Exist finitely many solutions?":
Π_{2}-complete.
Σ_{3}-complete.

Conclusion

- Results on language equations over Σ with $|\Sigma| \geqslant 2$.

Conclusion

- Results on language equations over Σ with $|\Sigma| \geqslant 2$.
- ...extended to $\Sigma=\{a\}$.

Conclusion

- Results on language equations over Σ with $|\Sigma| \geqslant 2$.
- ... extended to $\Sigma=\{a\}$.
- cf. Diophantine equations.

Conclusion

- Results on language equations over Σ with $|\Sigma| \geqslant 2$.
- ...extended to $\Sigma=\{a\}$.
- cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.

Conclusion

- Results on language equations over Σ with $|\Sigma| \geqslant 2$.
- ...extended to $\Sigma=\{a\}$.
- cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.
(1) A Diophantine equation with PRIMES as the range of x.

Conclusion

- Results on language equations over Σ with $|\Sigma| \geqslant 2$.
- ...extended to $\Sigma=\{a\}$.
- cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.
(1) A Diophantine equation with PRIMES as the range of x.
(2) A system over sets of numbers with PRIMES as the unique value of X.

Conclusion

- Results on language equations over Σ with $|\Sigma| \geqslant 2$.
- ...extended to $\Sigma=\{a\}$.
- cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.
(1) A Diophantine equation with PRIMES as the range of x.
(2) A system over sets of numbers with PRIMES as the unique value of X.

Problem

Construct any simple system using $\{\cup,+\}$ with a non-periodic solution.

