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Abstract

We analyze and compare the computational complexity of different simulation
strategies for Monte Carlo in the setting of classically scaled population processes.
This setting includes stochastically modeled biochemical systems. We consider the
task of approximating the expected value of some function of the state of the system
at a fixed time point. We study the use of standard Monte Carlo when samples are
produced by exact simulation and by approximation with tau-leaping or an Euler-
Maruyama discretization of a diffusion approximation. Appropriate modifications of
recently proposed multilevel Monte Carlo algorithms are also studied for the tau-leaping
and Euler-Maruyama approaches. In order to quantify computational complexity in
a tractable yet meaningful manner, we consider a parameterization that, in the mass
action chemical kinetics setting, corresponds to the classical system size scaling. We
then introduce a novel asymptotic regime where the required accuracy is a function of
the model scaling parameter. Our new analysis shows that for this particular scaling a
diffusion approximation offers little from a computational standpoint. Instead, we find
that multilevel tau-leaping, which combines exact and tau-leaped samples, is the most
promising method. In particular, multilevel tau-leaping provides an unbiased estimate
and, up to a logarithm factor, is as efficient as a diffusion approximation combined
with multilevel Monte Carlo. Computational experiments confirm the effectiveness of
the multilevel tau-leaping approach.

1 Introduction

For some large N0 > 0 we consider a continuous time Markov chain satisfying the stochastic
equation

XN0(t) = XN0(0) +
K∑
k=1

1

N0

Yk

(
N0

∫ t

0

λk(X
N0(s))ds

)
ζk, (1)
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where XN0(t) ∈ Rd, K < ∞, the Yk are independent unit Poisson processes and, for each
k, ζk ∈ Rd and λk : Rd → R≥0 are Lipschitz continuous with bounded second deriva-
tives. We further assume that λk(X

N(0)) = O(1). This particular scaling choice is often
termed the “classical scaling” [8, 25, 26]. We consider the task of numerically approximating
E[f(XN0(t))], in the sense of confidence intervals, to some fixed tolerance ε0 < 1, where f
satisfies mild regularity conditions.

The class of models of the form (1) satisfying the above assumptions has a long history in
terms of modelling [10, 11, 12, 28], analysis [8, 25, 26] and computation [17, 18]. The frame-
work covers many application areas, including population dynamics [29], queueing theory
[30], and several branches of physics [13]. In recent years, chemical and biochemical kinetics
models in systems biology [31] have been the driving force behind a resurgence of activity
in algorithmic developments, including tau-leaping [19] and its multilevel extension [3, 4].
In this setting, the parameter N0 in (1) can represent Avagadro’s number multplied by the
volume, and in this classical scaling, species are measured in moles per liter. More generally,
however, N0 can just be considered a large number, often of the order 100s or 1000s. Our aim
here is to present a unified computational complexity analysis for a range of Monte Carlo
based methods. This allows us to make what we believe are the first concrete conclusions
pertaining to the relative merits of current methods in a practically relevant asymptotic
regime. Of particular note is that our analysis suggests that a diffusion approximation offers
very few advantages from a computational standpoint.

In section 2, we discuss some of the issues involved in quantifying computational complex-
ity in the present setting, and introduce a novel scaling regime in which clear-cut comparisons
can be made. Further, a high-level summary of our main conclusions is presented. In section
3, we summarize two relevant methods for approximating the model (1): the tau-leap dis-
cretization method, and the Langevin or diffusion approximation. In section 4, we quantify
the computational complexity of using exact simulation, tau-leaping, and simulation of the
diffusion equation with standard Monte Carlo for approximating E[f(XN0(t))] to a desired
tolerance. Further, in subsection 4.2 we review the more recent multilevel methods and
quantify the benefits of their use in both the tau-leaping and diffusion scenarios. In section
5, we provide numerical examples demonstrating our main conclusions. In section 6, we close
with some brief conclusions.

2 Scaling regime and summary of results

In order to motivate our analysis and computations, we begin with a brief, high-level,
overview. In particular, we discuss the entries in Table 1, which summarizes the key re-
sults of this work. Full details are given later in the manuscript, however we point out here
that the terms in Table 1 include assumptions on the variances of the constituent processes
that will be made clear, and proven in a wide variety of cases, in the subsequent sections.

A natural approach to approximate the desired expectation is to simulate paths exactly,
for example with the stochastic simulation algorithm [17, 18] or the next reaction method
[1, 14], in order to obtain independent sample paths {XN0

[i] }ni=1 that can be combined into a
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sample average

µ̂n =
1

n

n∑
i=1

f(XN0

[i] (t)). (2)

This becomes problematic if the cost of each sample path is high—to follow a path exactly
we must take account of each individual transition in the process. This is a serious issue
when many jumps take place, which is the case when N0 is large.

The essence of the Euler tau-leaping approach is to fix the system intensities over time
intervals of length h, and thereby only require the generation of K Poisson random variables
per time interval [19]. In order to analyse the benefit of tau-leaping, and related methods,
Anderson, Ganguly, and Kurtz [2] considered the limit N → ∞ and h → 0 with N = h−β

for some β > 0. To see why such a limit is useful we note two facts:

• If, instead, we allow N → ∞ with h fixed, then the stochastic fluctuations become
negligible [7, 25]. In this thermodynamic limit the model reduces to a deterministic
ODE, so a simple deterministic numerical method could be used.

• If, instead, we allow h→ 0 withN fixed then tau-leaping becomes arbitrarily inefficient.
The “empty” waiting times between reactions, which have nonzero expected values,
are being needlessly refined by the discretization method.

The relation N = h−β brings together the large system size effect (where exact simulation
is expensive and tau-leaping offers a computational advantage) with the the small h effect
(where the accuracy of tau-leaping can be analysed). This gives a realistic setting where the
benefits of tau-leaping can be quantified. It may then be shown [2, Theorem 4.1] that the
bias arising from Euler tau-leaping is O(h) = O(N−β).

For our purposes, rather than the step size h of a particular approximate method, it is
more natural to work in terms of the system size, N0. First, let α > 0 satisfy ε0 = N−α0 .
Next, consider the following family of models parameterized by N ≥ N0,

XN(t) = XN(0) +
K∑
k=1

1

N
Yk

(
N

∫ t

0

λk(X
N(s))ds

)
ζk. (3)

We will study the asymptotic behavior, as N →∞, of the computational complexity required
to approximate E[f(XN(t))] to a tolerance of

εN = N−α. (4)

We emphasize at this stage that we are no longer studying a fixed model. Instead we look
at the family of models (3) parameterized through the system size N , and consider the limit,
as N → ∞, of the computational complexity of the different methods under the accuracy
requirement (4). The computed results then tell us, to leading order, the costs associated
with solving our fixed problem (1) with accuracy requirement N−α0 .
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Monte Carlo method Computational complexity unbiased? Most efficient

MC + exact simulation O(N2α +N) Yes Never

MC + tau-leaping O(N3α−1 +Nα) No Never

MC + midpt. or trap. tau-leap O(N2.5α−1 +Nα/2) No 1
2
< α ≤ 2

3

MC + Euler for diff. approx. O(N3α−1 +Nα) No Never

MLMC + E-M for diff. approx. O(N2α−1 +Nα) No α ≥ 2
3

biased MLMC tau-leaping O(N2α−1 log(N)2 +Nα) No α ≥ 2
3

unbiased MLMC tau-leaping O(N2α−1 log(N)2 +N) Yes α ≥ 1

Table 1: Computational cost for different Monte Carlo methods, as N → ∞. The final
column indicates when each method is most efficient, in terms of the parameter α, up to
factors involving logarithms.

2.1 Summary of results

To quantify computational complexity, we define the “cost-per-path” to be the number of
random variables generated in the simulation of a single path. We argue in section 4.1.1
that the expected cost-per-path of exact simulation scales linearly with N . Tau-leaping, by
contrast, has a cost-per-path of O(h−1), and we need h ∼ εN to get a small enough bias in
our standard Monte Carlo approximation. Since the random variables of interest, f(XN(t)),
generally have a variance that scales like O(N−1), see [4], the costs of standard Monte Carlo
methods then become:

Monte Carlo plus exact simulation: O(N−1ε−2N + 1) paths at a cost of O(N) per path,
totaling a computational complexity of O(ε−2N +N) or O(N2α +N).

Monte Carlo plus tau-leaping: O(N−1ε−2N + 1) paths at a cost of O(ε−1N ) per path, to-
taling a computational complexity of O(N−1ε−3N + ε−1N ) or O(N3α−1 +Nα),

as summarized in the first two rows of Table 1. Note that the “+1” terms above account
for the requirement that we cannot generate less than one path. In this regime, we see that
tau-leaping is beneficial for α < 1. This makes sense intuitively. If we ask for too much
accuracy relative to the system size (α > 1 in (4)) then tau-leaping’s built-in bias outweighs
its cheapness, or, equivalently, the required stepsize is so small that tau-leaping works harder
than exact simulation.

Higher order alternatives to the original tau-leaping method [19] are available. For
example, a mid-point discretization [2, Theorem 4.2] or a trapezoidal method [6] both
achieve O(h2) = O(N−2α) bias, which allows the overall complexity to be reduced to
O(N2.5α−1 + Nα/2) in this regime. This makes midpoint or trapezoidal tau-leaping bene-
ficial as compared with exact simulation for α < 2.

As an alternative to tau-leap discretizations, we could replace the continuous-time Markov
chain by a diffusion approximation and use a numerical stochastic differential equation (SDE)
simulation method to generate approximate paths. Even assuming that such an approxima-
tion produces an unbiased and consistent estimator (which is not, in general, the case) we find
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that an Euler method with standard Monte Carlo gives the same cost as basic tau-leaping;
see section 4.1.3.

Multilevel versions of Monte Carlo (MLMC) have been developed in both the Euler +
diffusion setting [15, 16] and tau-leaping setting [3, 4]. Under mild assumptions on f and the
stochastic system, we find that a multilevel scheme can reduce the standard Monte Carlo
Euler/diffusion cost from O(N3α−1 + Nα) to O(N2α−1 log(N)2 + Nα). Similarly, the biased
version of the multilevel algorithm associated with tau-leaping [3] can also give a complexity
of O(N2α−1 log(N)2+Nα), and this is achieved without perturbing the basic model by taking
a diffusion approximation. Further, an unbiased version of the multilevel algorithm yields a
complexity of

O(N2α−1 log(N)2 +N)

which is equivalent to the biased version when α ≥ 1.
We also mention that a crude and inexpensive approximation to the required expected

value can be computed by simply simulating the deterministic mass action ODE approxima-
tion to (1), which is often referred to as the reaction rate equation. Ignoring all fluctuations
in this manner, using a perturbed model that no longer depends upon N produces an approx-
imation to the mean that has an error of O(1/

√
N), meeting the required O(N−α) accuracy

requirement when α ≤ 1
2
. In this case, solving the determinstic ODE with a pth order nu-

merical method scheme (such as a Runge–Kutta method) requires a stepsize with hp = εN ,
so that h = N−α/p, giving an asymptotic computational cost of O(h−1); that is, O(Nα/p).
Since the order p can be made arbitrarily large, we see that this approach has negligible
cost. For this reason, we view α = 1

2
as a natural cut-off in the relationship (4); we are not

concerned with α ≤ 1
2

since in this regime the requested level of accuracy does not require
fluctuations to be respected.

In addition to the asymptotic complexity counts in Table 1, another important feature
of a method is the availability of computable a posteriori confidence interval information.
As indicated in the table, two of the methods considered here, exact simulation with Monte
Carlo and an appropriately constructed multilevel tau-leaping, are unbiased. The sample
mean, accompanied by an estimate of the overall variance, can then be delivered with a
computable confidence interval. By contrast, the remaining methods in the table are biased:
tau-leaping and Euler-Maruyama introduce discretization errors and the diffusion approx-
imation perturbs the underlying model. Although the asymptotic leading order of these
biases can be estimated, useful a posteriori upper bounds cannot be computed straightfor-
wardly in general, making these approaches much less attractive for reliably achieving a
target accuracy.

Based on the range of methods analysed here in an asymptotic regime that couples system
size and target accuracy, two key messages are

• even assuming there is no bias to the underlying model, simulating at the level of the
the diffusion approximation is only marginally advantageous,

• tau-leaping can offer advantages over exact simulation, and an appropriately designed
version of multilevel tau-leaping (which combines exact and tau-leaped samples) offers
an unbiased method that is efficient over a wide range of accuracy requirements.
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3 Approximation methods

In this section, we briefly review two alternatives to exact simulation of (3).

3.1 Tau-Leaping

Tau-leaping [19] is a computational method that generates Euler-style approximate paths
for the continuous-time Markov chain (3). The basic idea is to hold the intensity functions
fixed over a time interval [tn, tn + h] at the values λk(X

N(tn)), where XN(tn) is the state
of the system at time tn, and, under this assumption, compute the number of times each
reaction takes place over this period. As the waiting times for the reactions are exponentially
distributed, this leads to the following algorithm, which simulates up to a time of T > 0.
For x ≥ 0 we will write Poisson(x) to denote a sample from the Poisson distribution with
parameter x, with all such samples being independent of each other and of all other sources
of randomness used.

Algorithm 1 (Euler tau-leaping). Fix h > 0. Set ZN
h (0) = x0, t0 = 0, n = 0 and repeat the

following until tn+1 = T :

(i) Set tn+1 = tn + h. If tn+1 ≥ T , set tn+1 = T and h = T − tn.

(ii) For each k, let Λk = Poisson(λk(Z
N
h (tn))h).

(iii) Set ZN
h (tn+1) = ZN

h (tn) +
∑

k Λkζk.

(iv) Set n← n+ 1.

Analogously to (3), a path-wise representation of Euler tau-leaping defined for all t ≥ 0
can be given through a random time change of Poisson processes:

ZN
h (t) = ZN

h (0) +
∑
k

Yk

(∫ t

0

λk(Z
N
h (ηh(s)))ds

)
ζk, (5)

where the Yk are as before, and ηh(s)
def
=
⌊ s
h

⌋
h. Thus, ZN

h (ηh(s)) = ZN
h (tn) if tn ≤ s < tn+1.

3.2 Diffusion approximation

The tau-leaping algorithm utilizes a time-stepping method to directly approximate the under-
lying model (3). Alternatively, a diffusion approximation arises by perturbing the underlying
model into one which can be discretized more efficiently.

Define the function F via
F (x) =

∑
k

λk(x)ζk.

By the functional central limit theorem,

1√
N

[Yk(Nu)−Nu] ≈ Wk(u), (6)
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where Wk is a standard Brownian motion. Applying (6) to (3) yields

XN(t) ≈ XN(0) +

∫ t

0

F (XN(s))ds+
∑
k

1√
N
Wk

(∫ t

0

λk(X
N(s))ds

)
ζk,

where the Wk are independent standard Brownian motions. This implies that XN can be
approximated by the process DN satisfying

DN(t) = DN(0) +

∫ t

0

F (DN(s))ds+
∑
k

1√
N
Wk

(∫ t

0

λk(D
N(s))ds

)
ζk,

where DN(0) = XN(0). An equivalent, and more prevalent, way to represent DN is via the
Itô representation

DN(t) = DN(0) +

∫ t

0

F (DN(s))ds+
∑
k

1√
N
ζk

∫ t

0

√
λk(DN(s))dWk(s), (7)

which is often written in the differential form

dDN(t) = F (DN(t))dt+
∑
k

1√
N
ζk
√
λk(DN(s))dWk(s). (8)

The SDE system (8) is known as a Langevin approximation in the biology and chemistry
literature, and a diffusion approximation in probability [8, 31]. We note the following points.

• The diffusion coefficient, often termed the “noise” in the system, is O( 1√
N

), and hence,
in our setting is small relative to the drift.

• The diffusion coefficient involves square roots. Hence, it is critical that the choice of
intensity functions λk only take values in R≥0 on the domain of the solution. This is
of particular importance in the population process setting where the solutions of the
underlying model (3) naturally satisfy a non negativity constraint whereas the SDE
solution paths cannot be guaranteed to remain non-negative in general. Therefore, in
this setting of population processes one reasonable representation, of many, would be

dDN(t) = F (DN(t))dt+
∑
k

1√
N
ζk
√

[λk(DN(s))]+dWk(s), (9)

where [x]+ = max{x, 0}.

• The coefficients of the SDE are not globally Lipschitz in general, and hence standard
convergence theory for numerical methods, such as that in [24], is not applicable. Ex-
amples of nonlinear SDEs for which standard Monte Carlo and multilevel Monte Carlo,
when combined with Euler-Maruyama discretization, fail to produce a convergent al-
gorithm have been pointed out in the literature [21, 20]. The question of which classes
of reaction system lead to well-defined SDEs and which discretizations converge at the
traditional rate therefore remains open.
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In this work, to get a feel for the best possible computational complexity that can arise
from the Langevin approximation, we will study the case where the function F is linear. In
this case the first two moments of the diffusion approximation match those of the underlying
continuous time Markov chain exactly [8]. We will find that even in this idealized light,
the asymptotic computational complexity of Euler-Maruyama on a diffusion approximation
combined with either a standard or a multilevel implementation is only marginally better
than the corresponding computational complexity bounds for multilevel tau-leaping. In par-
ticular, they differ only in a log factor. We note that we only make the linearity assumption
on the diffusion model.

4 Complexity analysis

In this section we establish the results given in Table 1. In subsection 4.1, we derive the first
four rows, whereas in subsection 4.2 we discuss the multilevel framework and establish rows
five, six, and seven.

4.1 Complexity analysis of standard Monte Carlo approaches

4.1.1 Exact Sampling and Monte Carlo

Suppose that we compute exact samples from the process XN(t). The intensity functions
scale like O(N) and the expected holding time between reactions is O(N−1). Hence the
number of system updates required to generate a single path is O(N). Letting

δN = Var(f(XN(t)))

we require
n−1δN = O(ε2N) =⇒ n = O(δNε

−2
N + 1).

Thus, the total computational complexity of making the desired approximation is

O(nN) = O(δNε
−2
N N +N) = O(δNN

2α+1 +N).

In [4] it is shown that Var(XN
i (t)) = O(N−1), giving δN = N−1 and an overall complexity of

O(N2α +N), as given in the first row of Table 1.

4.1.2 Tau-leaping and Monte Carlo

Suppose now that we use n paths of the tau-leaping process (5) to construct the Monte Carlo
estimator µ̂n for E[f(XN(t))]. We note that

E[f(XN(t))]− µ̂n = (E[f(XN(t))]− E[f(ZN
h (t))]) + (E[f(ZN

h (t))]− µ̂n). (10)

Tau-leaping was studied in [2] in a regime of the form h = O(εN). By constraining h = O(εN)
we can apply [2, Theorem 4.1] to give

E[f(XN(t))]− E[f(ZN
h (t))] = O(h) = O(εN),
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for a wide class of functionals f , as required for the bias. Letting

δN,h = Var(f(ZN
h (t)))

we again require n = O(δN,hε
−2
N + 1) to control the statistical error. Since there are O(h−1)

operations per path generation, the total computational complexity for making the desired
approximation is

O(nh−1) = O(δN,hε
−3
N + ε−1N ).

We know from [4] that Var(ZN
h,i(t)) = O(N−1), giving an overall complexity ofO(N3α−1+Nα),

as reported in the second row of Table 1.
Weakly second order extensions to the tau-leaping method can lower the computational

complexity dramatically. For example, if we use the midpoint tau-leaping process ZNh from
[2], we can set h =

√
εN and still achieve a bias of O(εN). In particular, from [2, Theorem 4.2],

we have
E[f(XN(t))]− E[F (ZNh (t))] = O(h2),

for a wide class of f . By similar methods as in [4], it can be shown that ZNh has the same
variance scaling as XN

h and ZN
h . Since we need n = O(δN,hε

−2
N + 1) paths, the complexity is

O(n · h−1) = O(n · ε−1/2N ) = O(δN,hε
−2.5
N + ε

−1/2
N ).

When δN,h = N−1 the resulting complexity is O(N2.5α−1 +Nα/2), as stated in the third row
of Table 1. The same conclusion can also be drawn for the trapezoidal method in [6].

4.1.3 Diffusion approximation and Monte Carlo

In considering an Euler–Maruyama discretization of the diffusion approximation, it is im-
portant to keep in mind that we are studying a parameterized class of SDEs in the N →∞
limit, rather than a single SDE. However, because the drift remains O(1), the weak error
stays at the O(h) level arising from the underlying deterministic Euler method; that is,
Euler-Maruyama introduces a bias of O(h), uniformly in N . So we need h = O(εN) to keep
the bias within our tolerance. Letting

δN,h = Var(f(DN
h (t))),

we require n = O(δN,hε
−2
N + 1) to control the statistical error. Since there are O(h−1)

operations per path generation, the total computational complexity for making the desired
approximation is

O(nh−1) = O(δN,hε
−3
N + ε−1N ).

Since by standard methods we can conclude Var(DN
h,i(t)) = O(N−1), we can again give an

overall complexity of O(N3α−1 +Nα), as reported in the fourth row of Table 1.

4.2 Multilevel Monte Carlo and complexity analysis

In this section we study multilevel Monte Carlo approaches and derive the results summarized
in rows five, six, and seven of Table 1.
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4.2.1 Multilevel Monte Carlo and Diffusion Approximation

Here we specify and analyze an Euler-based multilevel method for the diffusion approxima-
tion, following the original framework of Giles [16].

For some fixed M > 1 we let h` = T ·M−` for ` ∈ {0, . . . , L}. Reasonable choices for M
include M ∈ {2, 3, 4, . . . , 7}, and L is determined below. Let DN

h`
denote the approximate

process generated by Euler-Maruyama applied to (8) with a step size of h`. As mentioned
in section 4.1.3, the discretization has weak order one for a large class of functionals f , so
we set hL = εN , giving L = O(| log(εN)|), so that the finest level achieves the required order
of magnitude for the bias.

Noting that

E[f(DN
hL

(t))] = E[f(DN
h0

(t))] +
L∑
`=1

E[f(DN
h`

(t))− f(DN
h`−1

(t))], (11)

we use i as an index over sample paths and let

Q̂N
0

def
=

1

n0

n0∑
i=1

f(DN
h0,[i]

(t)), and Q̂N
`

def
=

1

n`

n∑̀
i=1

(f(DN
h`,[i]

(t))− f(DN
h`−1,[i](t))),

for ` = 1, . . . , L, where n0 and the different n` have yet to be determined. Note that the
form of the estimator Q̂N

` above implies that the processes DN
h`

and DN
h`−1

will be coupled, or

constructed on the same probability space. We consider here the case when (DN
h`
, DN

h`−1
) are

coupled in the usual way by using the same Brownian path in the generation of each of the
marginal processes. Our (biased) estimator is then

Q̂N def
= Q̂N

0 +
L∑
`=1

Q̂N
` .

Set
δN,` = Var(f(DN

h`
(t))− f(DN

h`−1(t))).

It is shown in [5] that δN,` = O(N−1h2`+N
−2h`) under a wide array of conditions. Finally note

that we also have Var(f(DN
0 (t))) = O(N−1). In [5] it is shown that under these circumstances,

the computational complexity required is O(ε−2N N−1 +ε−1N ). In the regime (4) this translates
to O(N2α−1 +Nα), as reported in the fifth row of Table 1.

4.2.2 Multilevel Monte Carlo and tau-leaping

The use of multilevel Monte Carlo with tau-leaping for continuous-time Markov chains of
the form considered here was proposed in [3], where effective algorithms were devised. Com-
plexity results were given in a non-asymptotic multi-scale setting, with followup results in
[4]. Our aim here is to customize the approach in the scaling regime (4) and thereby develop
easily interpretable complexity bounds that allow straightforward comparison with other
methods. In this section ZN

h`
denotes a tau-leaping process generated with a step-size of

h` = T ·M `, for ` ∈ {0, . . . , L}.
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A major step in [3] was to show that a coupling technique used for analytical purposes in
[2, 27] can also form the basis of a practical simulation algorithm. Letting Yk,i, i ∈ {1, 2, 3},
denote independent, unit rate Poisson processes, we couple the exact and approximate tau-
leaping processes in the following way,

XN(t) =XN(0) +
∑
k

1

N
Yk,1

(
N

∫ t

0

λk(X
N(s)) ∧ λk(ZN

hL
(ηL(s)))ds

)
ζk

+
∑
k

1

N
Yk,2

(
N

∫ t

0

[λk(X
N(s))− λk(XN(s)) ∧ λk(ZN

hL
(ηL(s)))]ds

)
ζk,

(12)

ZN
hL

(t) =ZN
hL

(0) +
∑
k

1

N
Yk,1

(
N

∫ t

0

λk(X
N(s)) ∧ λk(ZN

hL
(ηL(s)))ds

)
ζk

+
∑
k

1

N
Yk,3

(
N

∫ t

0

[λk(Z
N
hL

(ηL(s)))− λk(XN(s)) ∧ λk(ZN
hL

(ηL(s)))]ds

)
ζk,

(13)

where a ∧ b denotes min{a, b} and ηL(s) = bs/hLchL. Sample paths of (12)–(13) can be
generated with a natural extension of the next reaction method or Gillespie’s algorithm, see
[3], and for hL ≥ N−1 the complexity required for the generation of a realization (XN , ZN

hL
)

remains at the O(N) level. The coupling of two approximate processes, ZN
h`

and ZN
h`−1

, takes
the form

ZN
h`

(t) = ZN
h`

(0) +
∑
k

1

N
Yk,1

(
N

∫ t

0

λk(Z
N
h`

(η`(s))) ∧ λk(ZN
h`−1

(η`−1(s)))ds

)
ζk

+
∑
k

1

N
Yk,2

(
N

∫ t

0

[λk(Z
N
h`

(η`(s)))− λk(ZN
h`

(η`(s))) ∧ λk(ZN
h`−1

(η`−1(s)))]ds

)
ζk,

(14)

ZN
h`−1

(t) = ZN
h`−1

(0) +
∑
k

1

N
Yk,1

(
N

∫ t

0

λk(Z
N
h`

(η`(s))) ∧ λk(ZN
h`−1

(η`−1(s)))ds

)
ζk

+
∑
k

1

N
Yk,3

(
N

∫ t

0

[λk(Z
N
h`−1

(η`−1(s)))− λk(ZN
h`

(η`(s))) ∧ λk(ZN
h`−1

(η`−1(s)))]ds

)
ζk,

(15)

where η`(s)
def
= bs/h`ch`. The pair (14)–(15) can be sampled at the same O(h−1` ) cost as a

single tau-leaping path, see [3].
For L as yet to be determined, and noting the identity

E[f(XN(t))] = E[f(XN(t))−f(ZN
L (t))]+

L∑
`=1

E[f(ZN
h`

(t))−f(ZN
h`−1

(t))]+E[f(ZN
h0

(t))], (16)

11



we define estimators for the three terms above via

Q̂N
E

def
=

1

nE

nE∑
i=1

(f(XN
[i] (t))− f(ZN

hL,[i]
(t))),

Q̂N
`

def
=

1

n`

n∑̀
i=1

(f(ZN
h`,[i]

(t))− f(ZN
h`−1,[i](t))), for ` ∈ {1, . . . , L},

Q̂N
0

def
=

1

n0

n0∑
i=1

f(ZN
h0,[i]

(t)),

(17)

so that

Q̂N def
= Q̂N

E +
L∑
`=1

Q̂N
` + Q̂N

0 (18)

is an unbiased estimator for E[f(XN(T ))]. Here, Q̂N
E uses the coupling (12)–(13) between

exact paths and tau-leaped paths of stepsize hL, Q̂N
` uses the coupling (14)–(15) between

tau-leaped paths of stepsizes h` and h`−1, and Q̂N
0 involves single tau-leaped paths of stepize

h0. Note that the algorithm implicit in (18) produces an unbiased estimator, whereas the

estimator is biased if Q̂N
E is left off, as will sometimes be desirable. Hence, we will refer to

estimator Q̂N in (18) as the unbiased estimator, and will refer to

Q̂N
B

def
=

L∑
`=1

Q̂N
` + Q̂N

0 (19)

as the biased estimator. For both the biased and unbiased estimators, the number of paths
at each level, n0, n` and nE, will be chosen to ensure an overall estimator variance of O(ε2N).

Continuing the analysis, we assume that for ` ≥ 0

Var(f(XN(t))− f(ZN
h`

(t))) = O(δN,E) (20)

Var(f(ZN
h`

(t))− f(ZN
h`−1

(t))) = O(δN,`) (21)

Var(f(ZN
h0

(t))) = O(N−1). (22)

It is shown in [4] that δN,` = N−1h` for ` ≥ 0 under a wide array of circumstances, so for
the remainder of this section we assume this scaling.

We consider the biased and unbiased versions of tau-leaping multilevel Monte Carlo
separately.

Biased multilevel Monte Carlo tau-leaping

Here we consider the estimator Q̂N
B defined in (19). We first note that E[f(XN(t))] −

E[f(ZN
hL

(t))] = O(hL) for a large class of functionals f , see [2]. Hence, we begin by choosing
L = O(log(1/εN)) = O(log(N)) in order to control the bias.

For ` ∈ {1, . . . , L}, let C` be the number of random variables required to generate a single
pair of coupled trajectories at level `. Let C0 be the computational complexity required to
generate a single trajectory at the coarsest level. To find n`, ` ∈ {0, . . . , L}, we solve the

12



following optimization problem, which ensures that the variance of Q̂N
B is no greater than

order ε2N :

minimize
n`

L∑
`=0

n`C`, (23)

subject to
L∑
`=0

δN,`
n`

= ε2N . (24)

We use Lagrange multipliers. As C` = K · h−1` , for some fixed constant K, the optimization
problem above is solved at solutions to

∇n0,...,nL,λ

(
L∑
`=0

n`K · h−1` + λ

(
L∑
`=0

δN,`
n`
− ε2N

))
= 0.

Taking derivatives with respect to n` and setting each derivative to zero yields,

n` =
√

λ
K
δN,`h`, for ` ∈ {0, 1, 2, . . . , L} (25)

for some λ ≥ 0. Plugging (25) into (24) gives us,

L∑
`=0

√
δN,`
h`

=
√

λ
K
· ε2N (26)

and hence, by (21) and (22),

√
λ
K

=
L∑
`=0

√
δN,`

h`
≤ CLε−2N N−1/2, (27)

where C is a constant. Noting that L = O(log(ε−1N )), we have

λ
K

= O
(
ε−4N log (εN)2N−1

)
.

Plugging this back into (25), and recognizing that at least one path must be generated to
achieve the desired accuracy, we find

n` = O(ε−2N N−1h`L+ 1).

Hence, the overall computational complexity is

L∑
`=0

n`Kh
−1
` = O

(
L∑
`=0

ε−2N N−1h`Lh
−1
` +

L∑
`=0

h−1`

)
= O

(
ε−2N N−1 log(εN)2 + ε−1N

)
= O

(
N2α−1 log(N)2 +Nα

)
,

13



recovering row six of Table 1.
Note that the computational complexity reported for this biased version of multilevel

Monte Carlo tau-leaping is, up to logarithms, the same as that for multilevel Monte Carlo
on the diffusion approximation. However, none of the generous assumptions we made for the
diffusion approximation, including that E[f(XN(t))] = E[f(DN(t))], were required.

Unbiased multilevel Monte Carlo tau-leaping

The first observation to make is that the telescoping sum (16) implies that the method
which utilizes E[f(XN(t)) − f(ZN

hL
(t))] at the finest level is unbiased for any choice of hL.

That is, we are no longer constrained to choose L = O(| log(εN)|).
Assume (20) holds with δN,E = N−1hL, and that hL ≥ N−1. Let CE be the average

number of random variables required to generate a single pair of the coupled exact and tau-
leaped processes when the tau-leap discretization is hL.We know CE = O(N +h−1L ) = O(N)
. To determine n` and nE, we still solve an optimization problem,

minimize
n`

L∑
`=0

n`C` + nLCE, (28)

subject to
L∑
`=0

δN,`
n`

+
δN,E
nE

= ε2N . (29)

Using Lagrange multipliers again, we obtain,

n` =

√
λδN,`
C`

for ` ∈ {0, 1, 2, . . . , L} (30)

and

nE =

√
λδN,E
CE

. (31)

Plugging back into (29) and noting C` = O(h−1` ) and CE = O(N) yields

√
λ = ε−2N

(
L∑
`=0

√
δN,`C` +

√
δN,ECE

)
≤ C(Lε−2N N−1/2 + ε−2N

√
hL). (32)

Therefore, plugging (32) back into (30) an (31) and noting n` ≥ 1 and nE ≥ 1, we get

n` =

√
λδN,`
C`

+ 1 = O

((
Lε−2N N−1 + ε−2N

√
hL
N

)
h` + 1

)
for ` ∈ {0, 1, 2, . . . , L}

and

nE =

√
λδN,`
C`

+ 1 = O(Lε−2N N−3/2h
1/2
L + ε−2N N−1hL + 1). (33)

14



As a result the total complexity is

g(hL) = O(ε−2N N−1L2 + ε−2N

√
hL
N
L+ h−1L + ε−2N

√
hL
N
L+ ε−2N hL +N)

≤ O(ε−2N N−1L2 + 2ε−2N

√
hL
N
L+ ε−2N hL + 2N) (since h−1L ≤ N)

= O(2ε−2N N−1L2 + 2ε−2N hL + 2N). (using that 2ab ≤ a2 + b2)

It is relatively easy to show that the last line above is minimized at

hL =
2

N
LambertW

(
N

2

)
≈ 2

N
log

(
N

2

)
. (34)

Hence, taking hL = O(N−1 log(N)), we have log(hL)2 = O(log(N)2) and this method
achieves a total computational complexity of leading order

O(ε−2N N−1 log(N)2+ε−2N N−1 log(N)+N) = O(ε−2N N−1 log(N)2+N) = O(N2α−1 log(N)2+N),

as reported in the last row of Table 1.
Note here that if we choose hL = 1

N
we get the same order of magnitude for the compu-

tational complexity. However the hL in (34) is the optimized solution, meaning the leading
order constant should be better and we will see this in Figure 3 and Figure 4 in the next
section.

5 Computational results

In this section we provide numerical evidence for the sharpness of the computational com-
plexity analyses provided in Table 1. We will measure complexity by total number of random
variables utilized. We emphasize that these experiments use extreme parameter choices solely
for the purpose of testing the sharpness of the delicate asymptotic bounds.

Example 1. We consider the classically scaled stochastic model for the following reaction
network (see [8])

S1 + S2

k1/N

�
k2

S3
k3→ S2 + S4.

Letting Xi(t) give the number of molecules of species Si at time t, and letting XN(t) =

15



X(t)/N , the stochastic equations are

XN(t) = XN(0) +
1

N
Y1

(
Nk1

∫ t

0

XN
1 (s)XN

2 (s)ds

)
−1
−1

1
0



+
1

N
Y2

(
Nk2

∫ t

0

XN
3 (s)ds

)
1
1
−1

0



+
1

N
Y3

(
Nk3

∫ t

0

XN
3 (s)ds

)
0
1
−1

1

 ,
where we assume XN(0) = O(1). We implemented different Monte Carlo simulation methods
for the estimation of E[XN

1 (T )] to an accuracy of εN = N−α for both α = 1 and α = 5/4.
Specifically, for each of the order one methods we chose a step size of size h = εN and required
the variance of the estimator to be ε2N . For midpoint tau-leaping, which has a weak order
of two, we chose h =

√
εN . For the unbiased multilevel Monte Carlo method we chose the

finest time-step according to (34). We do not provide estimates for Monte Carlo combined
with exact simulation as those computations were too intensive to complete to the target
accuracy.

For our numerical example we chose T = 1 and X(0) = dN · [0.2, 0.2, 0.2, 0.2]T e with
XN(0) = X(0)/N . Finally, we chose k1 = k2 = k3 = 1 as our rate constants. In Figure 1,
we provide log-log plots of the computational complexity required to solve this problem for
the different Monte Carlo methods to an accuracy of εN = N−1, for each of

N ∈ {213, 214, 215, 216, 217}.

In Figure 2, we provide log-log plots for the computational complexity required to solve this
problem for the different methods to an accuracy of εN = N−

5
4 , for each of

N ∈ {29, 210, 211, 212, 213}.

Tables 2 and 3 provide the estimator variances for the different Monte Carlo methods
with εN = N−1 and εN = N−

5
4 , respectively. The top line provides the target variances.

The specifics of the implementations and results for the different Monte Carlo methods
are detailed below.

Diffusion Approximation plus Monte Carlo. We took a time step of size h = εN to
generate our independent samples. See Figure 1, where the best fit line is y = 1.94x− 0.88,
and Figure 2, where the best fit line is y = 2.73x− 1.37, which are consistent with Table 1.

Monte Carlo Tau-Leaping. We took a time step of size h = εN to generate our indepen-
dent samples. See Figure 1, where the best fit line is y = 1.96x− 1.02, and Figure 2, where
the best fit line is y = 2.76x− 1.63, which are consistent with Table 1.
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Figure 1: Log-log plots of the computational complexity for the different Monte Carlo meth-
ods with varying N ∈ {213, 214, 215, 216, 217} and εN = N−1.
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Figure 2: Log-log plots of the computational complexity for the different Monte Carlo meth-
ods with varying N ∈ {29, 210, 211, 212, 213} and εN = N−

5
4 .
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Method estimator standard deviations
2−13, 2−14, 2−15, 2−16, 2−17

MC and Diff. approx 2−13.10, 2−14.02, 2−15.02, 2−16.01, 2−17.00

MC and Tau-leaping 2−13.09, 2−14.01, 2−15.01, 2−16.01, 2−17.00

MC and Midpoint Tau-leaping 2−13.09, 2−14.04, 2−15.03, 2−16.00, 2−17.01

Multilevel Diff. approx 2−13.20, 2−14.15, 2−15.11, 2−16.09, 2−17.07

Biased Multilevel Tau-leaping 2−13.44, 2−14.39, 2−15.39, 2−16.38, 2−17.32

Unbiased Multilevel Tau-leaping 2−13.29, 2−14.28, 2−15.26, 2−16.21, 2−17.18

Table 2: Actual estimator variances when εN = N−1.

Method estimator standard deviations

εN = N−
5
4 2−11.25, 2−12.50, 2−13.75, 2−15.00, 2−16.25

MC and Diff. approx 2−11.27, 2−12.51, 2−13.75, 2−15.00, 2−16.25

MC and Tau-leaping 2−11.26, 2−12.52, 2−13.76, 2−15.00, 2−16.25

MC and Midpoint Tau-leaping 2−11.26, 2−12.52, 2−13.76, 2−15.00, 2−16.25

Multilevel Diff. approx 2−11.46, 2−12.63, 2−13.85, 2−15.06, 2−16.29

Biased Multilevel Tau-leaping 2−11.62, 2−12.81, 2−13.99, 2−15.19, 2−16.41

Unbiased Multilevel Tau-leaping 2−11.34, 2−12.57, 2−13.79, 2−15.03, 2−16.26

Table 3: Actual estimator variances when εN = N−5/4.

Monte Carlo Midpoint Tau-Leaping. We took a time step of size h =
√
εN . See

Figure 1, where the best fit line is y = 1.44 − 0.86, and Figure 2, where the best fit line is
y = 2.10x− 3.53, which are consistent with Table 1.

Our implementation of the multilevel methods proceeded as follows. We chose h` = 2−`

and for εN > 0 we fixed hL = εN and L = dlog(hL)/ log(2)e for the biased methods. For each
level we generated N0 independent sample trajectories in order to estimate δN,`, as defined
in section 3. Then we selected

n` =

⌈
ε−2N
√
δN,`h`

L∑
j=0

√
δN,j
hj

⌉
+ 1, for ` ∈ {0, 1, 2, . . . , L},

to ensure the overall variance is below the target ε2N .

Multi-Level Monte Carlo Diffusion Approximation We used N0 = 400 for our pre-
calculation of the variances. See Figure 1, where the best fit line is y = 0.99x + 2.75, and
Figure 2, where the best fit line is y = 1.45x+ 2.61, which are consistent with Table 1.

Multi-Level Monte Carlo Tau-Leaping. We used N0 = 100 for our pre-calculation of
the variances. See Figure 1, where the best fit line is y = 1.12x+ 3.70, and Figure 2, where
the best fit line is y = 1.56x+ 4.64, which are consistent with Table 1.

Unbiased Tau-leaping multilevel Monte Carlo. For our implementation of unbiased
multilevlel tau-leaping, we set hL = 2

N
LambertW

(
N
2

)
and L = dlog(hL)/ log(2)e. For each
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Figure 3: Complexity comparison of unbiased multilevel Monte Carlo tau-leaping when
hL = 1

N
and hL = 2

N
LambertW( 2

N
), with εN = N−1.

level we utilized N0 = 100 independent sample trajectories in order to estimate δN,`, C` and
δN,E, CE, as defined in section 3. Then we then selected

n` =

⌈
ε−2N

√
δN,`
C`

(
L∑
`=0

√
δN,`C` +

√
δN,ECE

)⌉
+ 1, for ` ∈ {0, 1, 2, . . . , L},

and

nE =

⌈
ε−2N

√
δN,E
CE

(
L∑
`=0

√
δN,`C` +

√
δN,ECE

)⌉
+ 1,

to ensure the overall estimator variance is below our target ε2N . See Figure 1, where the best
fit line is y = 1.08x + 3.71, and Figure 2, where the best fit line is y = 1.68x + 2.65, which
are consistent with Table 1.

We also used the unbiased tau-leaping multilevel Monte Carlo method with hL = N−1

to estimate E[X1(1)] to accuracy εN = N−α, for both α = 1 and α = 5/4. See Figures 3 and
4 for log-log plots of the required complexity when hL = N−1 and hL = ( 2

N
)LambertW(N

2
).

As predicted in section 4.2.2, the complexity required when hL = ( 2
N

)LambertW(N
2

) is lower
by some constant factor.

6 Conclusions

Many researchers have observed in practice that approximation methods can lead to compu-
tational efficiency, relative to exact path simulation. However, meaningful, rigorous justifica-

19



ln(N)
6 6.5 7 7.5 8 8.5 9 9.5

ln
(C

o
m

p
le
x
it
y
)

13

14

15

16

17

18

19

hL = 1
N

hL = 2
N

LambertW ( 2
N

)

Figure 4: Complexity comparison of unbiased multilevel Monte Carlo tau-leaping when
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N
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4 .

tion for whether and under what circumstances approximation methods offer computational
benefit has proved elusive. Focusing on the classical scaling, we note that a useful analysis
must resolve two issues:

(1) Computational complexity is most relevant for “large” problems, where many events
take place. However, as the system size grows the problem converges to a simpler,
deterministic limit that is cheap to solve.

(2) On a fixed problem, in the traditional numerical analysis setting where mesh size tends to
zero, discretization methods become arbitrarily more expensive than exact simulation
because the exact solution is piecewise constant.

In this work, we offer what we believe to be the first rigorous complexity analysis that
allows for systematic comparison of simulation methods. The results, summarized in Table 1,
apply under the classical scaling for a family of problems parametrized by the system size,
N , with accuracy requirement N−α. In this regime, we can study performance on “large”
problems when fluctuations are still relevant.

A simple conclusion from our analysis is that standard tau-leaping does offer a concrete
advantage over exact simulation when the accuracy requirement is not too high, α < 1;
see the first two rows of Table 1. Also, “second order” midpoint or trapezoidal tau-leaping
improves on exact simulation for α < 2; row three of Table 1. Furthermore, in this framework,
we were able to analyze the use of a diffusion, or Langevin, approximation and the multilevel
Monte Carlo versions of tau-leaping and diffusion simulation. Our overall conclusion is that
some form of tau-leaping is always worthwhile. For low accuracy (α < 2/3), second order
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tau-leaping with standard Monte Carlo is the most efficient of the methods considered. At
higher accuracy requirements, α > 2/3, multilevel Monte Carlo tau-leaping is joint-best.
Moreover, for all α > 1 an unbiased version of multilevel Monte Carlo tau-leaping shares the
lowest complexity level, making it our method of choice for high accuracy.

Possibilities for further research along the lines opened up by this work include:

• analyzing other methods within this framework, for example, (a) multilevel Monte
Carlo for the diffusion approximation using discretization methods customized for small
noise systems, or (b) methods that tackle the Chemical Master Equation directly using
large scale deterministic ODE technology [22, 23],

• coupling the required accuracy to the system size in other scaling regimes, for example,
to study specific problem classes with multiscale structure [9].
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