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Abstract

Standard formulations of the economic model of tort deterrence constitute
the injurer as the unboundedly rational bad man. Unbounded rationality im-
plies that the injurer can always compute the solution to his care-taking prob-
lem. This in turn implies that optimal liability rules can provide robust deter-
rence, for they can always induce the injurer to take socially optimal care. In
this paper I examine the computational complexity of the injurer’s care-taking
problem. I show that the injurer’s problem is computationally tractable when
the precaution set is unidimensional or convex, but that it is computationally
intractable when the precaution set is multidimensional and discrete. One im-
plication is that the standard assumptions of unidimensional and convex care,
though seemingly innocuous, are pivotal to ensuring that tort law can provide
robust deterrence. It is therefore important to recognize situations with multi-
dimensional discrete care, where robust tort deterrence may not be possible.
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1 Introduction

In many ways the economic approach to law embraces Oliver Wendell Holmes’ “bad

man” theory of the law (Holmes 1897). Holmes argeed that if “you want to know

the law and nothing else, you must look at it as a bad man,” to whom the notion of

legal duty means “a prophecy that if he does certain things he will be subjected to

disagreeable consequences by way of imprisonment or compulsory payment of money”

(Holmes 1897, pp. 459 & 461). In other words, if you want to understand the law,

you must focus on the deterrence effects of legal rules.

Nowhere is the focus on the deterrence effects of legal rules more prominent than

in the economic analysis of tort law. The economic model of tort deterrence posits

that the tortfeasor, known as the injurer, chooses safety precautions, or care, when

engaging in a risky activity to minimize his cost of care plus his expected liability to a

potential victim (Shavell 1987, ch. 2). The social goal, by comparison, is to minimize

the injurer’s cost of care plus the victim’s expected loss. Under the economic model,

a liability rule is deemed optimal if the solution to the injurer’s care-taking problem

under that rule coincides with the solution to the social problem.

Standard formulations of the economic model of tort deterrence constitute the

injurer as the unboundedly rational bad man. Unbounded rationality implies that

the injurer can always compute the solution to his care-taking problem. This in turn

implies than an optimal liability rule can provide robust deterrence, for it can always

induce the injurer to take socially optimal care (Cooter and Ulen 2012, ch. 7).

Beginning with Simon (1955, 1957), however, economists have questioned the

assumption of unbounded rationality and explored the implications of bounded ra-

tionality for standard economic analysis. Legal economists have followed suit (see,

for example, Jolls, Sunstein, and Thaler 1998; Korobkin and Ulen 2000). An impor-

tant aspect of bounded rationality is limited computational capacity. This aspect of

bounded rationality refers not only to humans’ limited cognitive ability or skill with

respect to computation, but also to the theoretical and practical limits of computabil-

ity even when aided by machines (Simon 1976, 1990). While the former limit is the

subject of behavioral economics and psychology, the latter limits are the subjects of

computability theory and computational complexity theory, respectively.

In this paper I examine the computational complexity of the injurer’s care-taking

problem under strict liability and negligence, the two basic liability rules of Anglo-
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American tort law. I start by defining several concepts from computational complexity

theory, including what it means for a problem to be computationally tractable. In

short, a problem is computationally tractable if it can be solved in polynomial time,

i.e., if the number of elementary steps required to compute the solution grows at a

polynomial rate (or slower) with the size of the problem.1

In the heart of the paper I analyze tort deterrence using the unilateral care model

with fixed activity level (the UCFA model).2 The standard UCFA model includes

four assumptions that impact the computational complexity of the injurer’s problem:

(i) there is a single dimension of care; (ii) care is a continuous variable; (iii) the

marginal cost of care is increasing; and (iv) the marginal benefit of care (i.e., the

marginal reduction in expected loss) is decreasing (see, for example, Shavell 1987,

ch. 2; Cooter and Ulen 2012, ch. 6).3 For obvious reasons I refer to the first assumption

as the “unidimensional care” assumption. I refer to the second as the “convex care”

assumption because it implies that the injurer’s precaution set is convex. The third

and fourth assumptions are motivated and implied by the law of diminishing returns;

I therefore refer to them collectively as the “diminishing returns” assumption.

Throughout the analysis I maintain the diminishing returns assumption, which is

based on a “fundamental law of economics” (Samuelson 1980, p. 25), and probe the

unidimensional and convex care assumptions, which are assumptions of convenience

that lack comparable economic foundations.4 I show that (i) either assumption is

sufficient to ensure that the injurer’s problem is computationally tractable, but that

(ii) when we relax both assumptions—and assume that care is multidimensional and

discrete—the injurer’s problem is computationally intractable.5

1The definition of computational tractability is based on the limit behavior of the solution (i.e.,
on a worst-case analysis) to make it robust to variation in problem specifics. Time is measured in
elementary steps to make it robust to variation in computing power.

2The UCFA model is the foundational model upon which other economic models of tort deterrence
are built. In cases of unilateral care, the injurer, but not the victim, can take care to reduce the
victim’s expected loss. In cases of unilateral care with fixed activity level, the injurer can reduce the
victim’s expected loss only by taking care and not by modulating his activity level.

3For the avoidance of doubt, unless they are qualified by “strictly,” the terms “increasing” and
“decreasing” (and similar terms like “positive” and “negative”) are used in the weak sense.

4More precisely, I maintain the implications of the diminishing returns assumption. When care is
unidimensional the diminishing returns assumptions implies that the social cost function is convex
and supermodular. In order to preserve these implications when care is multidimensional I assume
that there are diminishing returns to care within and across each safety dimension.

5The first result holds without qualification for the model analyzed in Section 3, which assumes
that the social cost function has a quadratic form. For the general model analyzed in the Appendix,
which does not specify a functional form for the social cost function, the first result holds for social
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The intuition for this result is the following. With convex care the injurer’s prob-

lem is a convex optimization problem—the minimization of a convex function on a

convex choice set. Due to the magic of calculus, this problem can generally be solved

in polynomial time whether the choice set is unidimensional or multidimensional.

With discrete care, by contrast, the injurer’s problem entails the minimization of a

supermodular function on a discrete choice set. In general the only known solution

algorithm for this problem is the brute-force method—evaluate the objective function

at every point in the choice set. When the choice set is unidimensional, the size of

the problem is governed by its cardinality, and thus the problem is computationally

tractable (because brute-force scales linearly in the cardinality of the choice set).

When the choice set is multidimensional, however, the size of the problem is gov-

erned by its dimension, and thus the problem is computationally intractable (because

brute-force scales exponentially in the dimension of the choice set).

The paper is structured as follows. The brief primer on computational complexity

theory appears in Section 2. At the end of the section I provide several examples of

real-world problems in which the choice set is multidimensional and discrete. The

examples are my attempt to convince the skeptical reader that multidimensional

discrete choice sets are an important phenomenon in the real world.

Section 3 contains the tort deterrence analysis. In the section I analyze a “toy”

version of the UCFA model—driver-pedestrian accident with quadratic social cost.

My analysis of this simple model illustrates the main takeaways of the paper. For the

interested reader I also analyze a general model in the Appendix. The general model

maintains the shape restrictions on the social cost function that are implied by the

diminishing returns assumption, but does not assume a specific functional form.

In Section 4 I tie up three loose ends. First, I address the (dim) prospect of

approximating the solution to the injurer’s care-taking problem when care is multi-

dimensional and discrete. Second, I critique the common justifications for the uni-

dimensional and convex care assumptions. Third, I revisit the diminishing returns

assumption and consider the (unlikely) possibility of increasing returns to care.

I conclude the paper in Section 5 with a discussion of several implications of my

analysis for the theory and practice of tort law.

cost functions that satisfy a minimal computability assumption (in addition to the diminishing
returns assumption). The second results hold generically without qualification for both models.
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The paper contributes to two strands of the law and economics literature. The first

is the strand that analyzes the deterrence properties of tort liability rules, including

strict liability and negligence. The pioneers of this strand include Calabresi (1961,

1970), Posner (1972a,b), Brown (1973), Diamond (1974a,b), Green (1976), Landes

and Posner (1980, 1987), and Shavell (1980, 1987). Surveys of this strand are provided

by Shavell (2007), Schäfer and Müller-Langer (2009), and Arlen (2017).

The second is the behavioral strand that explores the implications of bounded

rationality for the standard economic analysis of tort deterrence. Jolls, Sunstein, and

Thaler (1998) and Korobkin and Ulen (2000) were among the early calls for the mod-

ification of standard law and economics models to reflect bounded rationality. Zamir

and Teichman (2018) provide a comprehensive textbook treatment of the emergent

field of behavioral law and economics, including a chapter on the behavioral analy-

sis of tort law. Faure (2010), Halbersberg and Guttel (2014), and Luppi and Parisi

(2018) provide surveys of behavioral models of tort law.

To my knowledge this is the first paper in the law and economics literature to

explore how computational complexity impacts tort deterrence. Legal economists

have long recognized that “people’s decision-making capabilities are relevant to the

design of tort law” (Zamir and Teichman 2018, p. 330). In their early paper on strict

liability, for instance, Guido Calabresi and Jon Hirschoff argue that the choice among

tort liability rules should depend not on the theoretical ability of injurers and victims

to optimize, but rather on their actual abilities taking into account the “psychological

or other impediments” to optimizing (Calabresi and Hirschoff 1972, p. 1059; see also

Faure 2008).6 Subsequently, legal economists have studied the implications for tort

law of various aspects of bounded rationality, including ambiguity (Teitelbaum 2007;

Chakravarty and Kelsey 2017; Franzoni 2017) and unawareness (Chakravarty, Kelsey,

and Teitelbaum 2019). As far as I am aware, however, no other paper in the literature

has studied the implications of computational complexity for tort law.

The paper also contributes to the literature on legal complexity (see, for example,

Ehrlich and Posner 1974; Schuck 1992; Kaplow 1995; Ruhl and Katz 2015). Papers in

this literature study various kinds of legal complexity, including the intricacy of legal

6Legal economists have also long recognized that people’s limited computational capacity is rel-
evant to contracts. In his oft-cited paper on the transaction cost approach to the study of economic
organization, for example, Oliver Williamson argues that “incomplete contracting is the best that
can be achieved” because “organizational man,” unlike “economic man,” is “boundedly rational” and
subject to “limits in formulating and solving complex problems” (Williamson 1981, pp. 553-554).
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rules and the legal system. To my knowledge the only other paper in this literature

that studies computational complexity is Kades (1997). In contrast to this paper,

Kades does not focus on the tractability of compliance problems arising under tort

law. Rather, he focuses on the tractability of adjudication problems in selected cases

arising under bankruptcy law, commercial law, contract law, corporate law, criminal

law, property law, and tax law. He also invokes computational complexity to explain

judges’ aversion to multiparty disputes and the existence of private property.7

2 Computational Complexity

Computational complexity theory is a subfield of computer science that studies the

tractability of computational problems, including decision problems (i.e., yes-no prob-

lems) and optimization problems. In this section I introduce several concepts from

computational complexity theory that are relevant for my analysis.8

2.1 Algorithms and Efficiency

An algorithm is a step-by-step procedure for solving a computational problem. The

time complexity of an algorithm, denoted by τ(n), gives the maximum number of

elementary steps that the algorithm requires to produce its output, expressed as a

function of the size of its input, denoted by n. Algorithms are classified according

to the rate at which τ(n) grows with n. Algorithms for which τ(n) grows with n at

a polynomial rate (or slower) are said to run in polynomial time. Polynomial-time

algorithms are considered to be fast or efficient. Algorithms for which τ(n) grows

with n at a faster rate (e.g., exponential) are considered to be slow or inefficient.

The efficiency of polynomial-time algorithms is manifested by a comparison with

exponential-time algorithms. Table 1 displays the running times for selected in-

put sizes n ≤ 100 of a polynomial-time algorithm that requires n2 steps and an

exponential-time algorithm that requires 2n steps, assuming one calculation per step

and 200,000 trillion calculations per second (the peak speed of the world’s fastest

7There are papers in the economics and computer science literatures that study the computational
complexity of economic models, including papers that study the tractability of computing Nash
equilibria in games (Daskalakis 2009; Roughgarden 2010) and of the consumer’s utility-maximization
problem (Echenique, Golovin, and Wierman 2011; Gilboa, Postlewaite, and Schmeidler 2021).

8For a more rigorous introduction to these concepts, see, for example, Garey and Johnson (1979),
Schrijver (2003), or Kleinberg and Tardos (2006).
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Table 1: Polynomial Time versus Exponential Time

Running time
Input size Polynomial-time algorithm Exponential-time algorithm

(n) (n2 steps) (2n steps)
50 Less than a second Less than a second
75 Less than a second More than two days
80 Less than a second More than two months
85 Less than a second More than six years
90 Less than a second Almost 200 years
95 Less than a second More than 6,000 years
100 Less than a second More than 200,000 years

Note: Assumes one calculation per step and 200,000 trillion calculations per second.

supercomputer). The polynomial-time algorithm runs in less than a second for all

input sizes n ≤ 100 (and, indeed, for all n ≤ 447, 213, 595). By contrast, the running

time of the exponential-time algorithm increases from less than a second for n = 50

to more than 200,000 years for n = 100.

2.2 Problems and Tractability

In light of the efficiency of polynomial-time algorithms, computational problems that

can be solved in polynomial time are considered to be easy or tractable. In what

follows I describe the concept of NP-hardness, which is the defining property of

computational problems that are considered to be hard or intractable.

I begin with two classes of decision problems known as P and NP . P is the class

of decision problems that can be solved in polynomial time (i.e., efficiently solved).

NP is the class of decision problems for which it can be verified in polynomial time

whether a proposed solution is correct (i.e., efficiently verified). Every problem in P
is necessarily also in NP (i.e., P ⊆ NP), for if a problem can be efficiently solved

that efficiently verifies whether a proposed solution correct. Whether P = NP (i.e.,

whether every decision problem that can be efficiently verified can also be efficiently

solved) is an open question—indeed, it is a Millennium Prize Problem (Jaffe 2000).

It is conjectured and presumed that P 6= NP .

I now come to the concept of NP-hardness. Any computational problem—

including, in particular, an optimization problem—is NP-hard if every problem in

NP is reducible to it. One problem is reducible to a second problem if the existence
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of an efficient solution to the second problem would imply the existence of an effi-

cient solution to the first problem. In this sense, an NP-hard problem is at least as

hard as every problem in NP . It follows that an NP-hard problem can be efficiently

solved only if P = NP , or, equivalently, that no NP-hard problem can be efficiently

solved unless P = NP .9 Because it is conjectured and presumed that P 6= NP , all

NP-hard problems are considered to be hard or intractable.10

The following are four well-known examples of NP-hard problems.

Problem 1 (knapsack) Given a set of items with specified values and weights and

a knapsack with a specified capacity, find a subset of the items to pack in the knapsack

such that the sum of their values is maximized while the sum of their weights does

not exceed the knapsack’s capacity.

Problem 2 (traveling salesman) Given a set of cities and distances between each

pair of cities, find a roundtrip route that visits each city exactly once such that the

total distance traveled is minimized.

Problem 3 (set cover) Given a set of elements and a collection of subsets that

covers the set (i.e., whose union equals the set), find the smallest subcollection of

subsets that covers the set.

Problem 4 (max cut) Given a graph defined by a set of nodes and edges with

specified capacities connecting each pair of nodes, find a cut of the graph (i.e., a

subset of nodes) that maximizes the total capacity of the edges severed by the cut.

Each of these problems is an optimization problem where the choice set is multi-

dimensional and discrete. For instance, the knapsack problem with n items is a

binary linear optimization problem: Choose x = (x1, . . . , xn) ∈ {0, 1}n to maximize
∑n

i=1
vixi subject to

∑n

i=1
wixi ≤ c, where vi and wi are the value and weight of item

i, respectively, c is the capacity of the knapsack, and xi indicates whether item i is

packed in the knapsack.11 Meanwhile, the max cut problem for a graph with n nodes

9Even if P = NP , this would imply only that some, but not necessarily all, NP-hard problems
can be efficiently solved.

10An important subclass of NP-hard problems are NP-complete problems. NP-complete prob-
lems are NP-hard problems that are in NP . By definition, all NP-complete problems are decision
problems (because they are in NP) and, morevoer, all NP-hard optimization problems are at least
as hard as all NP-complete problems.

11The knapsack problem has many variants, including variants with a nonlinear value function
(e.g., a quadratic function) or multiple capacity constraints (Kellerer, Pferschy, and Pisinger 2004).
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is a binary quadratic optimization problem: Choose x = (x1, . . . , xn) ∈ {0, 1}n to

maximize
∑n

i,j=1

1

2
wij(xi − xj)

2, where wij is the weight of the edge connecting nodes

i and j and xi indicates whether node i is contained in the cut.

2.3 Real-world Problems

Many real-world problems are optimization problems with multidimensional discrete

choice sets. Here are five examples inspired by Problems 1-4.

Example 1 (vehicle design) Tort litigation is replete with suits for defective de-

sign of vehicles such as airplanes (e.g., the Boeing 737 MAX) and automobiles (e.g.,

the Ford Pinto). See, for example, In re: Lion Air Flight JT 610 Crash (1:18-cv-

07686 N.D. Ill. [2018]); Grimshaw v. Ford Motor Co. (119 Cal. App. 3d 757 [1981]).

A vehicle can be seen as a collection of systems that differentially impact safety,

performance, and cost. The vehicle design problem can thus be seen as a knapsack

problem in which there is a set of available systems and the objective is to find a

subset that maximizes safety subject to performance and cost constraints. The set of

available systems is often large. For instance, there are dozens of available systems

for automobiles, including braking systems (e.g., anti-lock, disc, and drum), drive

systems (e.g., all wheel, four wheel, front wheel, and rear wheel), frame systems (e.g.,

backbone tube, ladder, space frame, x-frame, and unibody), lighting systems (e.g.,

head lights, brake lights, hazard lights, tail lights, and turn signals), restraint sys-

tems (e.g., airbags, LATCH, and seat belts), steering systems (e.g., rack-and-pinion,

power, and four wheel), suspension systems (e.g., beam axle, dual beam axle, double

wishbone, and MacPherson strut), transmission systems (e.g., automatic, automated

manual, continuously variable, and manual), and accident mitigation systems (e.g.,

adaptive cruise control, adaptive headlights, adaptive park assist, automatic emer-

gency braking, automatic high beams, backup camera, bicycle detection, blind sport

warning, brake assist, curve speed warning, driver attention monitoring, forward col-

lision warning, high speed alert, hill descent assist, hill start assist, lane centering

assist, lane departure warning, lane keeping assist, left turn crash avoidance, night

vision, obstacle detection, parking sensors, pedestrian detection, rear cross traffic

warning, semi-autonomous driving, shatter resistant glass, temperature warning, tire

pressure monitoring, traction control, and traffic sign recognition).
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Example 2 (school safety) School shootings have become an all-too-common phe-

nomenon. A tragic example is the shooting at Marjory Stoneman Douglas High School

in Parkland, Florida on February 14, 2018, which left 17 people dead and another 17

injured (Bakeman 2019). Families of the victims filed numerous tort suits against the

Broward County School Board for failing to safeguard its students and employees.

See, for example, Alhadeff v. The School Board of Broward County (19-008077 Fla.

Cir. Ct. [2019]). In the wake of the shooting, the Broward County League of Cities’

Community Public Safety Task Force (2018) issued a report documenting the numer-

ous security measures in place at the time of the shooting (e.g., placement of police

officers in schools, single point of entry measures, camera surveillance programs, and

active shooter training) and making 100 recommendations for additional measures to

“maximize safety” at Broward County schools. From this example the school safety

problem can be seen as a knapsack problem in which there is a large set of available

security measures that vary in terms of their efficacy and cost, and the objective is

to find the subset that maximizes school safety subject to a cost constraint.

Example 3 (carriage of goods) At common law carriers have a ceteris paribus

duty to send goods over the shortest route. In Miller v. Davis (213 Iowa 1091

[1932]), for example, a rail carrier who failed to ship unrouted freight (three carloads

of grain) over the shortest route between terminal points in Iowa and Tennessee was

held liable to the shipper for the difference in the tariff rates on the route taken and

the shortest route ($118.64). The carriage of goods problem can thus be seen as a

traveling salesman problem.

Example 4 (medical diagnosis) Misdiagnosis of illness or injury can subject a

physician to liability for medical malpractice. See, for example, Pike v. Honsinger

(155 N.Y. 201 [1898]). Insofar as physicians follow the rule of diagnostic parsimony

(Hilliard et al. 2004), the medical diagnosis problem can be seen as a set covering

problem (Reggia, Nau, and Wang 1983). The basic idea is this. A patient presents a

set of symptoms. All the disorders that produce one or more of the patient’s symptoms

form a collection, where each disorder is defined by the subset of symptoms that it

produces. The best diagnosis is the smallest subcollection of disorders that covers

(explains) the patient’s symptoms.

Example 5 (D-Day) In the weeks preceding the Allied invasion of Normandy on

June 6, 1944, Allied air forces conducted an operation known as the Transportation
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Plan in which strategic bombers destroyed key rail lines in France to isolate Normandy

from German reinforcements (Ellis 1962). The operation was very effective. Accord-

ing to a contemporaneous German Transport Ministry report, “the raids . . . caused

the breakdown of all main lines; the costal defenses have been cut off from the supply

bases in the interior . . .” (Ellis 1962, p. 111). The D-Day problem can be seen as

a max cut problem where the French rail network is a graph with nodes (stations)

and connecting edges (lines) with specified capacities (for carrying German reinforce-

ments), and the Allied objective was to find a cut of the graph containing Normandy

that maximized the total capacity of the severed edges.

I now turn to tort deterrence and the computational complexity of the injurer’s

care-taking problem under the UCFA model. As it turns out, the max cut problem

plays an important role in the analysis. In short, I show that the max cut problem is

reducible to the social problem with multidimensional discrete care, which establishes

that the injurer’s problem with multidimensional discrete care is NP-hard.

3 Tort Deterrence

I analyze tort deterrence using the unilateral care model with fixed activity level

(the UCFA model). In this section I present a “toy” version of the model—driver-

pedestrian accident with quadratic social cost—that illustrates the main takeaways

of the paper. A general model and analysis are set forth in the Appendix.

In the model there are two agents: a driver and a pedestrian. Both are risk neutral

expected utility maximizers. The agents are strangers and not in any contractual

relationship. Transaction costs are sufficiently high to preclude Coasian bargaining.

The driver engages in a risky activity—driving. In the event of an accident the

pedestrian incurs a loss. The driver, but not the pedestrian, can take precautions

against an accident. The set of feasible precautions forms the driver’s choice set—the

precaution set. More specifically, the driver’s precaution set is the Cartesian product

of n ≥ 1 sets, where each factor set represents a different type of precaution and the

elements of each factor set represent the feasible levels of care within each type.

The governing liability rule determines whether the driver is liable to the pedes-

trian for her loss in the event of an accident. I consider the two basic liability rules of

Anglo-American tort law: strict liability and negligence. Under negligence the driver
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is liable to the pedestrian if the driver failed to exercise due care (a legal standard

set by the court). Under strict liability the driver is liable to the pedestrian whether

or not the driver exercised due care.

3.1 The Model

There are n ≥ 1 safety precautions that a driver can take to reduce the expected loss

from an accident with a pedestrian.12 Let X ⊆ Rn
+ denote the driver’s n-dimensional

precaution set, and let x = (x1, . . . , xn) ∈ X denote his care levels across the n

safety dimensions. The driver’s cost of care is c(x) =
∑n

i=1
αix

2
i where αi ≥ 0 for

all i = 1, . . . , n, and the pedestrian’s expected loss is ℓ(x) = (m−∑n

i=1
βixi)

2
where

βi > 0 for all i = 1, . . . , n and m ≥ ∑n

i=1
βixi for all x ∈ X .13

The social cost function is s(x) ≡ c(x) + ℓ(x) =
∑n

i=1
αix

2
i + (m−∑n

i=1
βixi)

2
. It

can be written in matrix notation as s(x) = 1

2
x⊺Hx− b⊺x+m2 where

H =




2α1 + 2β2
1 2β1β2 2β1β3 · · · 2β1βn

2β2β1 2α2 + 2β2
2 2β2β3 · · · 2β2βn

2β3β1 2β3β2 2α3 + 2β2
3 · · · 2β3βn

...
...

...
. . .

...

2βnβ1 2βnβ2 2βnβ3 · · · 2αn + 2β2
n




and b =




2mβ1

2mβ2

2mβ3

...

2mβn




.

Note that s(x) is quadratic and H is symmetric and positive definite.14

This simple model has two key virtues. First, with different specifications of n

and X , I can consider the standard case where care is unidimensional and convex

(n = 1 and X is an interval in R+), as well as the generalized cases where care is

multidimensional and convex (n > 1 and X is a convex subset of Rn
+), unidimensional

and discrete (n = 1 and X is a discrete subset of R+), or multidimensional and discrete

(n > 1 and X is a discrete subset of Rn
+).

12For the avoidance of doubt, n is an integer.
13For instance, suppose the probability of an accident is p(x) = m−1(m − ∑n

i=1
βixi) and the

severity of harm in the event of an accident is h(x) = m(m−∑n

i=1
βixi). Then the expected loss is

ℓ(x) = p(x)h(x) = (m−∑n

i=1
βixi)

2
.

14Definitions of selected mathematical terms used in the paper are set forth in the Appendix.
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Second, the specification of s(x) ensures that it is (I) convex in all cases where

the driver’s precaution set is convex and (II) supermodular in all cases.15 In the

standard UCFA model, where care is unidimensional and convex, the diminishing

returns assumption implies that the social cost function satisfies restrictions I and II.

When care is multidimensional, however, the diminishing returns assumption is no

longer sufficient; more is required to preserve these shape restrictions. In my model the

specification of s(x) entails that (i) for all n ≥ 1, the diminishing returns assumption

holds within each safety dimension, and that (ii) for all n > 1, safety precautions

are substitutes across dimensions (i.e., increasing care in one dimension decreases the

marginal benefit of care in all other dimensions). When care is multidimensional

these assumptions are jointly sufficient to preserve restriction I (convexity) and the

second is necessary and sufficient to preserve restriction II (supermodularity).16

In the ensuing analysis I say that a liability rule is optimal if the solution to

the driver’s care-taking problem under that rule is socially optimal (i.e., coincides

with the solution to the social problem). I say that an optimal liability rule can

provide robust deterrence if the driver’s problem under that rule is always easily solved

(i.e., computationally tractable). After all, if the driver’s problem is computationally

intractable, even an optimal liability rule cannot always induce the driver to take

socially optimal care.

3.2 Convex Care

Suppose first that the safety precautions are continuous variables. Without loss of

generality let X = [0, 1]n. Note that X is convex. Each x = (x1, . . . , xn) ∈ X
describes a unique array of care. For example, if care is unidimensional (n = 1)

then perhaps x = 1 − spd where spd is the driver’s speed (expressed as a fraction

of his vehicle’s maximum speed), or if care is bidimensional (n = 2) then perhaps

x1 = 1− spd and x2 = 1− bac where bac is the driver’s blood alcohol concentration.

With X = [0, 1]n as its domain the social cost function s(x) is convex and su-

permodular. It is also twice continuously differentiable. Figure 1 depicts s(x) for

15Intuitively, a function is supermodular if it has increasing differences. For a formal definition,
see the Appendix.

16The standard bilateral care model with fixed activity levels assumes that care by the two agents
are substitutes (Miceli 1997, § 1.2). Accordingly, one could argue that assuming safety precuations
are substitutes across dimensions is standard when care is multidimensional (as well as instrumental
to preserving supermodularity).

12



(a) 2x2 + (2− x)
2 (b) 3x2

1
+ 3x2

2
+ (3− x1 − 2x2)

2

Figure 1: Two examples of the social cost function s(x) on X = [0, 1]n.

two cases: (a) the unidimensional case where s(x) = 2x2 + (2− x)2 and (b) the

bidimensional case where s(x) = 3x2
1 + 3x2

2 + (3− x1 − 2x2)
2.

3.2.1 The Social Problem

The social problem is to find x ∈ X to minimize s(x). Assuming it is interior,

the unique solution x∗ is defined implicitly by the first-order condition ∇s(x∗) = 0,

i.e., the gradient of s(x) evaluated at x∗ equals zero.17 In the standard case of

unidimensional care, the first-order condition reduces to s′(x∗) = 0, or equivalently

c′(x∗) = −ℓ′(x∗), i.e., the marginal cost of care equals the marginal reduction in

expected loss (the marginal benefit of care). In the case of multidimensional care, the

first-order optimality condition can be written in matrix notation as Hx∗ − b = 0.

The social problem is easily solved in the unidimensional case. You first compute

s′(x∗) = 2ax∗ − 2β (m− βx∗). You then set 2ax∗ − 2β (m− βx∗) = 0 and solve

x∗ = βm

a+β2 . This algorithm runs in linear time—the time complexity of each step is a

linear function of the number of operations required to compute s(x).

Example 6 Take the unidimensional case where s(x) = 2x2 + (2− x)2. Compute

s′(x∗) = 4x∗ − 2 (2− x∗). Set 4x∗ − 2 (2− x∗) = 0 and solve x∗ = 1×2

2+12
= 2

3
.

17The solution x
∗ is unique because s(x) is strictly convex on X = [0, 1]n. We know that x∗ > 0

because ∇s(0) < 0 for all admissible parameters. Thus, the solution is interior provided that
∇s(1) > 0 for the given parameters, because then x

∗ < 1.
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The social problem is also easily solved in the multidimensional case. In this case

the size of the social problem is governed by the dimension of the precaution set, n.

Due to the magic of calculus, there are many known polynomial-time algorithms for

solving convex optimization problems with multidimensional choice sets, including

several whose time complexities are low-order polynomial functions of n.

For instance, we could find x∗ using a gradient descent algorithm, i.e., a “hill

climbing” algorithm. The basic idea is that, starting any initial point on the “hill,”

you climb down in steps, where the size and direction of each step are functions of

the gradient, until you reach the “bottom,” where the gradient is zero. The con-

jugate gradient descent (CGD) algorithm is particularly well-suited to this problem

(Hestenes and Stiefel 1952). According to CGD, starting from an initial point x0 ∈ X ,

you first move in the direction of steepest descent, d0 = −∇s(x0), until you reach the

lowest point x1 in that direction; you then move in the conjugate direction of steepest

descent d1 (i.e., the direction of steepest descent that is orthogonal to Hd0) until you

reach the lowest point x2 in that direction; you then move in the conjugate direction

of steepest descent d2 (i.e., the direction of steepest descent that is orthogonal to Hd1)

until you reach the lowest point x3 in that direction; and so forth until you reach the

point at which the gradient is zero. In other words, CGD finds x∗ by minimizing s(x)

in one conjugate direction (i.e., dimension) at a time. CGD therefore takes n steps

to find x∗.18 The time complexity at each step has order n2, and hence CGD’s total

time complexity has order n3 (Ryaben’kii and Tsynkov 2007).

Example 7 Take the bidimensional case where s(x) = 3x2
1+3x2

2+(3−x1−2x2)
2, in

which case ∇s(x) = (8x1+4x2−6, 4x1+14x2−12), and start initially at x0 = (0, 1).

CGD finds x∗ = (3
8
, 3
4
) in two steps as follows:

0. Start at x0 = (0, 1); s(x0) = 4, ∇s(x0) = (−2, 2).

1. Move to x1 = (2
7
, 5
7
); s(x1) = 33

7
, ∇s(x1) = (−6

7
,−6

7
).

2. Move to x2 = (3
8
, 3
4
); s(x2) =

4

3
, ∇s(x2) = (0, 0).

Figure 2 depicts the two-step convergence path of CGD from x0 = (0, 1) to x∗ = (3
8
, 3
4
)

on a contour plot of s(x).

18CGD can take fewer than n steps if the lowest point in one direction is also the lowest point in
a conjugate direction. It can also take more than n steps (or fail) due to rounding errors, though
with exact arithmetic it is guaranteed to find x

∗ within n steps.
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Figure 2: Two-step convergence path of CGD.

We could also find x∗ using a matrix decomposition algorithm. Recall that x∗ is

defined implicitly by the first-order condition Hx∗ = b. The basic idea of a matrix

decomposition algorithm is that you decompose H into factors that can be used to

easily solve for x∗ without having to invertH. The Cholesky decomposition algorithm

is particularly well-suited to this problem. It first decomposes H into the product

LL⊤ where L is lower triangular. It then uses L and L⊤ to solve for x∗ in two

steps by forward and backward substitution, respectively. Its total time complexity

is 1

3
n3 + 2n2 (Boyd and Vandenberghe 2004).

Example 8 Take the bidimensional case where s(x) = 3x2
1 + 3x2

2 + (3− x1 − 2x2)
2,

in which case

H =

[
8 4

4 14

]
and b =

[
6

12

]
.

The Cholesky decomposition algorithm finds x∗ = (3
8
, 3
4
) in three steps as follows:

1. Factor H as H = LL⊤ =

[
2
√
2 0√
2 2

√
3

][
2
√
2

√
2

0 2
√
3

]
.

2. Solve Ly = b by forward substitution:

2
√
2y1 + 0y2 = 6 ⇒ y1 =

3

2

√
2;√

23

2

√
2 + 2

√
3y2 = 12 ⇒ y2 =

3

2

√
3.

3. Solve L⊤x = y by backward substitution:

0x1 + 2
√
3x2 =

3

2

√
3 ⇒ x2 =

3

4
;

2
√
2x1 +

√
23

4
= 3

2

√
2 ⇒ x1 =

3

8
.
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3.2.2 The Driver’s Problem

The fact that the social problem is easy solved implies that the driver’s problem,

whether under strict liability or negligence, is also easy solved.

Under strict liability the driver’s problem is identical to the social problem. This

is because strict liability forces the driver to internalize the social cost of his activ-

ity. Under strict liability, therefore, the driver’s problem can be easily solved, and

moreover the solution is socially optimal.

Let x ∈ X denote the due care standard under negligence. Under negligence the

driver faces no liability if he chooses x ≥ x, and he effectively faces strict liability if he

chooses x � x.19 Accordingly, the driver’s problem under negligence has two steps.

First, the driver finds the solution to the social problem, x∗, which is easy. Second,

the driver chooses x = x∗ if x∗ � x and s(x∗) < c(x), and he chooses x = x otherwise.

This step is also easy because s(x∗) and c(x) are easily computed. Moreover, if the

court sets the due care standard equal to the social optimum, x = x∗, then the driver

always chooses x = x∗. Under negligence, therefore, the driver’s problem can be

easily solved, and if x = x∗ the solution is always socially optimal.

The following proposition recaps the foregoing results.

Proposition 1 Suppose that care is convex. The social problem is easily solved when

care is unidimensional, and the time complexity of the solution scales polynomially

in the dimension of the driver’s precaution set. It follows that the driver’s problem is

computationally tractable. Thus, because strict liability and negligence (with x = x∗)

are both optimal, either rule can provide robust deterrence.

3.3 Discrete Care

Suppose now that the safety precautions are discrete variables. Without loss of gen-

erality let X = {0, 1}n. Note that X is discrete. Each x ∈ X corresponds to a unique

combination of safety precautions. For example, if care in unidimensional (n = 1)

then perhaps x indicates whether the driver’s vehicle has anti-lock brakes, or if care

is bidimensional (n = 2) then perhaps x1 indicates whether the driver’s vehicle has

anti-lock brakes and x2 indicates whether it has a pedestrian detection system.

19For the avoidance of doubt, vector inequalities are componentwise.

16



(a) 2x2 + (2− x)
2 (b) 3x2

1
+ 3x2

2
+ (3− x1 − 2x2)

2

Figure 3: Two examples of the social cost function s(x) on X = {0, 1}n.

With X = {0, 1}n as its domain the social cost function s(x) is supermodular

(but not convex). Figure 3 depicts s(x) for (a) the unidimensional case where s(x) =

2x2+(2− x)2 and (b) the bidimensional case where s(x) = 3x2
1+3x2

2+(3−x1−2x2)
2.

As before, the driver’s problem under strict liability coincides with the social

problem—find x ∈ X to minimize s(x)—and his problem under negligence includes

the social problem as a first step. And like before, the social problem is easy solved in

the unidimensional case. You first compute the two possible values of s(x), s(0) = m2

and s(1) = α+ (m− β)2, and then determine which is smaller. Indeed, even if there

are more than two levels of care—i.e., X = {0, 1, . . . , k}—the social problem can still

be easily solved because the number of computations grows linearly in k.

Unlike before, however, the social problem cannot be easily solved in the multidi-

mensional case. This is because it is a binary quadratic optimization problem—the

minimization of a quadratic function on the vertices of a hypercube—which is known

to be NP-hard (see, for example, Li et al. 2010). It also follows from the fact that:20

Claim 1 The max cut problem is reducible to the social problem with multidimen-

sional discrete care.

In general, the only known method for solving the social problem in this case is

brute-force. That is, you must compute the value of s(x) at every x ∈ X and find

the minimizer x∗ which satisfies s(x∗) ≤ s(x) for all x ∈ X . In particular, neither a

20Claim 1 is proved in the Appendix.
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“discretized” version of the gradient descent algorithm, nor a “convexified” version

of the social problem, is guaranteed to find x∗.

Example 9 Consider a descent algorithm where you start at an initial point x0 ∈ X
and then at each step check all points in X that are one-increment away in any

direction/dimension and move to the lowest point thereamong, until you reach a

“bottom” point where you cannot move lower. Take the bidimensional case where

s(x) = 3x2
1 + 3x2

2 + (3 − x1 − 4

3
x2)

2 on X = {x ∈ {0, 1, 2, 3, 4}2, x1 6= x2}. The

global minimizer, found by brute-force, is x∗ = (0, 1) where s(0, 1) = 4. However, the

“one-increment” algorithm may fail to converge to x∗, and instead converge to a local

minimizer. For instance, if you start at x0 = (3, 0) where s(3, 0) = 27, you first move

to x1 = (2, 0) where s(2, 0) = 13 (after also checking s(4, 0) = 49 and s(3, 1) = 34),

and then move to x2 = (1, 0) where s(1, 0) = 7 (after also checking s(2, 1) = 16), at

which point you reach bottom. But x2 6= x∗.

Alternatively, suppose you minimize s(x) on the convex hull of X and then select

the point x ∈ X that is closest to the solution x̂.21 Take the bidimensional case

where s(x) = 3x2
1 +3x2

2 + (3− x1 − 4

3
x2)

2 on X = {0, 1}2. The true minimizer, found

by brute-force, is x∗ = (0, 1) where s(0, 1) = 57

9
. However, if you minimize s(x) on

[0, 1]2, which yields the solution x̂ = (27
52
, 9

13
), and then select the closest point x ∈ X ,

you obtain x = (1, 1) where s(1, 1) = 64

9
. But x 6= x∗.

With n safety dimensions, X = {0, 1}n has 2n elements. Hence, the time com-

plexity of the brute-force method grows exponentially with n. For instance, with two

safety dimensions you must compute four values of s(x),

s(0, 0) = m2, s(1, 0) = α1 + (m− β1)
2,

s(0, 1) = α2 + (m− β2)
2, and s(1, 1) = α1 + α2 + (m− β1 − β2)

2,

21This “convexification” approach assumes that s(x) has an explicit form and that the same
functional relation that applies to the points in X also applies to the points in the convex hull of X .
Neither assumption may be true. An alternative approach that does not rely on these assumptions
would be to minimize the convex closure of s(x). In general, however, the convex closure of a
supermodular function does not have a closed form that is easy to compute (Bach 2013).
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Table 2: Discrete Care, Brute-force versus Convex Care, CGD

Safety Computations
dimensions Discrete care, brute-force Convex care, CGD

(n) (τ(n) = 2n) (τ(n) = n3)
2 4 8
5 32 125
10 1,024 1,000
25 33,554,432 15,625
50 1,125,899,906,842,624 125,000
75 37,778,931,862,957,161,709,568 421,875
100 1,267,650,600,228,229,401,496,703,205,376 1,000,000

whereas with 100 safety dimensions you must compute more than one nonillion (1×
1030) values of s(x).22 With multidimensional convex care, by comparison, the number

of computations grows from eight to one million. See Table 2.

The following proposition recaps the foregoing results.

Proposition 2 Suppose that care is discrete. Although the social problem is easily

solved when care is unidimensional, the time complexity of the solution scales expo-

nentially in the dimension of the driver’s precaution set. It follows that the driver’s

problem is computationally intractable (NP-hard) under strict liability and negligence.

Thus, although strict liability and negligence (with x = x∗) are both optimal, neither

rule can provide robust deterrence.

In the Appendix I show that the results in Propositions 1 and 2 go through to a

general UCFA model which maintains the restrictions on the social cost function that

are implied by the diminishing returns assumption, but relaxes the assumption that

the social cost function is quadratic. Henceforth, when I refer to the social problem

and the injurer’s problem, I am referring to the general versions of these problems.

4 Loose Ends

In this section I tie up three loose ends by addressing the following questions. (i) Can

we approximate the solution to the injurer’s problem in polynomial time when care is

22From the two-dimensional computations one can already see that s(x) is supermodular (i.e., has
increasing differences): s(1, 0)−s(0, 0) = α1−2mβ1+β2

1
< α1−2mβ1+β2

1
+2β1β2 = s(1, 1)−s(0, 1)

and s(0, 1)− s(0, 0) = α2 − 2mβ2 + β2

2
< α2 − 2mβ2 + β2

2
+ 2β1β2 = s(1, 1)− s(1, 0).
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multidimensional and discrete? If yes, then tort law can provide approximately robust

deterrence in this case. (ii) Can we justify assuming that care is unidimensional and

convex? “All models are wrong,” after all, “but some are useful” nonetheless (Box

1979, p. 202). (iii) What if there were increasing returns to care?

4.1 Approximating the Injurer’s Problem

If an optimization problem is NP-hard, implying that it cannot be solved in polyno-

mial time unless P = NP , there nevertheless may exist a polynomial-time algorithm

that approximates the optimal value within some constant factor. Such an algorithm

is called a ρ-approximation algorithm, where ρ > 1 denotes the approximation fac-

tor. More specifically, if x∗ is a solution to an optimization problem with objective

function f , a ρ-approximation algorithm for the problem yields an output x̃ in poly-

nomial time such that (i) f(x̃) ≤ ρf(x∗), in the case of a minimization problem, or

(ii) f(x̃) ≥ 1

ρ
f(x∗), in the case of a maximization problem. For instance, the travel-

ing salesman problem (with distances that satisfy the triangle inequality) is known

to have a 3

2
-approximation algorithm (Christofides 1976), while the max cut problem

is known to have a 1

.878
-approximation algorithm (Goemans and Williamson 1995).

As I show in the Appendix, however, when care is multidimensional and discrete

it is NP-hard to approximate the optimum of the social problem within any constant

factor. Thus, unless P = NP , there does not exist a ρ-approximation algorithm for

the injurer’s problem with multidimensional discrete care. The proof is by reduction

from the max cut problem and relies on a result, due to H̊astad (2001), that it is

NP-hard to approximate the max cut problem within a factor less than 17

16
.

4.2 The Unidimensional and Convex Care Assumptions

The common justification for the unidimensional care assumption is that it is with-

out loss of generality. For example, Shavell (1987, p. 36) remarks: “If care x is a

multidimensional variable, the proofs that strict liability and the negligence rule will

lead to the socially optimal outcome x∗ still apply.” This of course is true—given the

other assumptions of the standard UCFA model, including in particular the convex

care assumption. But, as I have shown, the unidimensional care assumption is not

without loss of generality when care is discrete.
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There are two common justifications for the convex care assumption. The first

is the argument that care is isomorphic to expenditures on care. This argument is

implicit in the common choice to model the injurer’s precaution set not as the set of

feasible safety precautions, but rather as the set of feasible safety expenditures (see,

for example, Shavell 1987, ch. 2; Miceli 1997, ch. 1). The purported isomorphism

runs into difficulty, however, when we consider the diminishing returns assumption.

The law of diminishing returns is traditionally defined in terms of inputs, not expen-

ditures on inputs (see, for example, Samuelson 1980; Brue 1993). Thus, morphing

“diminishing returns to care” into “diminishing returns to expenditures on care” re-

quires an auxiliary assumption, namely that “injurers invest first in the most effective

precautions and only later turn to less effective measures” (Miceli 2017, p. 42). But

this auxiliary assumption begs the very question that I am asking in this paper.

The other common justification for the convex care assumption is the argument

that, once you account for time, care is properly modeled as a continuous flow variable,

not a discrete stock variable. This is surely correct for some safety precautions—but

not all. Take driving. While some discrete precautions, such as wearing a seat belt or

using high beams, can plausibly be viewed as a sequence of (arbitrarily) short-term

commitments, other discrete precautions, such as equipping your vehicle with anti-

lock brakes or power steering, cannot. Even accounting for time, therefore, we cannot

always smooth over the knotty fact that some precautions are discrete.

4.3 Increasing Returns to Care

The diminishing returns assumption is grounded in the law of diminishing returns,

“one of the few generalities of economic theory which might be called a law” (Shephard

and Rolf 1974, p. 69). The law of diminishing returns, however, is not an immutable

law of nature, and so increasing returns to care are theoretically possible. If there

were increasing returns to care this would turn the analysis on its head.23 In the

case of convex care the social problem would entail the minimization of a concave

function on a convex choice set, which is NP-hard (see, for example, Benson 1995).

In the case of discrete care the social problem would entail the minimization of a

submodular function on a discrete choice set, which is easy (Grötschel, Lovász, and

23To be clear, if there were increasing returns to care, the marginal cost of care would be decreasing
and the marginal benefit of care would be increasing. That is, c(x) and ℓ(x) would be concave (in
the case of convex care) and submodular.
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Schrijver 1981).24 That being said, it bears repeating that the diminishing returns

assumption rests of firm ground. “Economists are not myth-making when we tell our

students that, if the law of diminishing returns was not true, the world’s food supply

could be grown in a flower pot” (Brue 1993, p. 191). It thus seems unlikely that the

theoretical possibility of increasing returns to care has much practical importance.

5 Discussion

My analysis of the computational complexity of the injurer’s care-taking problem has

several implications for the theory and practice of tort law.

One implication is that the standard assumptions of unidimensional and con-

vex care, though seemingly innocuous, are pivotal to constituting the injurer as

Holmes’ unboundedly rational “bad man”—homo law-and-economicus—and ensur-

ing that tort law can provide robust deterrence.25 When care is multidimensional

and discrete, however, we cannot necessarily rely on tort law to provide robust deter-

rence. In these cases the injurer may be less like Holmes’ “bad man” and more like

H.L.A. Hart’s “puzzled man . . . who is willing to do what is required, if only he can

be told what it is” (Hart 1961, p. 40).26

This leads to a second implication. It is important to recognize situations with

multidimensional discrete care, where tort deterrence may not be robust. The exam-

ples listed at the end of Section 2 are just the tip of the iceberg. There are many

real-world care-taking problems in which the precaution set is multidimensional and

discrete. Indeed, some commentators have surmised that this may be the “usual”

case (see, for example, Shavell 1987, p. 9; Miceli 2017, p. 49).27

In light of the foregoing one could argue that, at least in cases of multidimensional

discrete care, we should perhaps elevate other normative approaches to tort law—such

24For details, see the remark following the proof of Theorem 2 in the Appendix.
25The term homo law-and-economicus was coined by Gordon (1997, p. 1014).
26Similar implications of other aspects of bounded rationality have been found in related work. For

instance, Teitelbaum (2007) finds that neither strict liability nor negligence is generally efficient in the
presence of ambiguity, while Chakravarty, Kelsey, and Teitelbaum (2019) find similar inefficiencies
in the presence of unawareness. Both papers study tort deterrence using the UCFA model.

27Shavell (1987, p. 9): “Suppose, as would be usual, that there is more than one dimension of
an injurer’s behavior that affects accident risks (not only a driver’s speed, but also the frequency
with which he looks at the rear-view mirror).” Miceli (2017, p. 49): “One complication in applying
marginal analysis to actual accident cases is that care usually does not vary continuously but comes
in discrete bundles.”
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as corrective justice (Coleman 1992; Weinrib 1995) or civil recourse (Goldberg and

Zipurski 2020)—over the economic approach and its focus on deterrence and social

welfare. Despite the apparent logic of this conclusion, I reject it for two reasons.

First, although the injurer’s care-taking problem is in general hard to solve when

care is multidimensional and discrete, there undoubtedly are particular instances

in which the injurer’s problem can be easily solved.28 Second, because I find the

Pareto principle to be compelling (if not unassailable), and because any non-welfarist

approach to tort law will sometimes require adoption of liability rules that violate the

Pareto principle (Kaplow and Shavell 2001), I am loath to elevate any non-welfarist

approach over the economic approach.

Finally, complexity analysis may have implications for the “strict liability versus

negligence” debate within tort law and economics. My results—including the result

that neither strict liability nor negligence can provide robust deterrence when care is

multidimensional and discrete—are based on a static analysis. There is an argument

to be made, however, that negligence has a dynamic advantage over strict liability

when care is multidimensional and discrete. I sketch out the argument in the re-

mainder of this section. I also raise three potential counterarguments. In the end I

conclude that the subject warrants future in-depth exploration.

The argument, in brief, is that when care is multidimensional and discrete (i) the

injurer’s behavior, under strict liability or negligence, moves in the direction of the

social optimum over time through a learning-by-experimentation process, but that (ii)

negligence accelerates the injurer’s learning process “because it generates more public

information about the [social optimum]” (Schäfer and Müller-Langer 2009, p. 27; see

also Ott and Schäfer 1997; Feess and Wohlschlegel 2006).29

The starting point of the argument is the following claim.30

Claim 2 The decision problem that corresponds to the injurer’s problem, whether

under strict liability or negligence, is in NP.

28Just as there are particular instances—i.e., particular objective functions and/or graph
topologies—in which the max cut problem is solvable in polynomial time (see, for example, Ben-
Ameur, Mahjoub, and Neto 2014).

29Chakravarty, Kelsey, and Teitelbaum (2019) similarly find that negligence, for the same reason,
has a dynamic advantage over strict liability in the presence of growing awareness. Although Teitel-
baum (2007) does not consider a dynamic environment with learning, he finds that negligence, due
to the discontinuity it creates in the injurer’s expected liability, has a static advantage over strict
liability in the presence of ambiguity.

30Claim 2 is proved in the Appendix.
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Assume that care is multidimensional and discrete and consider how the injurer’s

behavior evolves over time as he repeatedly engages in his risky activity, periodically

causing an accident. Let t = 0 denote the time before the injurer first engages in

his activity, let t = 1 denote the time after the first accident but before the injurer

next engages in his activity, let t = 2 denote the time after the second accident but

before the injurer next engages in his activity, and so forth. In addition, assume

that: (i) each time there is an accident, the circumstances of the accident suggest an

array of care yt ∈ X that would have prevented the accident; (ii) each time there is

an accident, the victim brings suit against the injurer before the court; and (iii) the

injurer, the victim, and the court all have access to the same computational methods.

Suppose first that the governing liability rule is strict liability. At t = 0 the injurer

chooses precautions x0 ∈ X . However, because the injurer’s problem is hard, it is

likely that x0 6= x∗. At t = 1 the injurer can efficiently verify whether s(y1) ≤ s(x0),

i.e., whether y1 is superior to x0. This follows from Claim 2. If y1 is superior to

x0 then the injurer adopts x1 = y1; otherwise he stands pat at x1 = x0. At t = 2

the injurer can efficiently verify whether y2 is superior to x1. If it is then the injurer

adopts x2 = y2; otherwise he stands pat at x2 = x1. And so forth. In this way, as

t → ∞, the injurer’s behavior moves in the direction of the social optimum x∗.

Suppose next that the governing liability rule is negligence, with due care standard

x0 at t = 0. Because the social problem is hard, it is likely that x0 6= x∗. Moreover,

because the injurer and the court have access to the same computational methods,

the injurer always chooses to take due care: xt = xt at all t. Thus, we need only

consider the evolution of the due care standard. At t = 1 the court can efficiently

verify whether y1 is superior to x0. This follows from Claim 2 and the fact that

the social problem is identical to the injurer’s problem under strict liability. If y1 is

superior to x0 then the court adopts x1 = y1; otherwise it stands pat at x1 = x0. At

t = 2 the court can efficiently verify whether y2 is superior to x1. If it is then the

court adopts x2 = y2; otherwise it stands pat at x2 = x1. And so forth. In this way,

as t → ∞, the injurer’s behavior moves in the direction of the social optimum x∗.

So far the model suggests that the evolution of the injurer’s behavior over time is

the same under strict liability and negligence. Each time there is an accident nature

proposes a solution yt and the injurer can efficiently verify whether yt is superior to

the status quo and adapt his behavior accordingly. It is a learning-by-experimentation
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process, akin to the process of learning the probability distribution of an unfair coin

through repeated flips.

The dynamic advantage of negligence emerges when we add another injurer to

the model. Suppose that: (i) there is another injurer who engages in the same

risky activity as our injurer, periodically causing an accident; (ii) the other injurer’s

accidents occur at periods t = 1

2
, t = 3

2
, and so forth, but he is otherwise identical to

our injurer (same precaution set, same cost of care function, etc.); and (iii) the other

injurers’ accidents are unobserved by our injurer.

Return first to the case where strict liability is the governing liability rule. Be-

cause our injurer does not observe the other injurer’s accidents, he does not observe

the sequence y 1

2

,y 3

2

, .... He therefore cannot learn from the other injurer’s accidents,

implying that his learning process is the same as before, with adaptations in his

behavior possible only at periods t = 1, 2, ....

Now return to the case where negligence is the governing liability rule. Although

our injurer does not observe the sequence y 1

2

,y 3

2

, ..., the court does. Consequently,

the court’s learning process is faster than before, with adaptations in the due care

standard possible at periods t = 1

2
, 1, 3

2
, 2, .... This accelerates our injurer’s learning

process, for he observes the sequence x 1

2

,x1,x 3

2

,x2, ..., making adaptations in his

behavior more frequent.31 In this way, negligence can move the injurer’s behavior in

the direction of the social optimum more rapidly than strict liability.

Admittedly the foregoing argument rests on strong assumptions. By challenging

them we can construct potential counterarguments. Let me highlight three.

The first counterargument challenges the assumption that our injurer cannot ob-

serve the other injurer’s accidents. Suppose instead that our injurer can observe the

other injurer’s accidents when they result in litigation. This assumption, together

with the maintained assumption that accidents always result in litigation, would

imply that strict liability generates the same amount of information as negligence,

eliminating negligence’s dynamic advantage.

The second counterargument disputes the assumption that accidents always result

in litigation. Suppose instead that there is more litigation under strict liability than

under negligence. Shavell (1987, p. 264) provides the standard justification for this

assumption: “Under strict liability a victim will have an incentive to make a claim

whenever his losses exceed the costs of making a claim (assuming that he can credibly

31Indeed, the more injurers we add to the model, the greater is the rate of this acceleration.
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establish that the injurer was the cause of harm and that he was not contributorily

negligent). Under the negligence rule a victim will not have an incentive to make

a claim so often because he will also be concerned about establishing the injurer’s

negligence.”32 If there were more litigation under strict liability, then strict liability

would generate more information than negligence.

The third counterargument modifies the assumption that the injurers are identical

(aside from the periodicity of their accidents). Suppose instead that each injurer

receives a private signal about which precautions to take. Assuming the signals are

not too strong, we would expect the two injurers to take different precautions under

strict liability, but to “herd” on the due care standard under negligence. There

consequently would be greater experimentation under strict liability, implying that it

would generate better information than negligence.

There is of course much more that could be said about these arguments and

counterarguments. However, a deeper dive into the dynamics of tort deterrence is

beyond the scope of this paper. I therefore leave this topic for future exploration.

Appendix

A Selected Definitions

In this section I define selected mathematical terms used in the paper. References

include Boyd and Vandenberghe (2004) and Simchi-Levi, Bramel, and Chen (2005).

Definition 1 (convex closure) The convex closure of a function f : {0, 1}n → R

is the greatest convex function f− : [0, 1]n → R that everywhere lowerbounds f .

Remark If a function f : {0, 1}n → R is submodular, then its convex closure is

known as the Lovász extension (Lovász 1983).

Definition 2 (convex hull) The convex hull of a discrete set X ⊆ Rn is the set of

all convex combinations of points in X.
32See also Miceli (2017, p. 45): “If a victim expects to lose, she will not file suit. Thus, under

strict liability, the victim will file if (1) she can prove that the injurer caused her injuries, and (2)
her losses exceed the cost of bringing suit. Under negligence, the preceding conditions for filing must
be met, but in addition, the victim must prove that the injurer is at fault (that is, that he failed to
meet the due standard of care). And since . . . the injurer has a powerful incentive to meet the due
standard, victims will often be deterred from filing suit under negligence. . . . Thus, we expect fewer
lawsuits under negligence as compared to strict liability.”
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Definition 3 (convex set) A set X ⊆ Rn is convex iff tx + (1 − t)y ∈ X for all

x,y ∈ X and t ∈ [0, 1].

Definition 4 (convex function) A real-valued function f on a convex set X ⊆ Rn

is convex iff f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all x,y ∈ X and t ∈ [0, 1]. It

is strictly convex iff the inequality is strict.

Remark Let f be a real-valued function on a convex set X ⊆ Rn. If n = 1 and f

is twice continuously differentiable, then f is convex iff f ′′(x) ≥ 0 and it is strictly

convex iff f ′′(x) > 0. If n > 1 and f is twice continuously differentiable, then f is

convex iff its Hessian is positive semidefinite and it is strictly convex iff its Hessian is

positive definite.

Definition 5 (discrete set) A set X ⊆ Rn is discrete iff for every point x ∈ X

there exists an open ball around x that contains no other points in X. An open ball

around a point x ∈ Rn is a set Br(x) = {y ∈ Rn : d(x,y) < r} where r > 0 and

d(x,y) is the Euclidean distance between x and y.

Definition 6 (lower triangular matrix) A symmetric n×n real-valued matrix A

is lower triangular iff all of the entries above the main diagonal are zero.

Definition 7 (monotone increasing/decreasing function) A real-valued func-

tion f on a set X ⊆ Rn is monotone increasing iff f(x) ≤ f(y) for all x ≤ y in

X. It is monotone decreasing if f(x) ≥ f(y) for all x ≤ y in X.

Definition 8 (positive definite/semidefinite matrix) A symmetric n × n real-

valued matrix A is positive definite iff x⊺Ax > 0 for all nonzero x ∈ Rn. It is positive

semidefinite iff the inequality is weak.

Definition 9 (quadratic function) A real-valued quadratic function f on a set

X ⊆ Rn has the form f(x) = 1

2
x⊺Ax− b⊺x + c2 where A is a symmetric n × n

real-valued matrix, b ∈ Rn, and c ∈ R.

Remark Let f(x) = 1

2
x⊺Ax− b⊺x + c2 be a real-valued quadratic function on a

set X ⊆ Rn. If X is convex and f is twice continuously differentiable, then A is the

Hessian of f(x).
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Definition 10 (supermodular/submodular function) A real-valued function f

on a set X ⊆ Rn is supermodular iff it has increasing differences, i.e., for all x ≤ y

in X, f(x+ t)− f(x) ≤ f(y+ t)− f(y) for all t ≥ 0 such that x+ t,y+ t ∈ X. It is

submodular iff it has decreasing differences, i.e., for all x ≤ y in X, f(x+t)−f(x) ≥
f(y + t)− f(y) for all t ≥ 0 such that x+ t,y + t ∈ X.

Remark Let f be a real-valued function on a set X ⊆ Rn. If n = 1 and X is

convex, then f is supermodular (i.e., has increasing differences) if it is convex. If X

is convex and f is twice continuously differentiable, then f is supermodular (i.e., has

increasing differences) iff ∂2f

∂xi∂xj
≥ 0 for all i 6= j. If f is supermodular then −f is

submodular (and vice versa).

Definition 11 (symmetric matrix) An n × n real-valued matrix A is symmetric

iff A = A⊺, i.e., aij = aji for all i and j where aij denotes the entry in the i-th row

and j-th column.

B Proof of Claim 1

Let x = (x1, . . . , xn) where n > 1 is an integer. The max cut problem is: Choose

x ∈ {0, 1}n to maximize
∑n

i,j=1

1

2
wij(xi − xj)

2, where wij > 0 and wij = wji.
33 Let

x† denote the solution. Note that x† is also the solution to: Choose x ∈ {0, 1}n to

minimize f(x) = −∑n

i,j=1

1

2
wij(xi − xj)

2. Observe that f(x) = 1

2
x⊺Qx where

Q =




∑n

j=1:j 6=1
− 2w1j 2w12 2w13 · · · 2w1n

2w21

∑n

j=1:j 6=2
− 2w2j 2w23 · · · 2w2n

2w31 2w32

∑n

j=1:j 6=3
− 2w3j · · · −2w3n

...
...

...
. . .

...

2wn1 2wn2 2wn3 · · · ∑n

j=1:j 6=n − 2wnj




.

The social problem is: Choose x ∈ {0, 1}n to minimize s(x) =
∑n

i=1
αix

2
i +

(m−∑n

i=1
βixi)

2
, where αi ≥ 0, βi > 0, and m ≥ ∑n

i=1
βi. Let x∗ denote the

solution. Recall that s(x) = 1

2
x⊺Hx− b⊺x + m2 where H and b are defined in

33A more general version of the max cut problem allows for wij ≥ 0 (i.e., for an incomplete graph).
Both versions are NP-hard (Karp 1972; Garey and Johnson 1979).
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Section 3.1. Because xi ∈ {0, 1}, x2
i = xi and hence s(x) = 1

2
x⊺Kx+m2 where

K =




2α1 + 2β2

1
− 2mβ1 2β1β2 2β1β3 · · · 2β1βn

2β2β1 2α2 + 2β2

2
− 2mβ2 2β2β3 · · · 2β2βn

2β3β1 2β3β2 2α3 + 2β2

3
− 2mβ3 · · · 2β3βn

...
...

...
. . .

...

2βnβ1 2βnβ2 2βnβ3 · · · 2αn + 2β2

n − 2mβn



.

Moreover, because m2 is a constant, x∗ is also the solution to: Choose x ∈ {0, 1}n to

minimize g(x) = 1

2
x⊺Kx.

Let βiβj = wij and αi = mβi − β2
i − ∑n

j=1:j 6=iβiβj for all i. (Note that αi ≥ 0

because m ≥ ∑n

i=1
βi, βi > 0 because wij > 0, and βiβj = βjβi because wij = wji.)

Then K = Q, which implies g(x) = f(x) and thus x∗ = x†. This establishes that the

max cut problem is reducible to the social problem.

C General Model and Analysis

As in Section 3, I analyze tort deterrence using the UCFA model. In this section I

present a general version of the model which maintains the shape restrictions on the

social cost function that are implied by the diminishing returns assumption, but does

not assume a specific functional form for the social cost function.

In the model there are two agents: an injurer and a victim. Both are risk neutral

expected utility maximizers. The agents are strangers and not in any contractual

relationship. Transaction costs are sufficiently high to preclude Coasian bargaining.

The injurer engages in a risky activity. In the event of an accident the victim incurs

a loss. The injurer, but not the victim, can take precautions against an accident. The

set of feasible safety precautions forms the injurer’s choice set—the precaution set.

More specifically, the injurer’s precaution set is the Cartesian product of n ≥ 1 sets,

where each factor set represents a different type of precaution and the elements of

each factor set represent the feasible levels of care within each type.

The governing liability rule determines whether the injurer is liable to the victim

for her loss in the event of an accident. I consider the two basic liability rules of

Anglo-American tort law: strict liability and negligence. Under negligence the injurer

is liable to the victim if the injurer failed to exercise due care (a legal standard set
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by the court). Under strict liability the injurer is liable to the victim whether or not

the injurer exercised due care.

A liability rule is optimal if the solution to the injurer’s care-taking problem under

that rule is socially optimal (i.e., coincides with the solution to the social problem).

An optimal liability rule can provide robust deterrence if the injurer’s problem under

that rule is always easily solved (i.e., computationally tractable). After all, if the

injurer’s problem is computationally intractable, even an optimal liability rule cannot

always induce the injurer to take socially optimal care.

C.1 Convex Care

The standard “convex care” version of the model makes the following assumptions

(cf. Shavell 1987).

(C1) The injurer’s precaution set is a convex set X ⊆ Rn
+ where n ≥ 1. The injurer

chooses an array of care x = (x1, . . . , xn) ∈ X .

(C2) The injurer’s cost of care is c(x) ≥ 0, where c : X → R+ is monotone increasing,

convex, and supermodular.

(C3) The victim’s expected loss is ℓ(x) ≥ 0, where ℓ : X → R+ is monotone decreas-

ing, convex, and supermodular.

(C4) The functions c and ℓ, and their respective subdifferentials, can be computed

in polynomial time at all x ∈ X .

Assumption (C1) is the convex care assumption. Assuming n = 1 would constitute the

unidimensional care assumption. Assumptions (C2)–(C3) comprise the diminishing

returns assumption. Assumption (C4) is a minimal computability assumption. It is

an implicit, unstated assumption in prior expositions of the UCFA model.

The Social Problem The social problem is to find x ∈ X that minimizes s(x) ≡
c(x) + ℓ(x), where s(x) is the social cost of the injurer’s activity. I assume that the

social problem has a unique interior solution x∗. By definition x∗ is socially optimal.

Given assumptions (C1)–(C4), the social problem is a convex optimization prob-

lem: it entails the minimization of a convex function on a convex choice set. It follows

that the social problem is computationally tractable—whether care is unidimensional
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(n = 1) or multidimensional (n > 1)—for it can be efficiently solved using known

polynomial-time algorithms for convex optimization problems. For instance, it can

be efficiently solved using subgradient methods if the social cost function is non-

differentiable (see, for example, Bertsekas 2016) or gradient or interior-point methods

if the social cost function is differentiable (see, for example, Ben-Tal and Nemirovski

2001; Boyd and Vandenberghe 2004). In the non-differentiable case x∗ satisfies the

condition 0 ∈ ∂s(x∗), where ∂s(x) is the subdifferential of s at x. In the differentiable

case x∗ satisfies the condition 0 = ∇s(x∗), where ∇s(x) is the gradient of s at x.

The Injurer’s Problem Under strict liability the injurer’s problem is identical to

the social problem. This is because strict liability forces the injurer to internalize the

social cost of his activity. Under strict liability, therefore, the solution to injurer’s

problem is socially optimal and the injurer’s problem is computationally tractable.

Hence, strict liability is optimal and can provide robust deterrence.

Let x ∈ X denote the due care standard under negligence. Under negligence the

injurer faces no liability if he chooses x ≥ x, and he effectively faces strict liability if

he chooses x � x. Accordingly, the injurer’s problem under negligence has two steps.

First, the injurer finds the solution to the social problem, x∗, which is computationally

tractable. Second, the injurer chooses x = x∗ if x∗ � x and s(x∗) < c(x), and he

chooses x = x otherwise. This step is also computationally tractable because s(x∗)

and c(x) are easily computed per assumption (C4). Moreover, if the court sets the

due care standard equal to the social optimum, x = x∗, then the injurer always

chooses x = x∗. Under negligence, therefore, the injurer’s problem is computationally

tractable, and if x = x∗ the solution is always socially optimal. Thus, negligence

(with x = x∗) is optimal and can provide robust deterrence.

The following proposition recaps the foregoing results.

Proposition 3 Suppose that care is convex. The injurer’s problem, whether under

strict liability or negligence, is computationally tractable whether care is unidimen-

sional or multidimensional. Thus, because strict liability and negligence (with x = x∗)

are both optimal, either rule can provide robust deterrence when care is convex.

C.2 Discrete Care

The “discrete care” version of the model makes the following assumptions.
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(D1) The injurer’s precaution set is a discrete set X ⊆ Nn
+ where n ≥ 1. The injurer

chooses an array of care x = (x1, . . . , xn) ∈ X .

(D2) The injurer’s cost of care is c(x) ≥ 0, where c : X → R+ is monotone increasing

and supermodular.

(D3) The victim’s expected loss is ℓ(x) ≥ 0, where ℓ : X → R+ is monotone decreas-

ing and supermodular.

(D4) The functions c and ℓ can be computed in polynomial time at all x ∈ X .

Assumption (D1)–(D4) are the discrete analogs of assumptions (C1)–(C4). In partic-

ular, assumptions (D2)–(D3) comprise the diminishing returns assumption. Although

we cannot assume that c and ℓ are convex (because X is discrete), assuming they are

supermodular entails that the marginal cost of care is increasing and the marginal

benefit of care (i.e., the marginal reduction in expected loss) is decreasing.

As before, the injurer’s problem under strict liability coincides with the social

problem—find x ∈ X to minimize s(x)—and his problem under negligence includes

the social problem as a first step. And like before, the solution to the injurer’s problem

under strict liability and negligence (with x = x∗) coincides with the solution to the

social problem, implying that both rules are optimal. Unlike before, however, the

injurer’s problem is not computationally tractable in all cases. In particular, it is

computationally intractable when care is multidimensional. I reach this conclusion

on the basis of the following two theorems.

Theorem 1 When care is multidimensional and discrete, it is NP-hard to approx-

imate the injurer’s problem, whether under strict liability or negligence, within any

constant factor.

Proof The proof is by reduction from the max cut problem. Let f : {0, 1}n → R+,

n > 1, denote the cut capacity function (i.e., the objective function) in the max cut

problem. It is well-known that f is submodular, non-negative, and not necessarily

monotone (see, for example, Feige, Mirronki, and Vondrák 2011). In addition, let

w =
∑n

i,j=1

1

2
wij denote the total capacity of all edges in the graph.
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For every cut x ∈ {0, 1}n, let g(x) = w − f(x) + η where η > 0. Note that

g : {0, 1}n → R+ is a supermodular function.34 Note further that g is non-negative

and not necessarily monotone.

It is known that it is NP-hard to approximate the max cut problem within a

factor of 17

16
(H̊astad 2001).35 This implies that it is NP-hard to distinguish between

the following two mutually exclusive instances of the max cut problem (formulated

as a decision problem):

1. There exists a cut x ∈ {0, 1}n such that f(x) = w.

2. There does not exist a cut x ∈ {0, 1}n such that f(x) > 16

17
w.

Note that in the first instance the minimum value of g is η, while in the second

instance the minimum value of g exceeds 1

17
w.

Suppose there exists an ρ-approximation algorithm for the injurer’s problem—

the minimization of a supermodular, non-negative, and not necessarily monotone

function from a subset of Nn
+ to R+. Then we could apply this algorithm to the

problem max
x∈{0,1}n g(x). In the first instance the algorithm would return a cut x̃

such that g(x̃) ≤ ρη. In the second instance it would return a cut x̃ such that

g(x̃) > 1

17
w. Because η is arbitrary, it can be chosen so that ρη < 1

17
w. This would

make it possible to distinguish between the two instances, because in the first instance

the algorithm would yield g(x̃) ≤ ρη < 1

17
w, while in the second instance it would

yield ρη < 1

17
w < g(x̃). This, however, contradicts the fact that it is NP-hard

to distinguish between the two instances. It follows, therefore, that there does not

exist an ρ-approximation algorithm for the injurer’s problem, which is equivalent to

the statement that it is NP-hard to approximate the injurer’s problem within any

constant factor.

Remark Mittal and Schulz (2013) prove a similar result for the minimization of an

integer-valued supermodular function. Their proof is by reduction from the E4-set

splitting problem.36 The proof of Theorem 1, which is by reduction from the max cut

problem, generalizes their result to a real-valued supermodular function.

34The sum of a supermodular function and a constant is supermodular. Note that −f(x) is
supermodular (because f(x) is submodular) and that w + η is a constant.

35The result in H̊astad (2001) is stated for the unweighted version of the max cut problem (i.e., the
case where all wij = 1). However, Crescenzi, Silvestri, and Trevisan (2001) prove that the weighted
and unweighted versions of the max cut problem have exacty the same approximation threshold.

36For a statement of the E4-set splitting problem, see, for example, H̊astad (2001).
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Theorem 2 When care is multidimensional and discrete, the injurer’s problem, whether

under strict liability or negligence, is NP-hard.

Proof The result follows immediately from Theorem 1. If it is NP-hard to ap-

proximate the injurer’s problem within any constant factor, then it is NP-hard to

approximate the injurer’s problem within a factor of 1 + ǫ for any ǫ > 0, which is

equivalent to the statement that the injurer’s problem is NP-hard.

Remark The foregoing results on the hardness of supermodular minimization stand

in contrast to the fact that submodular minimization is easy (Grötschel, Lovász,

and Schrijver 1981). The basic reason is that the convex closure of a submodular

function has a closed form that is easy to compute, while this generally is not the

case for supermodular functions (Bach 2013). Consequently, one can easily solve

a submodular minimization problem by leveraging the fact that the minimum of a

submodular function is equivalent to the minimum of its convex closure, while this

generally is not the case for a supermodular minimization problem.

Theorems 1 and 2 establish that the injurer’s problem, whether under strict li-

ability or negligence, is not computationally tractable (or efficiently approximable)

when care is multidimensional and discrete. Hence, neither rule can provide robust

deterrence in this case. The reason is that brute-force is the only known solution

algorithm for the social problem—the minimization of a supermodular function on

a discrete choice set. When care is multidimensional (i.e., when there are multiple

types of precaution) the size of the social problem is governed by the dimension of the

precaution set (i.e., the number of different precautions), and the time complexity of

brute-force increases exponentially with the dimension of the precaution set.

It is a different story, however, when care is unidimensional and discrete. In

this case the injurer’s problem is computationally tractable, and thus either strict

liability or negligence (with the due care standard set equal to the social optimum)

can provide robust deterrence. The difference is that when care is unidimensional

(i.e., when there is only one type of precaution) the size of the social problem is

governed by the cardinality of the precaution set (i.e., the number of feasible levels of

care within the single type of precaution), and the time complexity of the brute-force

method increases linearly with the cardinality of the precaution set.

The following proposition recaps the foregoing results.
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Proposition 4 Suppose that care is discrete. Although it is computationally tractable

when care is unidimensional, the injurer’s problem, whether under strict liability or

negligence, is computationally intractable (NP-hard) when care is multidimensional.

Thus, although strict liability and negligence (with x = x∗) are both optimal, neither

rule can provide robust deterrence when care is discrete.

D Proof of Claim 2

The decision problem that corresponds to the injurer’s problem under strict liability

is: Given u ∈ R+, is there an x ∈ X such that s(x) ≤ u? The decision problem

that corresponds to the injurer’s problem under negligence is: Given x ∈ X and

c(x) ∈ R+, is there an x ∈ X such that x � x and s(x) < c(x)? Take either decision

problem and suppose we are given a proposed solution y ∈ X . Per assumption (D4),

it can be efficiently verified whether (i) s(y) ≤ u or (ii) y � x and s(y) < c(x), as

the case may be. Hence, each decision problem is in NP .
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