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1 Introduction

The study of computational complexity in hedonic coalition formation games
has a short history, although these issues in cooperative and non-cooperative
game theory are being gradually recognized.! The formal model of a hedonic
game was only recently introduced (cf. Banerjee et al. (2001) and Bogomol-
naia and Jackson (2002)). This model consists of a finite set of players and
a preference relation for each player defined over the set of all coalitions con-
taining that player. The outcome of a hedonic game is a coalition structure,
i.e., a partition of the set of players into coalitions. Thus, in a hedonic game
one explicitly takes into account the dependence of an agent’s utility on the
identity of the members of his or her coalition as recognized in the seminal
paper of Dreéze and Greenberg (1980), and as it applies to many social and
economic situations like the formation of social clubs, groups, societies, etc.
The focus in the above mentioned works is on different stability concepts like
the (strict) core, Nash stability and individual stability, and on conditions
guaranteeing the existence of stable coalition structures.

Computational complexity issues related to hedonic games in a general
setting are studied by Ballester (2004). As shown by this author, the prob-
lems to decide whether for a hedonic game there exists at least one core
stable, Nash stable, or individually stable partition are NP-complete. In a
less general setting (i.e., with some preference restrictions), Cechlarova and
Hajdukové (2002, 2004) study hedonic games, where the ranking over coali-

tions for each player is guided either by his most preferred member of the

I For complexity considerations in cooperative games the reader is referred, among
many others, to Faigle et al. (1997) and Faigle et al. (1998). With respect to non-
cooperative games, see Baron et al. (2008), Ben-Porath (1990), Gilboa (1988), Gilboa and
Zemel (1989), Koller and Megiddo (1992), and Koller et al. (1996).



group or by his least preferred member of the group, and consider compu-
tational complexity issues with respect to core related concepts. Recently,
Dimitrov et al. (2006) also study the computational complexity for finding
a core element in hedonic games; in particular, preference profiles based on
aversion to enemies that constitute a small subdomain of the domain of ad-
ditive preferences (players’ preferences are represented by an additive utility
function) are considered by these authors and it is shown that finding a core
member for such games is NP-hard. In addition, Sung and Dimitrov (2007a)
study the problem of core membership testing for hedonic games which is to
decide whether a coalition structure belongs to the core of the game and show
that this problem is co-NP complete when players’ preferences are additive;
indeed, the co-NP completeness is shown by a reduction to hedonic games in
which players’ preferences are based on aversion to enemies.

Notice that the existence of an additive utility function defined on the
player set allows each player to easily calculate his or her utility from joining a
certain coalition. Moreover, each such game can be described by n? numbers,
where n is the number of the players in the game. Hence, the computational
task seems to become less demanding since the input size of the problem is
polynomial of n when additivity is imposed. Despite these facts, the above
mentioned works show that it is hard to find a coalition structure which is core
stable. This let us conjecture a possible referential role the domain of additive
hedonic games could play in the study of computational complexity issues.
The aim of this paper is to present a detailed analysis of this conjecture
by studying the computational complexity of several decision problems with
respect to the existence of stable coalition structures in additive hedonic
games. Precisely, we prove that when either core stability or strict core

stability is under consideration, the existence problem of a stable coalition



structure is NP-hard in the strong sense. Furthermore, the corresponding
decision problems with respect to the existence of a Nash stable coalition
structure and of an individually stable coalition structure turn out to be
NP-complete in the strong sense.

The rest of the paper is structured as follows. Section 2 contains basic def-
initions and concepts from both the theory of hedonic games and the theory
of computational complexity. Sections 3 and 4 are devoted to the computa-
tional complexity of the existence problems with respect to the core and the
strict core (Section 3) and with respect to Nash stable and individually sta-
ble coalition structures (Section 4). We introduce the corresponding stability
notions, formulate the decision problems, and prove our results by explicitly
providing the intuition when constructing the additive hedonic games in the

proofs. Section 5 concludes then with some final remarks.

2 Preliminaries

Throughout this paper we will need the following basic notions and concepts.

2.1 Hedonic games

We denote by N = {1,2,...,n} a finite set of players. A coalition is a
nonempty subset of N. For each player i € N, we denote by A’ = {X C
N | i € X} the collection of all coalitions containing i. A collection IT of
coalitions is called a coalition structure of N if it is a partition of NV, i.e., all
coalitions in II are pairwise disjoint and their union is N. For each coalition
structure II of NV and for each player ¢« € N, we denote by I1(7) the coalition
in II containing .

A hedonic game is a pair (N, =) of a finite set N of players and a pref-

erence profile == (=1, =o,...,>=,). That is, in a hedonic game (N, =), each
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player ¢ € N is endowed with a complete and transitive binary relation >;
over the coalitions in A*. Moreover, the preference of each player i € N over
all coalition structures is assumed to be purely hedonic, i.e., it is completely
characterized by =; in such a way that, for every two coalition structures II
and IT', each player ¢ weakly prefers IT to II" if and only if T1(¢) >=; IT'(4).

A preference profile == (=1, >9,...,>,) is called additive if, for each
i € N, there exists a real-valued function v; : N — R such that for all
X,)Y € A,

X=Y < sz’(j) > Zvl(j)

jex jey
A hedonic game with an additive preference profile is called an additive he-
donic game. Observe that the preference of each player : € N can be rep-
resented by the vector (v;(1),v;(2),...,v;(n)), and thus, an additive hedonic
game (N, =) can be described by n? numbers.
In the study of hedonic games one is usually interested in the existence of
coalition structures that are stable in the sense that they are immune against
either group or individual deviations (cf. Sung and Dimitrov (2007b)). We

introduce these notions in Section 3 and 4, respectively.

2.2 Computational complexity

In this paper we formulate the problem of the existence of a stable coalition
structure in (additive) hedonic games as a specific decision problem which
can be described by instances, which are the inputs, and a question, which
has either “YES” or “NO” as an answer. Thus, an instance for each of
the decision problems we consider will be an additive hedonic game and the
question will be whether there exists a stable coalition structure for the game.

Once a decision problem has been formulated, we may next ask how fast

the problem can be correctly solved by an algorithm. Generally, the running



time of an algorithm increases as the size of problem instances (the games)
increases. An algorithm is said to be efficient if its running time is bound
above by a polynomial function of the size of the instance (game).

The class of problems that admit at least one efficient algorithm is denoted
by P. NP is the class of all decision problems such that if the answer to a
problem instance is “YES”, then there exists a certificate (string of symbols)
of polynomial length so that, in polynomial time, an algorithm accepts the
certificate as proof for a “YES” answer. The class NP contains P and it is
generally accepted that NP and P are different classes of problems.

While many problems have been proved to be in P (generally by explicitly
giving an efficient algorithm solving the problem), it is difficult to prove that
a problem is not in P (and hence, it is hard to be solved). Instead of this,
one usually shows that if the problem under consideration can be solved
efficiently, then so can every member of a certain class C of problems. Such
a problem is said then to be C-hard (and C-complete if, additionally, the
problem has also been shown to lie in C). Furthermore, if a C-hard (C-
complete) problem remains C-hard (C-complete) even if each of its instance
parameters is bounded by a constant, then the problem is said to be C-hard
(C-complete) in the strong sense. For a list of problems known to be NP-
hard the reader is referred to Garey and Johnson (1979) and Ausiello et al.
(1999).

Once one problem P1 has been shown to be NP-hard, the task of proving
that another problem P2 is also NP-hard becomes much easier: one can do
so by reducing P1 to P2. Informally, a reduction maps every instance of
problem P1 to a corresponding instance of problem P2, in such a way that
the answer to the former instance can be easily inferred from the answer

to the latter instance. Moreover, the reduction itself should be efficiently



computable. If such an efficient reduction exists, then problem P1 can be
seen as computationally at most as hard to solve as problem P2. If P1 is
NP-hard, then the existence of an efficient reduction tells us that we cannot
hope to find an efficient algorithm for P2 without (implicitly) finding such
an efficient algorithm for the NP-hard problem P1. Notice finally, that, in
order P2 to be NP-hard in the strong sense, the following two requirements
have to be satisfied: (1) each of the P2’s instance parameters created by the
reduction should be bounded by a constant, and (2) P1 has to be NP-hard
in the strong sense.

The NP-hardness in the strong sense of all decision problems we consider
in the next sections are shown by efficient reductions from a problem known
to be NP-complete in the strong sense. This problem is called Fxact Cover

by 3 Sets and it is defined as follows.

Exact Cover by 3 Sets (E3C):

Instance: A pair (R,S), where R is a set and S is a collection of subsets of
R such that |R| = 3m for some positive integer m and |s| = 3 for each

seS.

Question: Is there a sub-collection &’ C § which is a partition of R?

As an example, let us consider an instance (R, S) with R = {a,b,¢,d, e, f}
and S = {{a,b,c},{c,d,e},{d,e, f}}. Then the answer to E3C is “YES”
since the sub-collection 8" = {{a, b, c},{d, e, f}} is a partition of R.

It is known that E3C remains NP-complete even if each r € R occurs in
at most three members of S. Moreover, in order to exclude some trivial cases,
we assume that each r € R occurs in at least one member of S (otherwise

the answer to E3C is “NO”).



3 Group deviations and stability

Let us start by introducing two stability notions for hedonic games that
are based on group deviations and consider then the corresponding decision
problems.

Let (N, >) be a hedonic game, II be a coalition structure of N, and X be

a coalition. We say that

e X is a strong deviation from II in (N, >} if X >, I1(7) for each i € X;

e X is a weak deviation from II in (N, >) if X »; I1(i) for each i € X,
and X >; II(4) for some i € X.

Moreover, we say that

o Il is core stable if there is no strong deviation from II;

o [l is strictly core stable if there is no weak deviation from II.

Thus, II is core stable if there is no coalition such that each of its members
is strictly better of in comparison to his or her corresponding coalition ac-
cording to II. For strict core stability, one requires that there is no deviation
with at least one member being strictly better off and no one being worse off
in comparison to the corresponding coalitions in II.

The first decision problem we will be concerned with is the following:

Existence of a core stable coalition structure (HC):

Instance: A hedonic game (N, ), where N is a set of players and > is an

additive preference profile.
Question: Is there a coalition structure which is core stable in (NN, >=)?
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Analogously, the decision problem of the existence of a strictly core stable

partition is as follows.

Existence of a strict core stable coalition structure (HS):

Instance: A hedonic game (N, ), where N is a set of players and > is an

additive preference profile.

Question: Is there a coalition structure which is strictly core stable in
(N, =)?

The existence problem HC in the general setting is considered in Ballester
(2004), and is shown to be NP-complete. Observe that, in the general setting,
each player i’s preference is given as a binary relation over A’, where the
cardinality of A’ is 2"!. Hence, the input size of the problems becomes
exponential of n. However, it is not known whether HC and HS belong to
NP when additivity is imposed.

Notice that the NP-hardness of either of the above problems does not
imply that the other problem is also NP-hard. The reason is that, since
strict core stability implies core stability, a “YES” answer to HS implies a
“YES” answer to HC. However, a “NO” answer to HS does not necessary
imply a “NO” answer to HC since there are core stable coalition structures
which are not strictly core stable.

We show in what follows that, when an additive hedonic game is under
consideration, both HC and HS are NP-hard in the strong sense. The proofs
are based on polynomial time reductions from E3C. That is, for a given
instance (R,S) of E3C, we construct in polynomial time of |R| and |S| an
additive hedonic game (N, >), in which all parameters are bounded by a

constant.



The constructions of the corresponding games for HC and HS are slightly
different and they are presented in Section 3.1 and 3.2, respectively. In these
constructions, for each i,j € N with ¢ # j, we define v;(j) only when it has
a positive value. For all other v; (j)s (that are not explicitly defined in the

corresponding proofs) we assume that

=y

—(M; + 1) otherwise,
where M; =, .y max {v;(k),0}. As a consequence, for each i € N and for
each X € A", {i} =; X when v;(j) < 0 for some j € X. It follows then
that a coalition structure II cannot be stable in any sense when v;(j) < 0 for
some ¢ € N and j € II(i). Conversely, if v;(j) > 0 for each i € N and for
each j € II(i), then each X C N such that v;(j) < 0 for some 7,j € X can

be neither a strong nor a weak deviation from II.

3.1 Core stability

We start by first explaining and exemplifying how we construct an additive
hedonic game from an instance (R,S) of E3C, and then continue with the
formal proof of the NP-hardness of HC as to show that the constructed
hedonic game has a core stable coalition structure if and only if there is a
sub-collection &’ C S which is a partition of R.

For simplicity, let us consider again the instance (R,S) of E3C with
R ={a,b,c,d,e, f} and S = {{a,b,c},{c,d,e},{d, e, f}}. To each element
of R we first attach a 5-player hedonic game adapted from one in Bogomolnaia
and Jackson (2002, Example 5). If we take a € R, the hedonic game attached

to a has the following structure: the player set is

{Q{a’ /30,7 PYG,? 5@7 €a} Y
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and players’ preferences are

Voo (Ba) = vg, (Vo) = Uy, (0a) = v5,(ca) = ve, () = 17

and
Vo (€a) = Ve, (0a) = 05, (V) = vy, (B,) = v3,(0tg) = 18.

In this game the players form a cycle such that each player likes the following
player more than the previous one, and hates each of the other players. Notice
that if a coalition structure contains a coalition with three or more players,
then it cannot be core stable. Thus, the only possible coalitions are of size
one or two, where coalitions of size two must contain consecutive players -
for instance {{a.}, {08, 7Va}{0a;€a}t}. This coalition structure is not core
stable since the coalition {«,, 3,} blocks it. In a similar way one can show
that there is no core stable coalition structure for this game. Observe that
the values 17 and 18 are not essential for the above argument, but these
values play an important role in the reduction used in our proof.

Notice additionally, that the players in the coalitions {3,,~,} and {d,, €. }
would stick together if one provides an incentive for o, not to be interested in
B,- In order to do this, it is maybe helpful first to interpret s = {a,b,c} € S
as a committee with a being represented by «,, b being represented by ay,
and ¢ being represented by a., where 3 and «, are the corresponding players
(one should provide a similar incentive to as the one for a,) in the 5-player
games attached to b € R and c € R, respectively.

One possibility to construct these incentives is to first make «,, a3, and
a, like each other and then let them stick together (as being representatives
of the members in committee s). If we define v,, (a,/) = 2 for r, 7’ € {a, b, c}
with 7 2 r/; then we accomplish only partially the task: player «, still has an

incentive to form a strong deviation with 3, since the value of the coalition
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{Qa, ap, a.} for a, is only 4. Thus, we need an additional player who helps
the representatives for the members of s stick together. We denote this player
by ¢, and define v,, (¢,) = 14 and v¢ (a,) = 2 for r € {a,b,c} (see Fig. 1).
Notice then that, in such a case, player a, does not have an incentive to
form a strong deviation with [, since his utility from being a member of
{Qa, ap, ac, (,} equals to 18, while his utility from being together with 3,
equals to 17.

O NOEC

Figure 1:

Observe finally, that «. is also a representative for ¢ in the committee
s' = {c,d, e}; thus, one has also to guarantee that there is no incentive for ..
to be part of a strong deviation by the coalition {a.., ag, @, (, }. For this, we
make «, being indifferent between representing ¢ in s and representing c in
s' by defining v,, (¢,) = 14 and v (o) = 2 for each s € S and for each r € s.
The result of this construction is that any representative of an element in
a committee belonging to &’ = {{a,b,c},{d,e, f}} (S’ is a partition of R)
has no incentive to strongly deviate together with representatives of some
elements in committees belonging to S\ §'.

We are ready now to present the formal proof of our first result.
Theorem 1 HC is NP-hard in the strong sense.

Proof. Let (R,S) be an instance of E3C such that each » € R occurs in at
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most three members of S. From (R, S), an instance of HC, i.e., an additive
hedonic game (N, >), is constructed in polynomial time of |R| and |S].

Let

N = {a.,B,,7,0r 6 | T € R}
U{¢, | s € S}

Observe that |[N| = 5|R| 4 |S|. Players’ preferences are defined as follows.

e For each s € S and for each r € s, v,,((,) = 14 and v¢ (a,) = 2.

e For each s € S and for each 7,7" € s with r # 7/, vy, () = v, , (o) =

2.

e For each r € R, v,,(8,) = vg_(7,) = vy,(,) = vs,(&r) = v, (o) = 17
and v,, (&r) = ve, (6,) = vs,(7,) = v5,(8,) = v, () = 18.

In the following, we show that there exists a sub-collection &’ C § which
is a partition of R if and only if there exists a core stable coalition structure
IT in the constructed additive hedonic game.

(=) Suppose there exists a sub-collection S C § which is a partition of

R. Then, consider the following partition of V.

I = {(Ju{a[rest|sed}
UH{¢ ) [s e S\ S}
U{{ﬁr,’yr}, {5ra€r} ‘ re R}

Observe that v;(7) > 0 for each i € N and for each j € TI(7). By assumption,
X C N such that v;(j) < 0 for some 4, j € X cannot be a strong (or weak)

deviation from II.
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For each s € &',

{ie N v, (1) 20} ={¢}U{ar|res)
Thus, for each s € &', there is no strong (or weak) deviation from II contain-
ing (,.
For each s € §'\ &', the existence of a strong deviation X from II con-

taining ¢, requires the inequality

dove () > Y v, (i)

ieX iETI(C,)
to be satisfied. Thus, there should exist r € s with «, € X. However, we
have >~ 11(a,) Va, (i) = 18 for each r € R, and >,y va, (i) < 18 for each
X C {¢,}U{a, | r € s}. Thus, for each s € S\ &', there is no strong
deviation from II containing (..

We show next that there is no strong deviation from II containing any of
the players 3., v,, 0,, and €,. By definition, we have
Yoo, ()= > v(i) =18
i€ll(y,.) i€ll(er)

and for all X C N, the values ) ..y v, (i) and ) ..y v., (i) are at most 18.
Moreover, the existence of X C N with

> s, (i) > D s (i)

1€X 1€I1(B8,.)
would imply X = {f,, a.}, and the existence of X’ C N with

D s (i) > D s, (i)

19.¢ i€Il(5r)
would imply X’ = {0,,~, }. However,

/UCVT(&T') + /Uar(ﬁT) = 17 < 18 = Z UQT(Z>

14



and

Uy, (V) + 0y, (6,) =17 < 18 = Z vy, (1)

i€ll(y,.)

Thus, there is no strong (or weak) deviation from II containing anyone of (3,
Ypy Oy and €.

Recall that each r € R occurs in at most three members of S. Then,
Ha | 7' € R, va, () >0} <6

and thus, for each X C {a,s | 1" € R},

D o, (i) S12<18= ) v, (i),

i€X i€ll(ar)
We conclude that X C {«, | r € R} cannot be a strong (or weak) deviation
from II. Therefore, II is core stable.

(<) Suppose there exists a core stable coalition structure II for the con-

structed additive hedonic game. First, observe that we have Il(«,.) # {«.., 5, }
for each r € R; otherwise, II(a,.) = {a,, §,} implies either

o Il(e,) = {&,,6,} and II(~,) = {7,} in which case {J,,7,} becomes a

strong (and weak) deviation from II, or

e Il(e,) = {&,} in which case {a,,¢,} is a strong (and weak) deviation

from II.

Similarly, we have II(a,) # {as,e,}. Moreover, > i, ) Va, (i) = 17
for each r € R; otherwise {«,, 3,} becomes a strong (and weak) deviation
from II. It follows that, for each r € R, there exists s € S such that
M(a,) = {¢,} U{a, | r € s}. Therefore

{s € S[{ar|rest CIC)}
is a partition of R. m
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3.2 Strict core stability

Consider again the instance (R, S) of E3C with R = {a,b,c,d,e, f} and S =
{{a,b,c},{c,d,e} ,{d,e, f}}, and the game used in the proof of Theorem 1.
Let s* = {c,d,e}. Since &' = {{a,b,c},{d,e, f}} is a partition of R, we

already know that the coalition structure

I = {¢u{an[rest|ses}
WU {87} {0 e} | 7 € R}

is core stable. However, II is not strictly core stable since the coalition
{ae, ag, e, (4 } 18 a weak deviation from II: «., oy, and «, are all indifferent
between {a., ag, @, (-} and their corresponding coalitions according to IT;

and (. strictly prefers {a., ag, ae, (o} over IT(C) = {Cs }-

)

®
O
Figure 2:

Hence, when constructing the game in the proof of our next result, we
have to eliminate all players’ incentive for becoming members of a weak devi-
ation. We do this by introducing |S \ 8’| new players in the game constructed
in the previous section. Each of these new players likes and is liked only by

the (,-players, where the value of the corresponding utility function is 6.
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The reason for selecting this value is that we are going to bring together in a
coalition a player as (,. above with a newly introduced player o; for (R,S)
as above, o is the only new player added to the game (see Fig. 2).

Then, both coalitions {(,., o} and {a., ag, ae, ¢ } would have value 6 for
(- (recall that for each s € S and for each r € s, v¢ (o) = 2). That is, the

strong incentive for player (.. has been eliminated.
Theorem 2 HS is NP-hard in the strong sense.
Proof. In addition to the additive hedonic game constructed in Theorem 1,

¢ = |S| —|R|/3 = |S| — m new players 01,09,...,0, are included in the

game. The preferences related to these newly added players are as follows.
e For each s € S and for each 1 < k < ¢, v¢ (o)) = v,,(¢,) = 6.

Observe that the number of players remains polynomial of |R| and |S],
and all parameters are bounded above by a constant. Again, we show that
there exists a sub-collection &’ C S which is a partition of R if and only if
there exists a core stable coalition structure II.

(=) Suppose there exists a sub-collection &’ C S which is a partition of
R. Let {s1, 82,...,8} =S\ S". Then, consider the following partition of N.

I = {{¢tu{a [rest]ses}
U{{¢s 01} {Csys 02}, {C, 00}
u{{8.,7,}. {0r,&:} | 7 € R}.
As shown in the proof of Theorem 1, there is no weak deviation from II

containing anyone of a,., 3,, v,, d,, and ¢, for all » € R. Moreover, for each

s € § and for each X C N,

ngs(i) > 6 only if v; () < 0 for some 7, j € X,

1€X
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and ),y v (i) = 6 only if either
o X ={(,}U{a,|7re€s} or

o X ={(,,01} for some 1 < k < /.

Notice that, for each X C N,

and

S v (i) 2 Y v ).

i€ll(oy,) ieX
Thus, for each s € S, there is no weak deviation from II containing (..
Therefore II is strictly core stable.

(<) Suppose there exists a core stable coalition structure II for the con-
structed additive hedonic game. By the same argument as in the proof of

Theorem 1,

{seS[{a|[res}t CI(C)}
is a partition of R. m
4 Individual deviations and stability

Now let us introduce the stability concepts for hedonic games, which are
based on individual deviations. Let (N, >) be a hedonic game, and II be a

coalition structure of N. We say that,
e ITis a Nash stable in (N, =) if, for each i € N and for each X € I[TU{0},

— T0(i) =; X U{i}
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e Il is a indwidually stable in (N, >) if, for each ¢ € N and for each
X e TTu {0},

— II(2) =; X U {i}, or

— there exists j € X such that X U {i} <; X.

In other words, II is Nash stable if no player is strictly better off by either
staying alone or by moving to another coalition in II. Individual stability
additionally requires that the coalitions in IT do not accept entering members
who make some player worse off.

The first decision problem we consider in this section is the following:

Existence of a Nash stable coalition structure (HN):

Instance: A hedonic game (N, ), where N is a set of players and > is an

additive preference profile.

Question: Is there a coalition structure which is Nash stable in (N, >)?

Analogously, the decision problem of the existence of an individually sta-

ble coalition structure is as follows.

Existence of an individually stable coalition structure (HI):

Instance: A hedonic game (N, ), where N is a set of players and > is an

additive preference profile.

Question: Is there a coalition structure which is individually stable in

(N, =)?

The existence problem HIN and HI in the general setting is considered

in Ballester (2004), and are shown to be NP-complete. Notice gain that the
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NP-hardness of either of the above problems does not imply that the other
problem is also NP-hard. The reason is similar to the one about HC and
HS from the previous section and it is based on the fact that Nash stability
implies individual stability but the reverse implication does not hold.

We show in what follows that, when an additive hedonic game is under
consideration, both HN and HI are NP-complete in the strong sense?. For

this, we first show that these problems lie in NP.
Lemma 1 HN and HI belong to NP.

Proof. In order to show that HN belongs to NP, it suffices to provide a

polynomial time algorithm for the following test.

e For a given hedonic game (N, >) and a given coalition structure II, test

whether II is Nash stable in (N, >).

This test can be done in an obvious way, i.e., test whether I1(z) =; X U{i}
for each i € N and for each X € I U {@}. Observe that the test whether
(i) =; X U{i} can be in O(n) time®, because players’ preferences are
additive. From [II| < n, the test, whether II is Nash stable in (N, >) ;| can
be done in O(n?) time.

Similarly, HI belongs to NP, because for a given hedonic game (N, >)
and a given coalition structure II, the test, whether II is individually stable

in (N, =), can be done in O(n?) time. =

In order to show the NP-hardness of these two existence problems we use

polynomial time reductions again from E3C.

2 Thus, our result is stronger that the corresponding result in Olsen (2007). In that
work, the NP-completeness of HN is shown by reduction from a problem (PARTITION)

which is known to be NP-hard but not in the strong sense.
3 That is, the running time of the test is bounded from above by n, up to a constant

factor.
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4.1 Nash stability

More precisely, for the problem HN, we use in our reduction a similar trick to
the one used in the construction of the games for HC and HS. That is, given
an instance (R, S) of E3C, we attach a game with no Nash stable coalition
structure to each element of R and add an additional player for each s € S.

The game we attach to each r € R is very simple: the player set is {c.., 3, }
with v,,(83,) < 0 and vg () > 0. Observe that there are only two coalition
structures {{«..},{f,}} and {{«,, 5, }}, and neither of them is Nash stable,
because player «,. prefers to be alone (i.e., {a,} =a, {a., 3,}) but player 3,
prefers to be with player ., (i.e., {a,, (.} =5 {o;}). Thus, when defining
the corresponding utilities with respect to the additional player ¢, with r € s,
the task will be to provide a good incentive for 3, to stick together with (,.
Notice that such an incentive should be given to each (., with ' € s and
hence, any two players (3, and [3,, with 7,7/ € s and r # r’ should also like
each other; otherwise, one of these players would be strictly better off by

staying single no matter how much he likes (..

Figure 3:

Having done this, we can consider the coalition structure shown in Fig. 3.

It consists of
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e all o, players being single,

e the coalitions, each of which consisting of all 3, players together with

(,, where r € s and s € §’, and
e all ¢, players for s € S\ &’ being single.

As we show next, we can use the above construction as to prove the NP-
hardness of HN.
Theorem 3 HN is NP-Complete.

Proof. Let (R,S) be an instance of E3C. From (R,S), an instance of HN,
i.e., an additive hedonic game (N, >), is constructed in polynomial time of
|R| and |S].

Let N ={a,,[, | r € R} U{(, | s € S}. Players’ preference are defined

as follows.
o vg (B,) =2 forall r,7" € R with r # 1/,
o vg ((,) =2|R| and v¢ (B,) = 1ifr € s,
o vg (o) = 2|R[+ 3 for all r € R.
The remaining v;(j)s are negative, and each of which is defined by
vi(j) = —(6 R +2).

Observe that >y max{v;(j),0} < 6|R|+1 for each i € N. Thus, {i} =; X
if v;(j) < 0 for some j € X C N, i.e., X is not individually rational for i. In

other words,

e a coalition X is individually rational if and only if v;(j) > 0 for all

ijeX.
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Notice that a coalition structure II is Nash stable only if every coalition
in II is individually rational. Hence, only individually rational coalitions are
considered in the following.

Now, we have the following observations.

o for cach X € A% with X # {«,}, X is not individually rational since
{a} =a, X.

For each s € S, let P = {f, | r € s} U{(,}. Then,

e for ecach s € S, X € A% is individually rational only if X C P,, since
{ie N|wv, (i) >0} = P,; and

e for each r € s and for each X € A%, X is individually rational and
X =g P if and only if X = P,.

Suppose now that there exists a sub-collection &’ C S which is a partition

of R. Then, consider the following coalition structure.
{{or} [r e R}U{P |s € STU{{¢} s €S\ S}

Observe that all a,.s and all §,s have no incentive to deviate. Moreover, for
each s € S, each X € I\ {II (¢,)} contains a member 7 such that v¢_ (i) <0,
and thus, each (, has no incentive to deviate. Hence, II is Nash stable.
Suppose next that there exists a coalition structure IT which is Nash stable
in the above additive hedonic game. From the above observations, we have
II(a,) = {a,} for each r € R. It follows that, for each r € R, we have
I(5,) C{6, | r € R} or II(B,) C P; for some s € S; otherwise II(3,) is not

individually rational. Moreover, if I1(3,) # Ps for some s € S, we have

S vs, () 2[R +2 < v, (@)
i€ll(B,)
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and thus, II(a,) U {8, } =5 II(3,), which implies that II is not Nash stable.
Therefore, for each r € R, there exists s € S such that I1(3,) = P,. In other

Us:R,

seS’!

words, we have

where

S'={seS|Pell}.

Since IT is a partition of N, &’ is a partition of R. Hence, from Lemma 1, we

can conclude that HN is NP-complete. m

Notice that in the proof of the above theorem we did not use the fact that
E3C remains NP-complete even when restricted to instances in which each
r € R occurs in at most three members of S. By considering those instances

satisfying such a restriction, we are able to show a stronger result.
Theorem 4 HN is NP-complete in the strong sense.

Proof. Let (R,S) be an instance of E3C such that each » € R occurs in at
most three members of S. From (R, S), an instance of HN is constructed as
follows.

Let N ={a,,[3, | r € R} U{(, | s € S}. Players’ preferences are defined

as follows.

o vg (B,) =2ifr #7r" and r,r" € s for some s € S.
e v3 (¢,) =13 and v¢ (B,) =1if r € s,

e vg (o) = 16 for all 7 € R.
All the remaining v;(j)s are negative, and each of them is defined by
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By a similar argument to the one in the proof of Theorem 3, it can be verified
that such an additive hedonic game has a Nash stable coalition structure if
and only if there exists a sub-collection & C S which is a partition of R.
Observe that each v;(j) is bounded above and below by constants. Therefore,

HN is NP-complete in the strong sense. m

4.2 Individual stability

In the reduction of HI from E3C, we use the following trick. Let w and z be
real numbers satisfying w > z > 0 and let us consider the following additive

hedonic game with 5 players.
o N ={ag,an, a3, a4, a5},
o Uy, (2) = Vg, () = Vay(g) = Vo, (5) = Vo, (1) = w,
o Vg, (5) = Vg, (1) = Vag(2) = Vo, (a3) = V4, (q) = 2, and
e all the remaining v,,(c;)s are defined by v,, () = —(w + 2z + 1).

It is shown that this game does not have an individually stable coalition
structure (cf. Example 5 in Bogomolnaia and Jackson (2002)). Now suppose

a player ( is introduced such that

i Uﬁ(al) = 1)041(5) =z
o vy, () =vg(ay) = —(w+2z+1) for j €{2,3,4,5}.

Then, this hedonic game has an individually stable coalition structure,

namely {{a1, 8}, {az, a3}, {au, a5} }.

The structure of the above game can be generalized as follows. Let ¢ be

a positive integer with ¢ > 2. Define the player set to be N = AU B with
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e A={ah|je{1,2,345},ke{l,....0—1}}and B = {f, | k €
{1,...,0}},

and players’ preferences be as follows. For each k € {1,2,..., ¢ — 1},

. ’Ua?(ﬁk/) =wg,, (af) = —(w+z+1) for j € {2,3,4,5}.

Moreover, each of the remaining v;(j)s is defined as v;(j) = —(w+z+1).
For this hedonic game, a coalition structure II is individually stable only
if, for each k € {1,2,...,0 — 1}, there exists k' € {1,2,...,¢} such that
(ah) = {at, B}

Let us now explain how we use the above facts in the game defined in the
proof of our last result. We start by attaching a (-player 3, to each r € R
and s € § with r € s, and a (,-player to each s € §. The corresponding
preferences are defined in such a way that there is a unique individually stable
partition and each of its elements is of the form Py = {5, | r € s} U{(,}.
Notice however, that this specification of the game and the corresponding
individually stable coalition structure do not always imply that there is a sub-
collection & C S which is a partition of R; the reason is that there might exist
two (different) players (3, , and 3,,, with r = 1" and s # s’ since an element of
R may belong to more than one element of S. Thus, we have to redefine the
game such that for each r € R, there exists at most one s € § with r € s and

P being an element of an individually stable partition. Roughly speaking,
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we have to get rid of all but one of the players from {f,, | s € S s.t. r € s}
as being members of a coalition in an individually stable partition. For this,

we use the 5-player game defined above and illustrate the procedure in Fig. 4

for {8,y | s €S st. r€ st ={0,4,0,, 0ps}

Figure 4:

Let the players we would like to get rid off be [, and Let us

rsd-
then add (,, to the above 5-player game and do the same operation for
B, with respect to an analogous 5-player game. Then, in an individually
stable partition, 3, and [, will be attracted by the corresponding a-
players. The final result of this construction, together with the specification
of players’ preferences, is that it singles out, for each r € R, only one s € S

(s = s') with r € s that guarantees the existence of a sub-collection of S
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which partitions R.
Theorem 5 HI is NP-complete in the strong sense.

Proof. Let (R,S) be an instance of E3C. In order to avoid trivial cases,
we assume that each r € R is included in at least one member of S. From
(R,S), an instance of HI is constructed as follows.

Let M ={3,, | s € S,r € s}U{(, | s € S} be a set of 4|S| players.

Players’ preferences are defined as follows.

hd Uﬁrs(gs) =1 and UQ(ﬁm) =1L

o v3 (B.,)=1ifr#7r' and
o vg (B,y)=0ifs#5"

All the remaining v;(7)s with 7,5 € M is defined by v;(j) = —4. Let
P, = {B,s | r € s} U{(,} for each s € S. Observe that among players
belonging to M, individually stable coalition structure exists and is unique,

namely,

II={P|seS}

Now we introduce more players in order to have an additive hedonic game
such that a coalition structure II is individually stable if and only if {s €
S | P; € 11} is a partition of R. In other words, an additive hedonic game
is constructed in such a way that a coalition structure II is not individually

stable if

e there exist s,s’ € S such that s # s, sNs' # (), and P,, Py €11, or

e there exists r € R such that II(3,,) # P; for each s € S.
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Suppose r € R is included in ¢ members of S, where ¢ > 1. Then, by
using the trick mentioned above, and introducing 5(¢ — 1) new players with

w =2 and z = 1, a coalition structure II' is individually stable only if

e for each r € R, there exists at most one s € S such that r € s and

P, ell.

Moreover, we have {0,,,(,} =5 _ {3}, and for each X € A%, X =
{¢,} if and only if X C P,. Hence, a coalition structure II" is individually
stable only if II'(3,,) = II'((,) for some s € & with r € s. Moreover, if
(8,,) = TI(C,) C P, but T(C,) # Po, then T(C,) U {8} =5, T(5,)
for some 1’ € s. It follows that a coalition structure II' is individually stable

only if
e for each r € R, there exists s € S such that r € s and P, € II'.

Conversely, it can be verified that an individually stable coalition struc-
ture IT" exists among all coalition structures satisfying the above conditions.
Finally, the hedonic game we have constructed has 9|S| — |R| players
and each v;(j) is bounded below and above by constants. Therefore, HI is

NP-complete in the strong sense. m

5 Concluding remarks

We provided reductions from the NP-complete problem Exact Cover by 3

Sets that demonstrate that in additive hedonic games:

e it is NP-hard in the strong sense to determine (1) whether a core parti-
tion exists, and (2) whether a strict core stable partition exists. More-

over,

29



e the problem of deciding (1) whether a Nash stable partition exists, and
(2) whether an individually stable partition exists are NP-complete in

the strong sense.

In all reductions we used procedures with some common properties we
would like to stress now. Given an instance (R,S) of E3C, all additive
hedonic games were constructed by respecting the following pattern. A set
of players was first attached to each element of R; these players were involved
in a basic additive game with no stable coalition structure. Each of the two
types of basic games (the 5-player game and the 2-player game) were selected
in such a way as to have a boundary property in the sense that when adding
or removing a player we were able to construct games for which a stable
coalition structure do exist. Then, the operations of adding or removing a
player from the basic games were done by attaching a player to each element
of §. This common pattern allowed us to derive a sub-collection of S which

is a partition of R in order to complete the corresponding reductions.
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