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Abstract

Computable analysis studies problems involving real numbers, sets and functions from the
viewpoint of computability. Elements of uncountable sets (such as real numbers) are rep-
resented through approximation and processed by Turing machines. However, application
of this approach to computational complexity has been limited in generality. In this thesis,
we present a refined framework that is suitable for discussing computational complexity.
The key idea is to use (a certain class of) string functions as names representing these
objects. These are more expressive than infinite sequences, which served as names in prior
work that formulated complexity in more restricted settings. An important advantage of
using string functions is that we can define their size in the way inspired by higher-type
complexity theory. This enables us to talk about computation on string functions whose
time or space is bounded polynomially in the input size, giving rise to more general ana-
logues of the classes P, NP, and PSPACE. We also define NP- and PSPACE-completeness
under suitable many-one reductions.

Because our framework separates machine computation and semantics, it can be applied
to problems on sets of interest in analysis once we specify a suitable representation (en-
coding). As prototype applications, we consider the complexity of several problems whose
inputs and outputs are real numbers, real sets, and real functions. The latter two cannot
be represented succinctly using existing approaches based on infinite sequences, so ours is
the first treatment of functions on them. As an interesting example, the task of numerical
algorithms for solving the initial value problem of differential equations is naturally viewed
as an operator taking real functions to real functions. Because there was no complexity
theory for operators, previous results could only state how complex the solution can be.
We now reformulate them and show that the operator itself is polynomial-space complete.
We survey some of such complexity results involving real numbers and cast them in our
framework.
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1 Introduction

Computable analysis [Wei00, BHW08] studies problems involving real numbers, sets and
functions from the viewpoint of computability. There are several equivalent formulations,
but one powerful approach (employed e.g. in [Wei00]) is to

(a) consider Turing machines converting infinite sequences (elements of {0, 1}N) into
infinite sequences, thus defining the class of computable functions from {0, 1}N to
{0, 1}N, and

(b) then discuss computability of problems whose inputs and outputs are taken from
uncountable sets (such as R, the real numbers) by representing (encoding) their
elements by infinite sequences.

Such computability theory is called the Type-Two Theory of Effectivity (TTE) and pro-
vides a natural extension of the ordinary (type-one) computability. Here, “type-two” refers
to the level of objects of which we are considering computability: type-zero means finite
objects, such as strings or natural numbers; type-one means functions over type-zero ob-
jects, e.g. functions from strings to strings, or infinite strings (viewed as functions from N
to {0, 1}); our concern is the type-two theory, which is about the computability of functions
whose inputs are type-one objects.

Since this framework separates the machine (formulation of part (a) above) and its
semantics (part (b)), we can apply it not only to the real numbers but also with great
generality to other spaces arising naturally in mathematical analysis, once we agree on the
representation of the considered space. And in many cases, the appropriate representation
to use is determined in a more or less natural way from each particular application. Thus
there is a coherent way to discuss computability of real functions, sets of real numbers,
operators taking real functions as inputs, and so on. Various problems in mathematical
analysis and physics have been studied using this framework [PR89, Wei00].

In contrast, application of this approach to computational complexity (with bounded
time or space) has been limited in generality. For example, although there is a widely
accepted notion of polynomial-time computable real functions f : [0, 1]→R on the compact
interval that has been studied extensively [Ko98], the same approach does not give a
nice class of real functions on R. Most of the complexity results in computable analysis
have been (with a few exceptions [Hoo90, Tak01, Wei03, ZM08]) essentially limited to the
complexity of either real functions with compact domain, or of bounded subsets of R. They
do not address the complexity of, say, an operator F that takes real functions f : [0, 1]→R
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1 Introduction

to another real function F (f). There are many positive and negative results [Ko91] about
such operators, but typically they are stated in the form

if f is in the complexity class X, then F (f) is in complexity class Y , and
there is f in complexity class X such that F (f) is hard for Z.

More direct statements would be the “constructive” or “effectivized” form

the operator F is in class Y , and
the operator F is Z-hard,

where Y and Z are the “higher-order versions” of Y and Z. At the level of computability,
it is common to ask, as soon as we see an ineffective result, whether it can be effectivized.
For complexity, it was hard to even ask this question because we do not know how to
formulate Y and Z.

An approach to address this problem was proposed recently in [KC10], where we refine
the above part (a) (machine model) of the computability theory to the level of complexity
by using (a certain class of) functions from strings to string instead of infinite sequences
and defining their size in the way suggested by Kapron and Cook [KC96]. This enables us
to measure the growth of running time (or space) in terms of the input size—exactly what
we do in the usual (type-one) complexity theory and what we were not able to do with
the infinite string approach. We obtain the complexity classes P, NP, PSPACE analogous
to P, NP, PSPACE (and function classes FP, FPSPACE, etc.) by bounding the time or
space by second-order polynomials in the input size. Analogues of reductions and hardness
can also be formulated, and we have type-two versions of complete problems for NP and
PSPACE. This theory will be presented in Chapter 2.

In Chapter 3, we introduce the theory of representations in order to bring part (b) into
complexity consideration. Most of the development here is similar or analogous to the cor-
responding parts of the computability argument, but for complexity we need to choose the
right representations for each space more carefully. We discuss suitable representations of
important spaces (real numbers, real functions, etc.). For real numbers, the induced com-
plexity notions turn out to be equivalent to what has been studied by Ko–Friedman [KF82]
and Hoover [Hoo90]. For sets and functions, the approach of [KC10] seems to be the first
to provide complexity notions in a general way, but still there are pieces of evidence sug-
gesting that the representations used there (and in this thesis) are the natural choices. For
example, we will show (Theorem 3.33) that the representation δ¤ that we use to encode
real continuous functions carries just the right information that enables us to evaluate a
function at a given real number.

This extension will play an important role in Chapter 4 where we apply our framework
to several specific numerical problems in the real world, because many such problems are
naturally formulated as operators taking sets or functions. For example (Section 4.4.1),
consider the operator F that finds the solution F (f) of the differential equation (with
a condition called Lipschitz continuity) given by a function f . As mentioned above, the
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foregoing ineffective results [Ko83, Kaw10] only talked about how complex the solution F (f)
can be when f is easy ; precisely, they say that if f is polynomial-time computable, F (f) is
polynomial-space computable and can be polynomial-space hard. But the practical concern
for numerical analysis would be how hard it is to compute F (i.e., to compute F (f) given
f). The framework of [KC10] made it possible to state and prove such a result: F itself is
an FPSPACE-complete operator. The technically hard parts of the proofs of effectivized
results like this are already done in the proofs of the ineffective versions, and in most cases
all we need to do is to check that they effectivize. The original ineffective versions are now
corollaries of the effectivized statements.

Chapter 4 is a collection of complexity results (some by the author and some reformu-
lated in our framework) about various problems encountered in basic calculus and geom-
etry. Many such problems contain combinatorial structures that make the consideration
of complexity interesting. For example, integration (as an operator on real functions) is
complete for the counting complexity class #P (Section 4.3.2), and (as can be seen from
the proof) this can be explained by the intuitive idea that integration is an operator that
“adds up” the given function. On the other hand, the above result about the FPSPACE-
completeness of solving differential equations [Kaw10] requires a rather involved argument.
It is proved by a combinatorially nontrivial insight that a polynomial-space computation
can be described by a computation tableau that looks somewhat similar to the dynamics
given by the differential equation.

As mentioned above, now we are able to discuss whether each complexity result is effec-
tive or not. Some of the results in Chapter 4 hold in the effectivized form (e.g. both the
above results about integration and Lipschitz continuous differential equations). Others
hold only in the ineffecive form. For example, we will see (Section 4.4.3) that the more
restricted operator that solves analytic differential equations maps polynomial-time com-
putable functions to polynomial-time computable functions, but this is not because the
operator itself is polynomial-time computable, but because the operator that takes the
Taylor series of the given function to that of the solution is polynomial-time computable.
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2 Complexity of Type-Two Problems

Throughout the thesis, Σ∗ denotes the set of finite strings over the alphabet Σ. We will
tacitly assume that Σ = {0, 1} in some contexts, and in other contexts that Σ contains all
symbols needed in the discussion. Justification of this sloppiness should be easy.

The standard computational complexity theory classifies problems whose inputs and
outputs are strings in Σ∗. By encoding various objects of interest by strings, we can
discuss the hardness of problems involving strings, integers, graphs, etc. But in this thesis,
we want to deal with problems involving uncountably many objects such as real numbers,
sets of real numbers, and real-valued functions, which cannot be encoded by strings but
can be specified only through approximation. For this purpose, this chapter develops a
complexity theory for problems whose inputs and outputs are functions from Σ∗ to Σ∗.
The following chapters will use these functions to represent various mathematical objects.

The notion of computability that our model will define is essentially the same thing as
what has long been studied in the field called Computable Analysis [Wei00]. Our formula-
tion enables us to refine this computability theory to a complexity theory by bounding the
time and space used in the computation. Such complexity consideration has been already
partly undertaken [Ko91], but our model makes it more broadly applicable. The way we
bound time and space is adopted from Kapron and Cook’s work [KC96] in higher-order
complexity theory. Many of the results presented in this chapter and the next are from a
joint work with Stephen Cook [KC10].

2.1 Preliminaries: search problems

Although most expositions of discrete complexity theory start with the discussion of de-
cision problems where exactly one of 0 and 1 is the right answer, it is important in our
setting to deal with search problems where we are supposed to find any one of the several
allowable answers. Thus, we consider problems as multi-valued functions.

2.1.1 Problems

We formulate, in the most general way, problems where one is given an element of a set X
as input and is asked to provide an element of Y as output.

Definition 2.1 (Problems). A (X,Y )-problem F is formally a subset of X × Y . The set
of x ∈ X such that there is y ∈ Y with (x, y) ∈ F is called the domain of definition or the
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2 Complexity of Type-Two Problems

promise of F and denoted dom F . For x ∈ dom F , we write F [x] for the (nonempty) set
of all such y. If F [x] is a singleton, we write F (x) for the unique element of F [x]. When
this is the case for all x ∈ dom F , we say that F is a single-valued problem, or a partial
function. When dom F = X, we say that F is total. A single-valued total problem is called
a function.

The intuitive interpretation is that F specifies a problem where, given any x ∈ dom F ,
you ought to output some element of F [x]. Thus, the specification becomes stricter as
dom F gets bigger or as F [x] (for some x ∈ dom F ) gets smaller. Thus we say that a
problem F realizes G if dom F ⊇ dom G and F [x] ⊆ G[x] for all x ∈ dom G.

Our problems defined above are what are sometimes called search problems (or “function
problems” by slightly misleading terminology) in complexity theory. The classes FP and
FPSPACE are the sets of (Σ∗, Σ∗)-problems that are computed by a machine whose running
time or space, respectively, is polynomially bounded. Here, we interpret computation by
the “allowable outputs” semantics: A machine is said to compute F if, on any x ∈ dom F ,
it outputs some element of F [x]. The classes FP and FPSPACE that we will define later will
consist of (Reg,Reg)-problems, where Reg is something introduced in the next section
in order to encode objects like real numbers or real functions which cannot be encoded by
Σ∗.

Note that we impose nothing about the computation when the input x does not belong
to the promise dom F . You may or may not produce an output, and in case you do, the
output can be anything. Thus a problem can be easy to solve while having a nasty set
as promise. Because most parts of this thesis will be talking about algorithms with time
(or space) bounds, and such algorithms can be made to always output something without
increasing the bounds significantly, we could make all problems F total by extending them
appropriately without essentially changing the complexity argument. However, we still
prefer making the promise explicit, because it is convenient to specify which inputs we
really care about.

The cost for this choice is, of course, the slightly more involved definitions. For the rest
of this chapter, the reader may at first want to ponder what the definitions would look like
for the special case when the problem in question is single-valued or total.

For example, we need to be careful in defining the composition of two problems. For a
(Y, Z)-problem F and an (X,Y )-problem G, we define the (X,Z)-problem F ◦G by saying
that its promise is

dom(F ◦ G) = {x ∈ dom G : G[x] ⊆ dom F }, (2.1)

and that, for any x in this promise,

(F ◦ G)[x] =
⋃

y∈G[x]

F [y]. (2.2)

The informal justification of this definition is that if algorithms M and N solve problems
F and G, respectively, then the algorithm that “feeds the output of N as the input for M”
solves F ◦ G.

14



2.1 Preliminaries: search problems

We write id for the (single-valued total) identity (X,X)-function on any set X. Obvi-
ously, id ◦ F = F ◦ id = F . It is easy to see that F ◦ (G ◦ H) = (F ◦ G) ◦ H, so we may
write F ◦ G ◦ H. The following is also easy to see.

Lemma 2.2. If F realizes F ′ and G realizes G′, then F ◦ G realizes F ′ ◦ G′.

2.1.2 Continuity

We also extend the notion of continuity from functions to problems. Recall that a function
f : X → Y is said to be continuous at x ∈ X when for any open neighbourhood V of f(x)
there is an open neighbourhood U of x such that f maps U into V . We extend this idea
to (X,Y )-problems F . For a set V ⊆ Y , we write

F−1V := {x ∈ dom F : F [x] ∩ V 6= ∅ } (2.3)

for its preimage under F .

Definition 2.3 (Continuity). Let X and Y be topological spaces and let F be an (X,Y )-
problem. For each x ∈ dom F and y ∈ F [x], we say that F is continuous at (x, y) if for any
open set V containing y, there is an open set U containing x such that U ∩dom F ⊆ F−1V .
We say that F is strongly continuous at x ∈ dom F if it is continuous at (x, y) for every
y ∈ F [x]. We say that F is strongly continuous if it is strongly continuous at every
x ∈ dom F . We say that F is continuous if it is realized by some strongly continuous
(X,Y )-problem.

Obviously, continuity and strong continuity coincide for single-valued problems, and they
are equivalent to the usual notion of continuity on the domain of definition.

A (multi-valued) problem can be continuous without being realized by a continuous
(single-valued) partial function. For example, the total (R, R)-problem F defined by

F [x] =


{1} if x ≤ −ε,

{0, 1} if −ε < x < ε,

{0} if ε ≤ x,

(2.4)

for ε > 0, is strongly continuous (Figure 2.1, left), but there is no way to choose its
single-valued “branch” which is continuous. The total (R, R)-problem F given by

F [x] =


{1} if x < 0,

{0, 1} if x = 0,

{0} if x > 0

(2.5)

is not continuous at (0, 0) and (0, 1) (Figure 2.1, right). The total (R, R)-problem F given
by

F [x] =

{
{x · χQ, 1} if x 6= 0,

{0} if x = 0,
(2.6)
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2 Complexity of Type-Two Problems

−ε +ε x

y

1

x

y

1

Figure 2.1: The finite precision test (left) is continuous, but the exact test (right) is not.

where χQ is the {0, 1}-valued characteristic function of the rational numbers Q, is not
continuous, even though for each x ∈ dom F there is y ∈ F [x] such that F is continuous
at (x, y).

Lemma 2.4. An (X,Y )-problem F is strongly continuous if and only if, for any open set
V ⊆ Y , the preimage F−1V is open in dom F .

Proof. For the forward direction, suppose that F is strongly continuous and V ⊆ Y is open.
Let x be any point in the preimage F−1V . Then there is a point y ∈ F [x] ∩ V . Since F is
continuous at (x, y), there is an open set U containing x and satisfying U∩dom F ⊆ F−1V .
Since x was arbitrary, this means that F−1V is open in dom F .

For the other direction, suppose that F is not strongly continuous, i.e., it is discontinuous
at (x, y) for some x ∈ dom F and y ∈ F [x]. Then there is an open set V containing y such
that no open set U containing x satisfies U ∩ dom F ⊆ F−1V . Then F−1V is not open in
dom F , because x belongs to it but not to its interior.

In the following lemma, recall that the composite F ◦ G is the one defined at (2.1) and
(2.2).

Lemma 2.5. If a (Y, Z)-problem F and a (X,Y )-problem G are continuous (resp. strongly
continuous), so is F ◦ G.

Proof. The claim about continuity follows from the claim about strong continuity by
Lemma 2.2. For the claim about strong continuity, let W ⊆ Z be open. By the strong
continuity of F and Lemma 2.4, there is an open set V ⊆ Y such that

F−1W = V ∩ dom F. (2.7)

By the strong continuity of G and Lemma 2.4, there is an open set U ⊆ X such that

G−1V = U ∩ dom G. (2.8)

We claim that
(F ◦ G)−1W = U ∩ dom(F ◦ G). (2.9)

Since W was arbitrary, this proves the strong continuity of F ◦ G by Lemma 2.4.

16



2.2 Type-two computation

Machine

u ψ(u)

q ϕ(q)

Oracle

(for some ψ ∈ A[ϕ])

Figure 2.2: A machine solving a (Reg,Reg)-problem A.

To prove one containment of (2.9), let x ∈ (F ◦ G)−1W . Then x ∈ dom(F ◦ G) by
definition, so we shall prove that x ∈ U . Since (F ◦ G)[x] intersects W , there is y ∈ G[x]
such that F [y] intersects W by (2.2). This means that y belongs to F−1W , and hence
to V by (2.7). Thus, G[x] intersects V , This means that x belongs to G−1V , and hence
to U by (2.8). Conversely, let x ∈ U ∩ dom(F ◦ G). Since dom(F ◦ G) ⊆ dom G, we
have x ∈ U ∩ dom G = G−1V by (2.8), and hence G[x] intersects V , say at y. Since
G[x] ⊆ dom F , we have y ∈ V ∩ dom F = F−1W by (2.7), and hence F [y] intersects W .
By (2.2), this means that (F ◦ G)[x] intersects W , that is, x ∈ (F ◦ G)−1W .

2.2 Type-two computation

We say that a total function ϕ : Σ∗→Σ∗ is regular if it preserves relative lengths of strings
in the sense that |ϕ(u)| ≤ |ϕ(v)| whenever |u| ≤ |v|. We write Reg for the set of all regular
functions. The rest of this chapter is about the complexity of (Reg,Reg)-problems. The
motivation for considering regular functions (rather than all functions from Σ∗ to Σ∗) will
be explained in Section 2.2.3. We write Pred ⊆ Reg for the set of {0, 1}-valued regular
functions, and sometimes consider (Reg,Pred)-problems.

For later use we define the pairing and tupling function for regular functions as follows:
For ϕ, ψ ∈ Reg, define 〈ϕ, ψ〉 ∈ Reg by setting 〈ϕ, ψ〉(u) = ϕ(u)#ψ(u) (that is, the two
strings ϕ(u) and ψ(u) concatenated with a delimiter not in the original alphabet; if we
need to strictly keep the binary alphabet {0, 1}, we can replace 0 and 1 in ϕ(u) and ψ(u)
by 00 and 01, respectively, and then use 11 as a delimiter). Let 〈ϕ, ψ, θ〉 = 〈〈ϕ, ψ〉, θ〉, etc.

2.2.1 Oracle machines

We use an oracle Turing machine (henceforth just “machine”) as the model of computation.
Such a machine can convert elements of Reg to elements of Reg (Figure 2.2). For the
precise conventions for issuing and answering queries, follow any of [Meh76, KC96, Ko91].

For a machine M , we define the partial (Reg,Reg)-function M computed by it as follows.
For each ϕ ∈ Reg, let ψϕ be the partial (Σ∗, Σ∗)-function such that dom ψϕ consists of
strings u such that M on oracle ϕ and input u halts, and for each such u the value ψϕ(u)
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2 Complexity of Type-Two Problems

is the output string. We let dom M = {ϕ ∈ Reg : ψϕ ∈ Reg } and M(ϕ) = ψϕ for all
ϕ ∈ dom M .

Definition 2.6 (Solving type-two problems). A machine M solves a (Reg,Reg)-problem A
if M realizes A.

In other words, M solves A if for any ϕ ∈ dom A, there is ψ ∈ A[ϕ] such that M on
oracle ϕ and any string u outputs ψ(u). We write FRec for the set of (Reg,Reg)-problems
solved by some machine. (Throughout the thesis, we will consistently use boldface sans
serif typeface for classes of (Reg,Reg)-problems.)

Computability and continuity The set Reg is regarded naturally as a topological space
as follows. Let Λ be the set of all partial (Σ∗, Σ∗)-functions k whose promise dom k is
finite. For each k ∈ Λ, let Bk denote the set of regular functions that realize k (i.e., agree
with k on dom k). Now Reg is a topological space with open base {Bk : k ∈ Λ }.

Because the machine M bases its string output M(ϕ)(u) on finitely many values of ϕ, the
function M is continuous. This remains true if the machine is given some oracle p ∈ Reg
(in addition to the input ϕ): if M is a machine that takes two oracles, and Mp denotes this
machine with the oracle p hard-wired as one of the oracles, then the partial function Mp

is continuous.

Theorem 2.7 (Essentially [Wei00, Lemma 2.3.11]). A (Reg,Reg)-problem is continuous
if and only if it is solved by Mp for some machine M and some oracle p ∈ Reg.

Proof. The “if” direction is already explained above. For the other direction, let F be a
continuous (Reg,Reg)-problem. Define the desired oracle p ∈ Reg to be the list (encoded
as a regular function in a reasonable way) of all pairs (k, l) ∈ Λ×Λ satisfying Bk∩dom F ⊆
F−1Bl. The machine Mp, given ϕ ∈ dom F and u ∈ Σ∗, works as follows. For each i = 0,
1, . . . , let (ki, li) be the first pair in the list p such that ϕ ∈ Bki

, dom li ⊇ Σ≤i and, if
i > 0, then li agrees with li−1 on Σ≤i−1 (such a pair exists by the continuity of F ). After
computing li for all i ≤ |u|, it outputs l|u|(u).

Corollary 2.8. Every continuous (Reg,Reg)-problem is realized by a continuous partial
(Reg,Reg)-function.

This corollary is in contrast to the existence of (R, R)-problems (such as the one defined
at (2.4)) that do not have a continuous single-valued realization.

2.2.2 Second-order polynomials

Now we start restricting the amount of time and space in the computation. Recall that
regular functions are those that respect lengths in the sense explained at the beginning
of this section. In particular, they map strings of equal length to strings of equal length.
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2.2 Type-two computation

Therefore it makes sense to define the size |ϕ| : N → N of a regular function ϕ by |ϕ|(|u|) =
|ϕ(u)|. It is a non-decreasing (N, N)-function.

We want to define what it means for a machine to run in polynomial time. Since |ϕ| is
a function, we begin by defining polynomials “in” a function, following the idea of Kapron
and Cook [KC96]. Second-order polynomials (in type-1 variable L and type-0 variable n)
are defined inductively as follows: a positive integer is a second-order polynomial; the
variable n is also a second-order polynomial; if P and Q are second-order polynomials,
then so are P + Q, P · Q and L(P ). These polynomials will be used as a bound on time
or space, and for simplicity we defined them to be monotone (there is no minus sign). An
example is

L
(
L(n · n)

)
+ L

(
L(n) · L(n)

)
+ L(n) + 4. (2.10)

A second-order polynomial P specifies a function, which we also denote by P , that takes
a function L : N → N to another function P (L) : N → N in the obvious way. For example,
if P is the second-order polynomial (2.10) and L(x) = x2, then P (L) is given by

P (L)(x) =
(
(x · x)2

)2
+ (x2 · x2)2 + x2 + 4 = 2 · x8 + x2 + 4. (2.11)

As in this example, P (L) is a (usual first-order) polynomial if L is.
Now we can define classes by bounding the running time or space by second-order poly-

nomials.

Definition 2.9 (Polynomial time and space). A machine M runs in polynomial time (or
is polynomial-time) if there is a second-order polynomial P such that, given any ϕ ∈ Reg
as oracle and any u ∈ Σ∗ as input, M halts within P (|ϕ|)(|u|) steps. Define polynomial
space analogously by counting the number of visited cells on all (input, work, output and
query) tapes.

Definition 2.10 (Type-two classes). 1. We write P (resp. PSPACE) for the class of
(Reg,Pred)-problems solved by a polynomial-time (resp. space) machine.

2. We write FP (resp. FPSPACE) for the class of (Reg,Reg)-problems solved by a
polynomial-time (resp. space) machine.

Note that unlike the classes P and PSPACE of (Σ∗, {0, 1})-problems, it is easy to sep-
arate, e.g., P and PSPACE, because a PSPACE machine can make exponentially many
queries to the given oracle.

We can also define some close friends of P by analogy with the classes of string problems.

Definition 2.11 (Type-two classes, continued). 1. A (Reg,Pred)-problem A belongs
to NP if there are a polynomial-time machine M and a second-order polynomial P
such that dom A ⊆ dom M and for each ϕ ∈ dom A, the function that maps each
string u to {

1 if M(ϕ)(u, v) = 1 for some v ∈ ΣP (|ϕ|)(|u|),

0 otherwise
(2.12)

is in A[ϕ].
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2 Complexity of Type-Two Problems

2. A (Reg,Reg)-problem A belongs to #P if there are a polynomial-time machine M
and a second-order polynomial P such that dom A ⊆ dom M and for each ϕ ∈ dom A,
the function that maps each string u to the number (written as a binary string of
length P (|ϕ|)(|u|) + 1) of v ∈ ΣP (|ϕ|)(|u|) with M(ϕ)(u, v) = 1 is in A[ϕ].

We could alternatively characterize these classes NP and #P by defining “nondeterministic
machines” appropriately and counting the number of computation paths, just as with the
usual classes NP and #P of string functions.

In this thesis, we will only ask whether or not the problems belong to these complexity
classes; we will not attempt to give a finer classification of problems by finding the specific
second-order polynomial bounding their complexity. In fact, it is not entirely obvious how
one should set about such a project. For a usual polynomial, its degree is the foremost
measure indicating how large it is. For second order polynomial P (|ϕ|)(|u|), the depth of
the nesting of the function |ϕ| is another factor. Investigating how the exact second-order
polynomials compare with “intuitive” or “practical” understanding of efficiency is left for
future work. Also left open is the formulation of analogues of sub-polynomial complexity
classes, such as L, NL or NC.

2.2.3 Why we consider regular functions

The idea of using second-order polynomials as a bound on time and space comes from
Kapron and Cook’s characterization [KC96] of Mehlhorn’s class [Meh76] of polynomial-
time computable operators1. This is a class of (total) functionals F : (Σ∗→Σ∗)×Σ∗→Σ∗,
but they can be regarded as F : (Σ∗ → Σ∗) → (Σ∗ → Σ∗) by writing F (ϕ)(x) instead of
F (ϕ, x). Kapron and Cook define the size |ϕ| of ϕ : Σ∗ → Σ∗ by

|ϕ|(n) = max
|u|≤n

|ϕ(u)|, n ∈ N. (2.13)

Note that our definition of size for regular ϕ is a special case of this. They then defined
the class of polynomial-time functionals in the way similar to Definition 2.10.2. We added
FPSPACE and other classes by analogy.

Although their original class consists of functions over Σ∗ → Σ∗, we have restricted
attention to regular functions. This is because, in order to obtain nice complexity notions,
it seems convenient to be able to compute the resource bounds on a given input. Note
that for usual (type-one) computation, it was easy, given x, to find the input length |x|
and thus the time bound p(|x|) in unary notation for a fixed polynomial p. In contrast,
finding the value (2.13) for a given ϕ in general requires exponentially many queries to
ϕ and thus exponential time. For regular ϕ, we can easily find |ϕ|(n) for each n, and
thus the second-order polynomial P (|ϕ|)(|u|) is a bound “time-constructible” from ϕ and
u. Because of this property, most of the subtleties about the definition of basic feasible

1Kapron and Cook [KC96] call them basic feasible functionals or basic polynomial-time functionals.
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2.2 Type-two computation

Machine

0 1 1 1 0 0 1 0 1 1

1 0 0 1 0 1

1 1 0 1 1 0

input tape

work tape

output tape

one-way

Figure 2.3: A machine converting infinite strings to infinite strings.

functionals (see [Set92, Set93]) disappear when we restrict them to Reg. This also gives
us the standard complete problems (see Lemmas 2.15 and 2.16 below).

Imposing regularity is not much of a restriction for our purpose, because our intention
is to use these functions as names of real numbers, sets and functions, and we can always
declare that valid names are those that have been “padded” to be regular. More precisely,
there is a polynomial-time machine that takes as oracles a possibly irregular function ϕ′

and a regular function ψ dominating its length (i.e., |ϕ′(u)| ≤ |ψ|(|u|) for any string u),
and delivers a regular function ϕ such that |ϕ| = |ψ| and ϕ(u) = ϕ′(u)## . . . #. Thus we
use ϕ, instead of ϕ′, as the name. In any situation where ϕ′ comes out of a machine whose
time/space is polynomially bounded, this bound can serve as the length bound |ψ|.

On the other hand, we do not restrict ourselves too much by using the subset of Reg
consisting of specific polynomial growth bound (this would be essentially equivalent, in our
context, to working only with Pred). In some of the later applications where we encode
real numbers and functions by Reg, the notion of the length defined above seems to be
pertinent to the “size” of the encoded objects in a natural sense.

Comparison with the formulation by infinite strings Weihrauch’s monograph [Wei00]
uses infinite strings (elements of ΣN) instead of our regular functions. Computability of
(ΣN, ΣN)-functions is defined using what he calls the type-two machine. Just like the
Turing machine, this machine has an input tape, an output tape, and a work tape, each of
which is infinite to the right. We also assume that the output tape is one-way; that is, the
only instruction for the output tape is “write a ∈ Σ in the current cell and move the head
to the right”. The difference from the usual Turing machine computing (Σ∗, Σ∗)-functions
is in the convention by which the machine reads the input and delivers the output. The
input is now an infinite string a0a1 . . . ∈ ΣN, and is written on the input tape before the
computation starts (with the tape heads at the leftmost cell). We say the machine outputs
an infinite string b0b1 . . . ∈ ΣN if it never halts and writes the string indefinitely (that is,
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2 Complexity of Type-Two Problems

for each n ∈ N, it eventually writes b0 . . . bn−1 on the first n cells) on the output tape.
(Figure 2.3). This defines what it means for the machine to solve a (ΣN, ΣN)-problem.

By identifying each regular function ϕ ∈ Pred with the infinite string

pϕ = ϕ(ε)#ϕ(0)#ϕ(1)#ϕ(00)#ϕ(01)#ϕ(10)# . . . , (2.14)

we can define the solubility (without time or space bound) of a (Reg,Reg)-problem A by
the computability of A′ in Weihrauch’s sense, where A′ is the (ΣN, ΣN)-problem defined
by dom A′ = { pϕ : ϕ ∈ dom A } and A′[pϕ] = { pψ : ψ ∈ A[ϕ] }. It is routine to verify that
this notion coincides with our class FRec defined using oracle Turing machines.

However, it is not clear how to define time or space complexity of computation by a
type-two machine. Weihrauch [Wei00, Chapter 7] defines polynomial-time computability
by requiring that there is a polynomial q such that for all infinite strings p ∈ ΣN and any
number n ∈ N, the machine on input p finishes writing the first n symbols of the output
within q(n) steps (regardless of p). Notice that the above encoding (2.14) is not “efficient”
enough to make the notion equivalent to ours (the index of the position at which the value
ϕ(u) appears in pϕ is exponential in |u|). As we will see in the following chapters, our
formulation can be viewed as an extension of Weihrauch’s, and this extension is essential
for many of our applications.

2.3 Reductions and completeness

Here we define reductions between (Reg,Reg)- and (Reg,Pred)-problems and discuss
hardness with respect to these reductions.

2.3.1 Reductions

Recall that the usual many-one reduction between (Σ∗, Σ∗)-problems A and B is defined
as follows: we say that A many-one reduces to B (written A ≤1

mF B) if there are (total)
functions r, t ∈ FP such that for any u ∈ dom A, we have t(u) ∈ dom B and r(u, v) ∈ A[u]
whenever v ∈ B[t(u)]—that is, we have a function t that converts an input for A to an input
for B, and another function r that converts an output of B to an output of A (Figure 2.4,
left). The many-one reduction ≤1

m between predicates ((Σ∗, {0, 1})-problems) is defined as
the special case where where we do not convert the output, i.e., r(u, v) = v (Figure 2.4,
middle). These are special cases of the Turing reduction A ≤1

T B (Figure 2.4, right), which
means that there is a function r ∈ FP such that r(b) realizes A for any total function b
realizing B. The reductions ≤1

mF, ≤1
m, ≤1

T are sometimes called the Karp, Levin and Cook
reductions, respectively [Gol08, Section 2.2].

Since problems over Reg also get a function as input, the analogous definitions of re-
ductions involve one more converter s:
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B

A

t r

u some v ∈ A[u]

A ≤1
mF B

B

A

t

u some v ∈ A[u]

A ≤1
m B

B

A

r

u some v ∈ A[u]

A ≤1
T B

Figure 2.4: Reductions between (Σ∗, Σ∗)- and (Σ∗, {0, 1})-problems A, B.

Definition 2.12 (Many-one reductions). 1. Let A and B be (Reg,Reg)-problems. We
say that A many-one reduces to B (written A ≤2

mF B) if there are functions r, s,
t ∈ FP such that for any ϕ ∈ dom A, we have s(ϕ) ∈ dom B and for any θ ∈ B[s(ϕ)],
the function that maps each string x to r(ϕ)(x, θ(t(ϕ)(x))) is in A[ϕ] (Figure 2.5, top
left).

2. Let A and B be (Reg,Pred)-problems. We write A ≤2
m B if there are functions s,

t ∈ FP such that for any ϕ ∈ dom A, we have s(ϕ) ∈ dom B and for any θ ∈ B[s(ϕ)],
the function θ ◦ t(ϕ) is in A[ϕ] (Figure 2.5, top right).

The design of these reductions is somewhat arbitrary. We chose these definitions simply
because they are strong enough to make our examples (Theorems 4.14 and 4.25) complete
with respect to them. What Beame et al. [BCE+98] call the “many-one reduction” between
type-two problems is slightly stronger than our ≤2

mF in that it passes the string input x not
only to t and r but also to s (Figure 2.5, bottom left). See the comment after Lemma 2.18
for the reason we did not choose this definition.

Another reasonable notion of reduction is the one on the bottom right of Figure 2.5:

Definition 2.13 (Turing reduction). Let A and B be (Reg,Reg)-problems. We say that
A Turing reduces to B (written A ≤2

T B) if there are functions r, s ∈ FP such that for any
ϕ ∈ dom A, we have s(ϕ) ∈ dom B and r(〈ϕ, ψ〉) ∈ A[ϕ] whenever ψ ∈ B[s(ϕ)].

This is a polynomial-time version of the continuous reduction used by Weihrauch [Wei92]
to compare the degrees of discontinuity of translators between real number representations
(see Brattka and Gherardi [BG11] for a recent reference with an historical survey). Note
that, while this reduction is somewhat analogous to the standard Turing reduction ≤1

T

of (Σ∗, Σ∗)-problems, it also formally resembles the definition of ≤1
mF. The many-one

reduction ≤2
mF is the special case of this reduction ≤2

T where r can query ψ only once.
Beame et al. [BCE+98] define an even stronger “Turing reduction”.
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(for some ψ ∈ A[ϕ])

y ϕ(y)
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A many-one reduces to B
in the sense of [BCE+98].
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Figure 2.5: Reductions between (Reg,Reg)- and (Reg,Pred)-problems.
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2.3 Reductions and completeness

When C is one of the complexity classes defined so far, we write FPC for the set of
(Reg,Reg)-problems A such that A ≤2

T B for some B ∈ C. (From the general point of
view in complexity theory, it may be more appropriate to define what it means to put the
oracle B to the machine M and then introduce the relativized classes DB and DC for the
class D of machines M . But the above definition, treating the oracle as part of the problem
instance, suffices for the classes we want to discuss. In particular, we will not mention such
a relativized class for D other than FP in this thesis.)

Lemma 2.14. 1. Let A and B be (Reg,Pred)-problems.

• A ≤2
T B and B ∈ P imply A ∈ P.

• A ≤2
m B and B ∈ NP imply A ∈ NP.

• A ≤2
T B and B ∈ PSPACE imply A ∈ PSPACE.

2. Let A and B be (Reg,Reg)-problems.

• A ≤2
T B and B ∈ FP imply A ∈ FP.

• A ≤2
T B and B ∈ FPNP imply A ∈ FPNP.

• A ≤2
T B and B ∈ FPSPACE imply A ∈ FPSPACE.

In fact, FP, FPNP and FPSPACE are the ≤2
T-closures of P, NP and PSPACE.

Now that we have the classes (Definition 2.10) and reductions (Definitions 2.12 and
2.13), we can talk about hardness. For a complexity class C and a reduction ≤2, we say
that a problem B is hard for C with respect to ≤2 (or C-≤2-hard) if A ≤2 B for every
A ∈ C. It is said to be C-≤2-complete if moreover it is in C.

2.3.2 Complete problems

Here we list some NP- and PSPACE-≤2
m-complete problems. The completeness proofs are

all easily relativized versions of well-known NP- and PSPACE-≤1
m-completeness.

We begin with NP-≤2
m-complete problems. For a non-decreasing (N, N)-function µ, define

µ ∈ Reg by µ(u) = 0µ(|u|). A boolean formula involving a predicate symbol is an expression
built up inductively from boolean variables a1, a2, . . . using the connectives fi1∧fi2 , fi1∨fi2 ,
¬fi1 and ¤(fi1 , . . . , fin) (the arity n can vary) for any previously obtained formulas fi1 ,
fi2 , . . . . If u is such a boolean formula involving a predicate symbol and p is in Pred, then
we get a boolean formula up by interpreting ¤ as p.

Lemma 2.15. The following partial functions ntime2, exist2 and sat2 from Reg to
Pred are NP-≤2

m-complete:

• domntime2 consists of all quadruples 〈M, p, µ, ϕ〉 such that M is a (program of an or-
acle Turing) machine, p and µ are non-decreasing (N, N)-functions, ϕ ∈ Reg, and for
any u ∈ Σ∗ and v ∈ Σ≤p(|u|), the machine M on oracle ϕ and input (u, v) halts in time
µ(|u|) (this M is a string, so we encode it as the constant function taking this string as
value). For any such quadruple and a string u, we have ntime2(〈M, p, µ, ϕ〉)(u) = 1
if and only if Mϕ(u, v) = 1 for some v.
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2 Complexity of Type-Two Problems

• domexist2 = Pred. For any p ∈ Pred, u ∈ Σ∗ and n ∈ N, we have exist2(p)(u, 0n) =
1 if and only if there is a string v of length n with p(u, v) = 1.

• dom sat2 = Pred. For any p ∈ Pred and any string u, we have sat2(p)(u) = 1 if
and only if u is a boolean formula involving a predicate symbol and up is satisfiable.

Proof. For ntime2, let A ∈ NP. Then there are a polynomial-time machine M and a
second-order polynomial P as in Definition 2.11. Let Q be its time bound (some second-
order polynomial). To see that A ≤2

m ntime2, define the functions s and t of Definition 2.12
by s(ϕ) = 〈M, P (|ϕ|), Q(|ϕ|), ϕ〉 and t(ϕ)(u) = u.

To see that ntime2 ≤2
m exist2, define the functions s and t of Definition 2.12 as follows.

Let s(〈M, p, µ, ϕ〉) be the function that maps each pair (u, v) to 1 if the machine M on
oracle ϕ and input (u, v) halts in time µ(|u|) and outputs 1. Let t(〈M, µ, ϕ〉)(u) be the
function that maps each string u to the pair (u, 0p(|u|)).

To see that exist2 ≤2
m sat2, define the functions s and t of Definition 2.12 as follows.

Let s(p) = p. Let t(p)(u, 0n) be the formula p(u, a1a2 . . . an), where the ai are boolean
variables.

Note that in the proof of A ≤2
m ntime2, we needed the regularity of ϕ in order to

compute P (|ϕ|) and Q(|ϕ|) efficiently from given ϕ.
We can prove in almost the same way that the analogously defined counting problems

are #P-≤2
mF-complete.

Now we move on to PSPACE-≤2
m-complete problems. If ϕp is a boolean formula involving

a predicate symbol, then an expression of the form

Q1a1. Q2a2. Q3a3 . . . Qkak. ϕp(a1, . . . , ak), (2.15)

where each Qi is either ∀ or ∃, is called a quantified boolean formula involving a predicate
symbol. Its truth value is determined in the obvious way relative to the predicate to be
substituted.

Lemma 2.16. The following partial functions space2, power2, qbf2 from Reg to Pred
are PSPACE-≤2

m-complete:

• dom space2 consists of all triples 〈M, µ, ϕ〉 such that M is a (program of a) deter-
ministic (oracle Turing) machine, µ is a non-decreasing (N, N)-function, ϕ ∈ Reg,
and for any string u, the computation Mϕ(u) uses no more than µ(|u|) tape cells
and either accepts or rejects (this M is a string, so we encode it as the constant
function taking this string as value). For any such triple and a string u, we have
space2(〈M, µ, ϕ〉)(u) = 1 if and only if Mϕ(u) accepts.

• dompower2 consists of all f ∈ Reg that are length-preserving (i.e., |f | = id). For

any such f and a string u, we have power2(f)(u) = 1 if and only if f 2|u|
(u) = 0|u|,

where we write fk for f iterated k times.
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2.4 Effective and ineffective statements

• domqbf2 = Pred. For any p ∈ Pred and any string u, we have qbf2(p)(u) = 1
if and only if u is a quantified boolean formula involving a predicate symbol and it is
made true by p.

Proof. The proof for space2 is similar to that of the NP-≤2
m-completeness of ntime2.

We reduce space2 to power2. Fix a reasonable way to encode the configuration at any
time in any computation of an oracle Turing machine by a string called the instantaneous
description (ID). We may assume that if the computation uses at most k tape cells, then
each configuration can be encoded by an ID (called its space-k ID) whose length is exactly
l(k), where l is a strictly increasing polynomial. We may also assume that the accepting
configuration is unique and is represented by the space-k ID 0l(k).

We may assume that space2 is restricted to those triples 〈M, µ, ϕ〉 such that Mϕ, on
any input u, halts in exactly 2l(µ(|u|)) steps. To show that this restricted space2 reduces to
power2, we define the functions s and t of Definition 2.12 as follows. Define s by saying
that s(〈M, µ, ϕ〉) is the length-preserving function that maps each ID of the machine Mϕ to
its successor ID (of the same length); if such a successor ID does not exist (this happens if
Mϕ has just used up too much space to have an ID of the same length), then the value is an
ID corresponding to an irrevocable rejecting state. Define t by saying that t(〈M, µ, ϕ〉)(u)
is the space-µ(|u|) initial ID of the machine M on input u.

We reduce power2 to qbf2. For each length-preserving string function f , define [f ] ∈
Pred by [f ](v, w) = 1 if and only if w = f(v). Note that [f2](v, w) can be written

∃x. ∀y. ∀z.
((

(y, z) = (v, x) ∨ (y, z) = (x, w)
)
−→ [f ](y, z)

)
, (2.16)

where x, y, z range over binary strings of the same length as v and w. Using this inductively,
we can express [f 2n

](v, w) as a quantified boolean formula involving [f ] whose length is
bounded polynomially in n, |v|, |w|. Thus to get the functions s and t of Definition 2.12

for power2 ≤2
m qbf2, let s(f) = [f ] and let t(f) be the formula that means [f2|u|

](u, 0|u|)
relative to [f ].

Note that, since FPNP and FPSPACE are the ≤2
T-closures of NP and PSPACE, the

problems in Lemma 2.15 are FPNP-≤2
T-complete and the problems in Lemma 2.16 are

FPSPACE-≤2
T-complete.

2.4 Effective and ineffective statements

In Chapter 4, we will study the complexity of objects such as an operator F that maps real
functions to real functions. Some of such complexity issues have been addressed indirectly
since the 1980s by assuming the real function f to be simple and then asking how complex
F (f) can be. In order to bridge between these two formulations, we show in this section
how statements about the complexity of (Reg,Reg)-problems F (discussed so far) imply
statements about the complexity of the values of F .
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2 Complexity of Type-Two Problems

The relations between the positive statements are easy to see. The type-two classes
defined so far respect the corresponding type-one complexity classes:

Lemma 2.17. 1. Let (C, B, C) be either (P, FP, P), (NP, FP, NP) or (PSPACE, FPSPACE, PSPACE).
Then partial functions in C map regular functions in B into C.

2. Let (C, B, C) be either (FP, FP, FP), (FPNP, FP, FPNP) or (FPSPACE, FPSPACE, FPSPACE).
Then partial functions in C map regular functions in B into C.

On the other hand, the following lemma states roughly that a C-≤2-hard (Reg,Reg)-
problem B maps some function ψ ∈ FP ∩ Reg to a C-≤1-hard function, where C and ≤1

are the type-one versions of the class C and the reduction ≤2. But since B[ψ] may consist
of more than one function, we need to assert hardness for the (Σ∗, Σ∗)-problem

⋃
(B[ψ])

defined as follows: for a nonempty set F of (single-valued total) (X,Y )-functions, we write⋃
F to mean the (X,Y )-problem defined by (

⋃
F )[x] = { f(x) : f ∈ F }. Saying that the

function
⋃

F is hard is a stronger claim than saying that each of the functions in F is
hard, because the former requires that one reduction work for all functions in F . We need
to state the following lemma in this stronger form in order to derive Lemma 3.4 later.

Lemma 2.18. 1. Let (C, C,≤2,≤1) be either (NP, NP,≤2
m,≤1

m), (PSPACE, PSPACE,
≤2

T,≤1
T) or (PSPACE, PSPACE,≤2

m,≤1
m). If B is a C-≤2-hard (Reg,Pred)-problem,

then there is ψ ∈ FP ∩ dom B such that
⋃

(B[ψ]) is C-≤1-hard.

2. Let (C, C) be either (FPNP, FPNP) or (FPSPACE, FPSPACE) and let (≤2,≤1) be either
(≤2

T,≤1
T) or (≤2

mF,≤1
mF). If B is a C-≤2-hard (Reg,Reg)-problem, then there is

ψ ∈ FP ∩ dom B such that
⋃

(B[ψ]) is C-≤1-hard.

Proof. There is a function A ∈ C that maps some function ϕ ∈ FP ∩ Reg to a C-≤1-
complete function. Since B is C-≤2-hard, there are functions r, s, t ∈ FP as in Defini-
tion 2.12. By Lemma 2.17, we have r(ϕ), s(ϕ), t(ϕ) ∈ FP. Let ψ = s(ϕ). Since r(ϕ)
and t(ϕ) give a reduction A(ϕ) ≤1

⋃
(B[ψ]), and A(ϕ) is C-≤1-complete,

⋃
(B[ψ]) is also

C-≤1-hard.

We note that Lemma 2.18 would not have been true, if in the definition of reductions
we had fed s with the string input as Beame et al. [BCE+98] do (see the comment after
Definition 2.12). For let ≤2

∗ be the reduction which is like ≤2 but feeds s with the string
input, and let B be a C-≤2-complete problem. Then the problem B′ defined by

dom B′ = { 〈constu, ϕ〉 : u ∈ Σ∗, ϕ ∈ dom B }, (2.17)

B′[〈constu, ϕ〉] = { constψ(u) : ψ ∈ B[ϕ] }, (2.18)

where constu ∈ Reg denotes the constant function with value u, is C-≤2
∗-complete by the

modified reduction where “s does the jobs that t and s used to do”. Yet each one of the
values of B′ is a constant function.
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This chapter discusses how to apply the complexity theory over regular functions developed
in the previous chapter to various mathematical objects. Section 3.1 introduces the general
framework to talk about computation of objects encoded by regular functions via repre-
sentations. That is, we will extend our complexity notions about (Reg,Reg)-problems
from Chapter 2 to (X,Y )-problems through representations of X and Y by Reg.

Formally, a representation γ of a set X is a partial (Reg, X)-function which is surjec-
tive—that is, for each x ∈ X, there is at least one ϕ ∈ Reg with γ(ϕ) = x. For the
applications considered in this thesis, X will be equipped with a natural topology, and a
good representation of it is one that captures how the points in X can be approximated
(more on this in Section 3.2).

For example, a representation ρR of the real numbers R is defined as follows. First, we fix
an encoding of a dense subset of R whose elements are used to approximate real numbers.
For each n ∈ N, let Dn denote the set of strings of the form

sx/1 00 . . . 0︸ ︷︷ ︸
n

, (3.1)

where s ∈ {+,−} and x ∈ {0, 1}∗. Let D =
⋃

n∈N Dn. A string in D encodes a number in
the obvious sense—read (3.1) as a fraction whose numerator and denominator are integers
written in binary with leading zeros allowed. We write JuK for the number encoded by
u ∈ D. The numbers that can be encoded in this way are called dyadic numbers. We define
the representation ρR of R by setting ρR(ϕ) = x when ϕ(0i) ∈ D and |Jϕ(0i)K − x| < 2−i

for each i ∈ N.
Once we fix representations γ and δ of sets X and Y , we can talk about solving a (X,Y )-

problem with respect to (γ, δ): an (X,Y )-problem A is (γ, δ)-solved by (an oracle Turing)
machine M if for any x ∈ dom A and any ϕ with γ(ϕ) = x, the outcome ψ = M(ϕ)
satisfies δ(ψ) ∈ A[x] (Definition 3.1.3 and Lemma 3.2). This gives rise to the easiness and
hardness notions for (X,Y )-problems. Of course, they depend sensitively on the choice of
representations. In Sections 3.3 and 3.4, we introduce suitable representations for specific
objects of interest, including real numbers, sets, functions, and spaces obtained from them
by basic set-theoretic operations.

Note that we will represent all these spaces by Reg—for example, our representation δ¤
of the space C[0, 1] of continuous functions f : [0, 1] → R will still encode them by regular
functions (from strings to strings), even though real functions may seem to be “of higher
type” than real numbers. This is because we know less about the complexity of types
higher than two than we know (from Chapter 2) about type-two. Nevertheless, we will see
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3 Representations

(Theorem 3.33) that our representation δ¤ of real functions is the one which, in a sense,
canonically arise from ρR.

3.1 Computation through representations

As mentioned above, a representation γ of a set X is a partial (Reg, X)-function which is
surjective. When γ(ϕ) = x, we say that ϕ is a γ-name of x. We write γ−1 for the total
(X,Reg)-problem defined by γ−1[x] = {ϕ ∈ dom γ : γ(ϕ) = x }. Note that γ ◦ γ−1 = id.

The following definition extends the terminology about (Reg,Reg)-problems from Chap-
ter 2 to (X,Y )-problems by regarding an (X,Y )-problem A as the (Reg,Reg)-problem
δ−1 ◦ A ◦ γ, where γ and δ are representations of X and Y .

Definition 3.1 (Computation relative to representations). Let γ and δ be representations
of sets X and Y , respectively. An (X,Y )-problem A is said to be

1. (γ, δ)-realized by a (Reg,Reg)-problem F , if F realizes δ−1 ◦ A ◦ γ.

2. (γ, δ)-continuous, if δ−1 ◦ A ◦ γ is continuous.

3. (γ, δ)-solved by a machine M , if M solves δ−1 ◦ A ◦ γ.

4. in (γ, δ)-C, if δ−1 ◦ A ◦ γ is in C, where C is one of the classes of (Reg,Reg)-
problems defined in Section 2.2.2. This C can be a class of (Reg,Pred)-problems if
dom δ ⊆ Pred.

5. (γ, δ)-C-≤2-hard, if δ−1◦A◦γ is C-≤2-hard, where C is one of the classes of (Reg,Reg)-
problems defined in Section 2.2.2, and ≤2 is one of the reductions defined in Sec-
tion 2.3.1.

6. (γ, δ)-C-≤2-complete, if it belongs to (γ, δ)-C and is (γ, δ)-C-≤2-hard.

Recall that the composition of problems was defined by (2.1) and (2.2); that is,

dom(δ−1 ◦ A ◦ γ) = {ϕ ∈ dom γ : γ(ϕ) ∈ dom A }, (3.2)

and for each ϕ in this set,

(δ−1 ◦ A ◦ γ)[ϕ] = {ψ ∈ dom δ : δ(ψ) ∈ A[γ(ϕ)] }. (3.3)

The following is easy to prove using Lemma 2.2 and the facts that γ ◦ γ−1 = δ ◦ δ−1 = id
and that γ−1 ◦ γ and δ−1 ◦ δ are realized by id.

Lemma 3.2. Let γ and δ be representations of sets X and Y , respectively. Let A be an
(X,Y )-problem and F be a (Reg,Reg)-problem (Figure 3.1). The following are equivalent:

• F realizes δ−1 ◦ A ◦ γ (that is, A is (γ, δ)-realized by F as per Definition 3.1.1).
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Reg F //

γ
²²

Reg

δ
²²

X
A

// Y

Figure 3.1: A (Reg,Reg)-problem F is said to (γ, δ)-realize a (X,Y )-problem A if F
realizes δ−1 ◦ A ◦ γ, or equivalently, δ ◦ F realizes A ◦ γ.

• δ ◦ F realizes A ◦ γ.

• δ ◦ F ◦ γ−1 realizes A.

Our Definition 3.1.1 is equivalent to the one in Weihrauch [Wei00, Definition 3.1.3.4]
which formulates (γ, δ)-realization1 by the second characterization above. Weihrauch then
defines (γ, δ)-continuity (resp. (γ, δ)-computability) of A by the existence of a continuous
(resp. computable) partial function that (γ, δ)-realizes A. These definitions are also equiva-
lent to the one obtained from our Definitions 3.1.2 and 3.1.3. For continuity this is because
of Corollary 2.8.

Thus, saying that A is (γ, δ)-solved by a machine M means that whenever M is given a
γ-name of an element x ∈ dom A as oracle, it must output some δ-name of some element
of A[x].

Effective and ineffective statements In Section 2.4, we saw for (Reg,Reg)-problems F
that effective statements (about the complexity of F ) implies ineffective statements (about
the complexity of the values of F ). Here we discuss how this implication carry through for
computation on represented spaces.

We need some terminology for the ineffective statements. When γ is a representation
of a set X, we write γ-C (where C is a type-one complexity class) for the set of elements
x ∈ X is that have a γ-name in C. We say that x is γ-C-≤1-hard (where ≤1 is one of
the type-one reductions ≤1

mF, ≤1
m and ≤1

T) if
⋃

(γ−1[x]) (recall that
⋃

was defined before
Lemma 2.18) is C-≤1-hard. Now we have the represented versions of Lemmas 2.17 and
2.18:

Lemma 3.3. Let γ and δ be representations of sets X and Y , respectively.

1. Suppose that dom δ ⊆ Pred and let (C, B, C) be as in 2.17.1. Then a partial (X,Y )-
function F in (γ, δ)-C maps elements of γ-B ∩ dom F into δ-C.

2. Let (C, B, C) be as in 2.17.2. A partial (X,Y )-function F in (γ, δ)-C maps elements
of γ-B ∩ dom F into δ-C.

1Weihrauch [Wei00] uses ΣN instead of our Reg, see Section 2.2.3. Also, he uses this terminology only
when F (the realizer) is single-valued.
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Proof. Let x ∈ γ-B ∩ dom F be arbitrary. Then x has a γ-name ϕ ∈ B. By assumption,
δ−1 ◦ F ◦ γ belongs to C. Since C is a class defined by machine computation, there is a
partial function G ∈ C that realizes δ−1 ◦F ◦ γ. By Lemma 2.17, we have G(ϕ) ∈ C. Since
G(ϕ) ∈ (δ−1 ◦ F ◦ γ)[ϕ] = δ−1[F (x)], we have F (x) ∈ δ-C.

Lemma 3.4. Let γ and δ be representations of sets X and Y , respectively.

1. Suppose that dom δ ⊆ Pred and let (C, C,≤2,≤1) be as in 2.18.1. Then a (γ, δ)-C-
≤2-hard partial function from X to Y maps some element of γ-FP to a δ-C-≤1-hard
element of Y .

2. Let (C, C,≤2,≤1) be as in 2.18.2. A (γ, δ)-C-≤2-hard partial function from X to Y
maps some element of γ-FP to a δ-C-≤1-hard element of Y .

Proof. Suppose that A is a (γ, δ)-C-≤2-hard partial function. This means that δ−1 ◦A ◦ γ
is C-≤2-hard. By Lemma 2.18, there is ψ ∈ FP∩ dom(A ◦ γ) such that

⋃
(δ−1[A(γ(ϕ))]) is

C-≤1-hard. Thus, A maps an element γ(ϕ) of γ-FP to a δ-C-≤1-hard element A(γ(ϕ)).

These lemmas will be used later in Chapter 4 to derive the ineffective theorems from
their effective versions.

3.2 Comparing representations

Here we study how the class (γ, δ)-C and the notion of (γ, δ)-C-≤2-hardness depend on the
choice of representations γ and δ.

3.2.1 Translation and equivalence

We can compare two representations γ and δ of the same set by asking whether γ-names
can be translated to δ-names by a continuous, computable, or polynomial-time computable
partial function:

Definition 3.5 (Translation). Let γ and δ be two representations of the same set X. We
write2

1. γ ≤cont δ, if δ−1 ◦ γ is continuous.

2. γ ≤FRec δ, if δ−1 ◦ γ is in FRec.

3. γ ≤FP δ, if δ−1 ◦ γ is in FP.

Thus, γ ≤cont δ (resp. γ ≤FRec δ, γ ≤FP δ) if there is a continuous (Reg,Reg)-problem F
(resp. in FRec, in FP) that Turing translates γ to δ in the sense that δ ◦ F realizes γ
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Reg F //
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Figure 3.2: Function F translating γ to δ.

(Figure 3.2), or equivalently, the identity function id is (γ, δ)-solved by F . Because of
Corollary 2.8, it makes no difference whether we require this F to be single-valued. The
existence of such a translation may be interpreted as γ being “more informative” or “less
general” than δ.

Since the classes we have defined so far are closed under polynomial-time Turing reduc-
tion, we have the following:

Lemma 3.6. Let C be one of the classes of (Reg,Reg)-problems defined in Chapter 2.
Let γ and γ′ be representations of a set X, and δ and δ′ be representations of a set Y . If
γ′ ≤FP γ and δ ≤FP δ′, then (γ, δ)-C ⊆ (γ′, δ′)-C.

We write γ ≡FP γ′ if γ ≤FP γ′ and γ′ ≤FP γ (and likewise for ≡cont and ≡FRec). By
Lemma 3.6, the class (γ, δ)-C is invariant under replacing γ or δ with ≡FP-equivalent
representations. This is the polynomial-time analogue of the similar observation about
≡FRec-equivalent representations [Wei00, Corollary 3.1.9]

The next lemma shows how the notion of (γ, δ)-C-≤2
T-hardness is kept by different choices

of representations γ and δ.

Lemma 3.7. Let C be one of the classes of (Reg,Reg)-problems defined in Chapter 2.
Let γ and γ′ be representations of a set X, and δ and δ′ be representations of a set Y . If
γ ≤FP γ′ and δ′ ≤FP δ, then a (γ, δ)-C-≤2

T-hard (X,Y )-problem is (γ′, δ′)-C-≤2
T-hard.

Thus the notion of (γ, δ)-C-≤2
T-completeness is invariant when replacing γ or δ by ≡FP-

equivalent representations. The hardness in Lemma 3.7 needs to be the one defined by the
reduction ≤2

T, because our translation ≤FP (Definition 3.5) does a conversion similar to
Turing reduction. If we want to get an analogous result for the weaker reductions ≤2

mF and
≤2

m, we need to replace ≤FP in the assumption by a more restrictive kind of “many-one”
translation, but we leave it to the reader.

By Lemmas 3.6 and 3.7, ≡FP-equivalent representations define the same notions of com-
putability and hardness (as long as we are interested in classes above FP). The question,
then, is choosing the “right” ≡FP-equivalence class. A first test of a good representation
is that it is compatible with the topology of the represented space in the sense explained
next.

2The translations ≤cont and ≤FRec defined here are essentially the same things as ≤t and ≤ of [Wei00,
Definition 2.3.2].
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3.2.2 Admissible representations

Although by definition a representation of a set X is any surjective partial (Reg, X)-
function, only a handful of them are meaningful. Recall from Chapter 2 that a regular
function ϕ ∈ Reg can be accessed only through querying. Thus, a reasonable represen-
tation γ would be such that partial information on the name ϕ (i.e., its values at finitely
many strings) reveals some meaningful information about the point γ(ϕ). For example,
a nice representation γ of R would be such that reading a finite portion of a name ϕ of
a number x ∈ R would allow us to narrow x down into some neighbourhood of x. This
motivates us to consider the represented set X as a topological space and to look for a
representation that matches this topology.

A topological space X is said to be second countable if it has a countable base. It is
T0 if any two distinct points have different families of open neighbourhoods (i.e., the set
of all open sets containing x is different for different x ∈ X). For example, the set Reg
of regular functions is a second countable T0 space. (Recall from Section 2.2 that we
define the topology of this space by the base {Bk : k ∈ Λ }, where Λ is the set of partial
(Σ∗, Σ∗)-functions with finite promise, and Bk is the set of regular functions realizing k.)

We will be henceforth interested only in second countable T0 spaces. We obtain a natural
representation of such a space if we fix the encoding of the elements of a (countable) base:

Definition 3.8 (Effective topological spaces). A pair (X, ν) is called an effective topological
space if ν is a partial surjective (Σ∗,B)-function, where B is a family of subsets of X
and the space X whose topology is defined by the open base B is T0. The standard
representation δ̂ = δ(X,ν) of X is then defined by saying that a regular function ϕ ∈ Reg

is a δ̂-name of a point x ∈ X if and only if{
ν
(
ϕ(u)

)
: u ∈ Σ∗ }

=
{

B ∈ B : x ∈ B
}
. (3.4)

Thus, a δ̂-name of a point x ∈ X is a list of all basic open sets containing x. This
representation δ̂ is well-defined (no two elements of X get the same δ̂-name) because X is
T0.

An example of an effective topological space is (R, ν), where ν is a reasonable encoding of
all balls whose centre and radius are rational numbers. The standard representation δ̂ for
this space is the one where a δ̂-name of x ∈ R is an infinite list of all such rational balls. It is
easy to see that δ̂ is ≡FRec-equivalent (and hence ≡cont-equivalent) to the representation ρR
defined at the beginning of this chapter, but it encodes information “less efficiently” so
that ρR ≤FP δ̂ but not δ̂ ≤FP ρR.

Lemma 3.9 (Essentially [Wei00, Lemma 3.2.5]). Let δ̂ be the standard representation of
an effective topological space (X, ν) (Definition 3.8). Then both δ̂ and δ̂−1 are continuous.

Proof. Let ϕ ∈ Reg be a δ̂-name of x ∈ X. Then δ̂ is continuous at (ϕ, x), because, for
any basic open set ν(v) containing x, its preimage

δ̂−1
(
ν(v)

)
=

⋃
u∈Σ∗

{ψ ∈ dom δ̂ : ψ(u) = v } (3.5)
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is open in dom δ̂. Also, δ̂−1 is continuous at (x, ϕ), because, for any basic open set Bk

containing ϕ (see Section 2.2.1 for the notation of a base of Reg), its preimage

(δ̂−1)−1Bk =
⋂

u∈dom k

ν
(
ϕ(u)

)
(3.6)

is open. Thus δ̂ and δ̂−1 are continuous (in fact, strongly continuous).

The following definition formulates the desirable property of a representation from the
topological point of view.

Definition 3.10 (Admissible representation3). Let X be a second-countable T0 space. A
representation δ of X is admissible if it is continuous and γ ≤cont δ for every continuous
representation γ of X.

Such a representation exists by Lemma 3.9 and the following.

Lemma 3.11. A representation δ of a second countable T0 space is admissible if and only
if both δ and δ−1 are continuous.

Proof. Suppose that a representation δ of a second-countable T0 space X and its inverse
δ−1 are both continuous, and let γ be another continuous representation of X. Then δ−1◦γ
is continuous, and this was the definition of γ ≤cont δ.

Conversely, suppose that δ is admissible (and hence continuous). The whole space can
be regarded as an effective topological space by fixing a notation of a countable base, so let
δ̂ be its standard representation (Definition 3.8). To see that δ−1 is continuous, we use the
fact that δ̂ ≤cont δ, that is, δ−1 ◦ δ̂ is continuous. Composing from the right the problem
δ̂−1, which is continuous by Lemma 3.9, we conclude that δ−1 is continuous.

Theorem 3.12. Let γ and δ be admissible representations of second-countable T0 spaces X
and Y , respectively. An (X,Y )-problem is continuous if and only if it is (γ, δ)-continuous.

Proof. Let A be an (X,Y )-problem. Recall that (δ, γ)-continuity of A means the continuity
of δ−1 ◦A ◦ γ by definition. The claim follows from Lemmas 2.5 and 3.11 and the fact that
A = δ ◦ δ−1 ◦ A ◦ γ ◦ γ−1.

In summary, the admissible representations constitute a unique ≡cont-equivalence class
of representations that are compatible with the topology of the given second-countable T0

space. One of the representations in this equivalence class is the standard representation,
which we obtain as soon as we fix an encoding of a countable base of the space (i.e., specify

3Weihrauch [Wei00, Definition 3.2.7] defines admissible representations as those ≡cont-equivalent to the
standard representation, and then derives this characterization as a theorem [Wei00, Theorem 3.2.9].
Schröder [Sch02] chooses Definition 3.10 as the basis of his generalization of admissibility to non-
countably based spaces.
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an effective metric space). The (smaller) ≡FRec-equivalence class of the standard represen-
tation consists of the representations which define the common computability pertinent to
this specific encoding of the base.

We still need to choose an even smaller ≡FP-equivalence class which defines meaningful
complexity notions. This does not seem to be possible in complete generality. Note that
the standard representation δ̂ (Definition 3.8) of an effective metric space (say R) is useless
for discussing δ̂-FP: a δ̂-name ϕ of t ∈ R is such that the values ϕ(u) as u ranges over all
strings list all basic open sets containing t, but there is no rule about how this listing is
ordered, so it does not make much sense to try to bound the time to get ϕ(u) in terms of
|u|. Thus we will need to design a “less redundant” representation for each application.
We will return to this issue as we discuss some specific spaces in Section 3.4.

3.3 General constructions of representations

In this section, we present canonical methods to construct representations from given ones.

3.3.1 Finite objects

As we explained above, we use the elements of Reg as names of various objects, such
as real numbers, that cannot be encoded by Σ∗. But some mathematical problems may
partly involve discrete objects as well, such as natural numbers, that could be encoded by
Σ∗. Let ν be a notation of a set X, i.e., a surjective single-valued partial (Σ∗, X)-function
(X is of course countable if there is such a notation). Then we define the representation
κν of X by

dom κν = { constu : u ∈ dom ν }, κν(constu) = ν(u), (3.7)

where constu is the (total) constant (Σ∗, Σ∗)-function taking value u.

This allows us to discuss the complexity in the conventional sense within our framework.
Note, for example, that an (X,Y )-problem is in (κµ, κν)-FP, where µ and ν are notations
of X and Y , respectively, if and only if it can be solved in polynomial time (with respect
to the notations µ and ν) in the usual sense.

3.3.2 Pairs and sequences

For representations γ0 and γ1 of X0 and X1, respectively, we define the representation
[γ0, γ1] of the Cartesian product X0 × X1 by

dom[γ0, γ1] = { 〈ϕ0, ϕ1〉 : ϕ0 ∈ dom γ0, ϕ1 ∈ dom γ1 }, (3.8)

[γ0, γ1](〈ϕ0, ϕ1〉) = (γ0(ϕ0), γ1(ϕ1)) (3.9)
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using the pairing function defined at the beginning of 2.2. This can be extended to finitely
many sets X0, . . . , Xn−1 by [γ0, γ1, . . . , γn−1] = [. . . [[γ0, γ1], γ2], . . . , γn−1]. We write γn for
the representation [γ, . . . , γ] of Xn.

For infinitely many regular functions ϕ0, ϕ1, . . . , we define the total (Σ∗, Σ∗)-function
〈ϕi〉i∈N by 〈ϕi〉i∈N(0i1u) = ϕi(u) for each i ∈ N. This is not a regular function, but
|〈ϕi〉i∈N|(n) ≤ maxi<n(i + 1 + |ϕi|(n − 1 − i)), so given the ϕi, it can be made regular by
padding the values in some reasonable way. Thus for a representation γ of a set X, we
define γN to be the representation of XN given by dom γN = { 〈ϕi〉i∈N : ϕ0, ϕ1, . . . ∈ dom γ }
and γN(〈ϕi〉i∈N) = (γ(ϕi))i.

3.3.3 Subspaces and quotients

Let γ be a representation of space X. The representation γ|X′
of a subspace X ′ ⊆ X

(equipped with the relative topology) is defined by dom γ|X′
= {ϕ ∈ dom γ : γ(ϕ) ∈ X ′ }

and γ|X′
(ϕ) = γ(ϕ).

Let ∼ be an equivalence relation on X. The representation γ/∼ of the quotient space
X/∼ (equipped with the finest topology that makes the projection map from X to X/∼
continuous) is defined by saying that dom(γ/∼) = dom γ and that (γ/∼)(ϕ) is the equiv-
alence class of γ(ϕ).

3.3.4 Function spaces

For topological spaces X and Y , we write C[X → Y ] for the set of all continuous (total
single-valued) functions from X to Y . In this section, we discuss how to construct a nice
representation of C[X → Y ] from given admissible representations γ and δ of X and Y ,
respectively.

If we do not consider resource bounds, there is a very general answer to this question:
we define the representation [γ → δ] of C[X → Y ] as follows. The promise dom[γ → δ]
consists of 〈M, p〉 ∈ Reg such that δ ◦ Mp ◦ γ−1 is a (total single-valued) function. For
such 〈M, p〉, we set [γ → δ](〈M, p〉) = δ ◦Mp ◦ γ−1. Note that every element of C[X → Y ]
gets a name by Theorems 2.7 and 3.12.

The following property is one reason to believe that this representation [γ → δ] is very
natural for the space.

Theorem 3.13 ([Wei00, Lemma 3.3.14]). Let γ and δ be representations of X and Y , re-
spectively. Let Apply denote the total (C[X → Y ]×X,Y )-problem defined by Apply(f, x) =
f(x). For any representation ζ of C[X → Y ],

1. Apply is ([ζ, γ], δ)-continuous if and only if ζ ≤cont [γ → δ].

2. Apply is in ([ζ, γ], δ)-FRec if and only if ζ ≤FRec [γ → δ].
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Thus, [γ → δ] is the weakest (in the sense of ≤cont and ≤FRec) representation that makes
Apply continuous/computable.

There does not seem to be a way to construct a representation that satisfies the analogous
property at the level of FP. But this is sometimes possible for specific spaces. We will
present such a representation for the space of continuous real functions later.

3.4 Representations for some specific spaces

3.4.1 Real numbers

For real numbers, we use the representation ρR defined at the beginning of this chapter.
We list some problems solvable in FP with respect to ρR.

Example 3.14. Addition + (as an (R × R, R)-problem) is in ([ρR, ρR], ρR)-FP (recall the
construction of the representation [ρR, ρR] of pairs of real numbers, Section 3.3.2). To see
this, first note that adding two rational numbers can be done in polynomial time. More
precisely, there is a polynomial-time algorithm A that, given two strings u, v ∈ D, outputs
a string A(u, v) ∈ D satisfying JA(u, v)K = JuK + JvK within time polynomial in |u| and |v|.
We present a polynomial-time machine M that ([ρR, ρR], ρR)-solves the real addition +.
Suppose that M is given ρR-names ϕ and ψ of real numbers s and t, and we are also given
the string input 0m. Since u := ϕ(0m+1) satisfies a |JuK − s| < 2−m−1 and v := ψ(0m+1)
satisfies a |JvK− t| < 2−m−1, the sum JA(u, v)K = JuK+ JvK is a 2−m-approximation of s+ t,
so M can output A(u, v). This can be done in time polynomial in |u| = |ϕ|(m + 1) and
|v| = |ψ|(m + 1), and thus in |ϕ|, |ψ| and m.

Example 3.15. Similarly, multiplication × (as a (R × R, R)-problem) is in ([ρR, ρR], ρR)-
FP. For suppose that we are given ρR-names ϕ and ψ of real numbers s and t. First,
let k = max{|ϕ(ε)|, |ψ(ε)|} (where ε denotes the empty string). Since Jϕ(ε)K and Jψ(ε)K
are near s and t, and it takes more than k digits to encode a number with absolute
value ≥ 2k, we have |s|, |t| < 2k. Hence, s × t is approximated within precision 2−m byJum+k+1K · Jvm+k+1K.
Example 3.16. For each ε, the problem F defined at (2.4) (the finite-precision test, Fig-
ure 2.1, left) is in (ρR, ρR)-FP. For let n be such that 2−n < ε. Given a ρR-name ϕ of
x ∈ R, the machine can read ϕ(0n) |Jϕ(0n)K − x| < 2−n. If Jϕ(0n)K is negative, then
x < 2−n < ε, so the machine can safely tell that 1 ∈ F (x). If Jϕ(0n)K is nonnegative,
then x ≥ −2−n > −ε, so the machine can safely tell that 0 ∈ F (x). Note that this ma-
chine yields different answers for different representations of x. Thus, multi-valuedness is
essential for the solubility of this problem.

Example 3.17. The exponential function exp as a ([0, 1], R)-problem is in (ρR|[0,1], ρR)-FP,
because it can be written as the sum of the series

exp t = 1 +
t

1!
+

t2

2!
+

t2

3!
+ · · · (3.10)
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that converges fast on [0, 1] (that is, given a desired precision, the machine can tell how
many initial terms it needs to add). However, the (R, R)-problem exp (defined on the
whole real line) is not in (ρR, ρR)-FP, because it grows too fast.

Example 3.18. The sine function sin : R → R is in (ρR, ρR)-FP. To see this, note that just
like exp in the previous example, sin is polynomial-time computable if restricted to, say,
[−4, 4]. It is also possible, given t ∈ R as oracle and a desired precision, to find efficiently a
number in [−4, 4] which is close enough to t modulo 2π. We can compute sin t by combining
these algorithms.

Example 3.19. A function can be in (ρR, ρR)-FP without even an explicit description known.
The distance trisector curves between the points (0, 1) and (0,−1) in the plane are the
pair of sets C1, C2 ⊆ R2 such that C1 is the set of points equidistant from (0, 1) and
C2, and C2 is the set of points equidistant from (0,−1) and C1. Asano, Matoušek and
Tokuyama [AMT07] showed that such a pair (C1, C2) exists and is unique (see [KMT10]
for a simpler and more general proof), and that C1 (as well as C2, which is the mirror
reflection) is the graph of an (R, R)-function f in (ρR, ρR)-FP. This is despite the fact that
very little is understood about the curves and it is suspected that they are different from
any curve previously known to mathematicians [AMT07].

The representation ρR is based on the idea of absolute error : the nth approximation
u = ϕ(0n) written in a name ϕ of x is such that the error ε := |JuK − x| is less than 2−n.
Numerical analysts also talk about the relative error δ := ε/x (consider x > 0 and ε ¿ x
for now). But saying that JuK is within relative error δ from x is roughly equivalent (when δ
is small) to saying that logJuK is within absolute error δ from log x. Thus, a situation where
we want to find a real number x with a small relative error can be modeled as a situation
where we want to find a ρ′

R-name of x, where ρ′
R = exp ◦ρR is another representation of R.

Thus we do not insist on choosing a single “right” representation of R, but leave the
possibility of scaling to an appropriate representation whenever appropriate for specific
applications. We see this as a natural thing to do. When a scientist uses a semi-logarithmic
plot to visualize the relation between quantities x and y, he believes that the essence of
the relation is best understood by considering it as a relation between x and log y. The
representation to be used for a real number depends on what quantity the number stands
for and how we measure or interpret them. Our choice of ρR as the standard representation
of R in this thesis is not for any intrinsic reason, but is motivated by the fact that it defines
the same polynomial-time computability as the ones previously studied by other authors,
as we will discuss next.

Equivalence with other formulations

We write ρR|[0,1] for the restriction of ρR to (names of) real numbers in the interval [0, 1]
(see Section 3.3.3).

Here we point out that (the total functions in) our classes defined through ρR coincide
with some classes that have been studied by other authors. Because of this, in later parts
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of the thesis where we talk about problems whose inputs and outputs are (one or more)
real numbers, we say such problems are polynomial-time computable when they belong to
(γ, δ)-FP, where the representations γ and δ are tacitly chosen from ρR, ρR|[0,1], [ρR, ρR],
etc., for spaces R, [0, 1], R2, etc.

The infinite string approach Because a ρR-name ϕ encodes information only in the values
ϕ(0n), we can define an analogous encoding ρ̃R (used in the following paragraph only) of
real numbers by infinite strings: a ρ̃R-name of a real number x is an infinite list u0#u1# . . .
of (codes of) rational numbers JuiK with |JuiK − x| < 2−i.

However, a little thought shows that the simple combination of Weihrauch’s infinite
string machine (at the end of Section 2.2.3) and this representation ρ̃R is useless [Wei00,
Examples 7.2.1, 7.2.3] (recall that such a machine running in polynomial time means that
the time needed before writing out the first n symbols of the output infinite string is
bounded polynomially in n). On the one hand, the machine M could “cheat” by writing
redundant ρ̃R-names: By writing +10000/100000 instead of +1/10 it gets more time to
compute the next approximation. On the other hand, the machine may suffer by receiving
redundant names as input, such as the one in which the first approximation is too long to
even read in time.

Thus to develop a meaningful complexity theory, we need to disallow redundancy care-
fully. This leads to the use of signed digit representation ρ̃sd of R [Wei00, Definition 7.2.4],
defined as follows: dom ρ̃sd consists of sequences ϕ ∈ ΣN of form ak . . . a1a0 • a−1a−2 . . .
for some k, where each ai is either 0, 1 or −1, such that either k = 0 or (ak, ak−1) ∈
{(1, 0), (1, 1), (−1, 0), (−1,−1)}; if this is the case, set

ρ̃sd(ϕ) =
k∑

i=−∞

ai · 2i. (3.11)

Thus we read the digit sequence as a binary expansion of a real number (with decimal
point •) with digits 0, 1 and −1; we forbid certain patterns in the first two digits of the
integer part in order to exclude redundancy (see [Wei00, Example 2.1.4.7] for the reason
why the usual binary expansion without the “−1” digit does not work). Let ρ̃sd|[0,1] be the
restriction of ρ̃sd to (names of) numbers in [0, 1] (as in Section 3.3.3).

Müller [Mül86, Mül87] and Weihrauch [Wei00, Chapter 7] use this (or essentially the
same) encoding ρ̃sd of real numbers by infinite strings to study the complexity of various
real functions in detail.

Theorem 3.20. A ([0, 1], R)-function f is in (ρR|[0,1], ρR)-FP if and only if it is (ρ̃sd|[0,1], ρ̃sd)-
computed by Weihrauch’s infinite string machine in polynomial time.

This equivalence is proved by an easy simulation. A key fact used for the “only if”
direction is that there is a polynomial r such that for each ρ̃sd-name p = a0a1 . . . of a real
number t ∈ [0, 1] there is a ρR-name ϕp ∈ Reg of t whose length |ϕp| is bounded by r and

40



3.4 Representations for some specific spaces

which encodes essentially the same information as p. Hence, if the assumed oracle Turing
machine that (ρR|[0,1], ρR)-computes f runs in time P (a second-order polynomial), then
on oracle ϕp and 0n it runs in P (r)(n), which is simply a polynomial in n only, so this
computation can be simulated by an infinite string machine reading p.

This is not true if t ranges over R rather than [0, 1] (there is no single polynomial r that
bounds the length of the most efficient ρR-name of t ∈ R). Because of this, the class of
(R, R)-functions (ρ̃sd, ρ̃sd)-computed by infinite string machines in polynomial time is not a
nice one. Even very simple functions are not polynomial-time computable, as the following
example shows:

Example 3.21. Addition (as an (R×R, R)-problem) is not polynomial-time ([ρ̃sd, ρ̃sd], ρ̃sd)-
computed by any infinite string machine M running in polynomial time (cf. Example 3.14).
For suppose that M runs within a polynomial time bound p. In particular, M has to write
the first symbol of the output in s := p(1) steps or fewer. Note that this first symbol must
be 1 if the sum is greater than 1, and −1 if the sum is less than −1. In particular, it must
be 1 if the two summands are 2s+100 and −2s+50, and −1 if they are 2s+50 and −2s+100.
However, M cannot tell between these two cases, because it can read at most s symbols of
the input in time.

In fact, it is easy to see by a similar adversarial argument that no encoding (instead of
ρ̃sd) of real numbers by infinite strings can induce the same polynomial-time computability
as our (ρR, ρR)-FP. Thus, our choice to use regular functions and their lengths is an
essential extension to the infinite string approach. We could avoid the problem described
in Example 3.21 (in this specific case of R) by simply saying, as Hoover [Hoo90] and
Takeuti [Tak01] did, that the time to output the ith bit below the decimal point may
depend polynomially in both i and the logarithm of the absolute value of the input real
number; see Theorem 3.23 and Lemma 3.27.

Another advantage of our approach using functions with lengths (even for the discussion
of ([0, 1], R)-functions) is that we did not have to worry so much about making our repre-
sentations ρR concise as we did in the definition (3.11) of ρ̃sd. With our model where the
running time depends on the size of the oracle, a redundant input name would automati-
cally give the machine more time.

Ko, Friedman and Hoover’s approach Ko and Friedman seem to be the first to define
the polynomial-time computability of ([0, 1], R)-functions. Hoover extends their defini-
tion to (R, R)-functions. Their formulations look similar to our classes (ρR|[0,1], ρR)- and
(ρR, ρR)-FP in that they are based on Turing machines taking function oracles, but they
do not explicitly mention FP. In particular, they do not have the notion of size of oracles.
Nevertheless, their polynomial-time computability coincides with our notions:

Theorem 3.22. A ([0, 1], R)-function f is in (ρR|[0,1], ρR)-FP if and only if it is polynomial-
time computable in Ko and Friedman’s sense.

Instead of presenting a tedious proof of this fact formally, we shall point out informally
what features of their formulation make it equivalent to ours.
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Figure 3.3: Modulus of continuity µ of a ([0, 1], R)-function f .

Consider the situation where we want to determine the value f(t) to within error bound
2−n. Just as with our model, Ko and Friedman give a name ϕ of t to the machine as an
oracle (which is a (Σ∗, Σ∗)-function). However, the running time of the Turing machine
is not allowed to depend on the oracle ϕ; the computation is required to finish in time
polynomial in n only. Notice that, our representation ρR would be useless in this model
because of too much redundancy, just as ρ̃R is useless with the infinite string machine
(see the above discussion on the infinite string approach). To get around this, Ko and
Friedman’s representation of real numbers is carefully designed to forbid redundancy. What
they essentially do is to require the nth approximation ϕ(0n) to be of special form so that
for each t ∈ R there are only finitely many possible values for ϕ(0n).

Hoover [Hoo90] extends Ko and Friedman’s polynomial-time computability to (R, R)-
functions f by saying that the 2−m-approximation of the value f(t) should be delivered
within polynomial time not only in m but also in log|t|. This notion is equivalent to ours:

Theorem 3.23. An (R, R)-function f is in (ρR, ρR)-FP if and only if it is polynomial-time
computable in Hoover’s sense.

This equivalence was already essentially pointed out by Lambov [Lam06].

Modulus of continuity

We say that a non-decreasing (N, N)-function µ is a modulus of continuity of a ([0, 1], R)-
function f if for all n ∈ N and t, t′ ∈ [0, 1] such that |t−t′| ≤ 2−µ(n), we have |f(t)−f(t′)| ≤
2−n (Figure 3.3). Note that any continuous ([0, 1], R)-function f is uniformly continuous
and hence has a modulus of continuity.

Using the aforementioned fact that numbers in [0, 1] have short ρR|[0,1]-names (see the
discussion after Theorem 3.20), it is easy to see that functions in (ρR|[0,1], ρR)-FP (or
(ρR|[0,1], ρR)-FPSPACE, for that matter) have a polynomial modulus of continuity. In fact,
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functions in (ρR|[0,1], ρR)-FP are characterized by this plus the property that their values
at dyadic numbers can be easily approximated:

Theorem 3.24 ([Ko91, Corollary 2.21]). A ([0, 1], R)-function f is in (ρR|[0,1], ρR)-FP
(resp. (ρR|[0,1], ρR)-FPSPACE) if and only if there are a polynomial µ and a function ϕ ∈ FP
(resp. FPSPACE) such that

(a) µ is a modulus of continuity of f , and

(b) for every n ∈ N and u ∈ D, we have v := ϕ(0n, u) ∈ D and |f(JuK) − JvK| < 2−n.

3.4.2 Effective metric spaces

We extend slightly the discussion of computation over real numbers in Section 3.4.1. Just as
an effective topological space (a topological space with an encoded base) had the standard
representation (Definition 3.8), a separable metric space with an encoded countable base
induces a representation:

Definition 3.25 (Effective metric spaces). A triple (X, d, α) is called an effective metric
space4 if d : X × X → R is a metric on X and α is a surjective partial (Σ∗, Q)-function,
where Q is a dense subset of X (with respect to the topology induced by d). The Cauchy
representation δ̂ = δ(X,d,α) of X is then defined by saying that a regular function ϕ ∈
Reg is a δ̂-name of a point x ∈ X when5 for all n ∈ N we have ϕ(0n) ∈ dom α and
d(α(ϕ(0n)), x) < 2−n.

The Cauchy representation is indeed a representation (i.e., it is surjective) because of the
assumption that Q is dense in X. An example of an effective metric space is (R, |·− ·|, J·K),
the real numbers with the usual distance, where J·K is the encoding of dyadic numbers from
(3.1). The induced Cauchy representation of R is ρR.

Equivalence with Takeuti’s approach Takeuti defines a class of “polynomial-time” func-
tions between effective metric spaces without explicitly using type-two functions [Tak01,
Definition 3.20]. Here we show that his class coincides with our (γ̂, δ̂)-FP (where γ̂ and δ̂ are
the Cauchy representations of the effective metric spaces) under certain conditions. Then
we show in Lemma 3.28 that these conditions are unnecessary for contractive functions,
which were the only application discussed in Takeuti’s paper.

4This terminology is by Weihrauch [Wei00, Definition 8.1.2]. Also called just a separable metric space
by Brattka [Bra03, Section 5] or a numbered metric space by Takeuti [Tak01, Definition 3.1]. Some
authors use N instead of Σ∗ to define essentially the same thing (via the binary encoding of N by Σ∗).
We will henceforth translate other statements of theirs to our setting without explicit notice. Some
authors assume that α is total function.

5Instead of this inequality, some authors require that d(α(ϕ(0m)), α(ϕ(0n))) ≤ 2−m for all nonnegative
integers m and n ≥ m and that α(ϕ(0n)) converges to x as n increases. This difference is inessential,
because any name ϕ of x in one sense can be translated to a name ϕ′ of x in the other by shifting
indices by at most one: ϕ′(0n) = ϕ(0n+1).
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Definition 3.26 (Takeuti’s representation). Let (X, dX , αX) and (Y, dY , αY ) be effec-
tive metric spaces. An (X,Y )-function T is represented in Takeuti’s sense6 by a pair
of (Σ∗, Σ∗)-functions g, h if there is7 a string λ in the domain of α and

(a) dY

(
T (αX(u)), αY (g(0m, u))

)
≤ 2−m for any u ∈ Σ∗ and m ∈ N, and

(b) dY (T (x), T (y)) ≤ 2−m for any x, y ∈ X and m, n ∈ N with dX(x, αX(λ)), dX(y, αX(λ)) ≤
2n and dX(x, y) ≤ 2−|h(0m,0n)|.

For example, consider the case X and Y are the space R of real numbers (see the para-
graph after Definition 3.25). The condition (a) says that T can be evaluated approximately
on dyadic numbers via g. The condition (b) says that T has something similar to a modulus
of continuity h, but h takes as an argument a bound on the distance from the origin. This
is necessary in order to admit functions, such as x 7→ x2, that are not uniformly continuous
but still quite simple.

Under some conditions, the classes defined through Takeuti’s representation coincides
with our classes defined using the Cauchy representations:

Lemma 3.27. Let (X, dX , αX) and (Y, dY , αY ) be effective metric spaces and let γ̂ and δ̂
be their Cauchy representations, respectively.

1. Suppose that dX(αX(u), αX(v)) < 2p(|u|,|v|) for some polynomial p. Then every (X,Y )-
function represented in Takeuti’s sense by a pair of functions in FP (resp. FPSPACE)
belongs to (γ̂, δ̂)-FP (resp. FPSPACE).

2. Suppose that there is a polynomial q such that for any i, k ∈ N and x ∈ X with
d(x, α(λ)) < 2k, there is a string v with |v| < q(i, k) and d(x, α(v)) < 2−i. Then every
(X,Y )-function in (γ̂, δ̂)-FP (resp. FPSPACE), is represented in Takeuti’s sense by
a pair of functions in FP (resp. FPSPACE).

We omit the proofs by easy but tedious simulations.
Since R as an effective metric space satisfies both conditions in Lemma 3.27, an (R, R)-

function is in (ρR, ρR)-FP (resp. (ρR, ρR)-FPSPACE) if and only if it is represented in
Takeuti’s sense by a pair of functions in FP (resp. FPSPACE).

Takeuti’s paper was about contractive functions. An (X,X)-function T on a metric
space X with distance function d is said to be contractive if

d
(
T (x), T (y)

)
≤ c · d(x, y), x, y ∈ X (3.12)

for some constant c < 1. Because this implies a trivial modulus of continuity 1, the
condition (b) is superfluous when T is contractive. Furthermore, for such functions we do
not need the assumptions in Lemma 3.27:

6This terminology has nothing to do with the word “representation” that we have been using since
Section 3.1 to mean the way to encode sets by Reg.

7Takeuti’s definition uses numbers instead of strings, and the role of this string λ is played by the specific
number 0. It is easy to see that quantifying over λ does not change the definition.
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1
0

?

S

Figure 3.4: A ψ-name of a set S says 1 if the given dyadic point is close to S, and 0 if it is
far from S, but it can say either way in between.

Lemma 3.28. Let (X, d, α) be an effective metric space and δ̂ be its Cauchy representation.
A contractive (X,X)-function T is in (δ̂, δ̂)-FP (resp. FPSPACE) if and only if there is a
function g ∈ FP (resp. FPSPACE) satisfying (a) of Definition 3.26.

In Section 4.1.3, we will recall and simplify Takeuti’s discussion about the complexity of
the fixed point of a contractive function.

3.4.3 Real sets

Let A[0,1]2 be the set of closed subsets of [0, 1]2. We are going to introduce a representation
of A[0,1]2 that we consider natural, but before that, we recall a notion of polynomial-time
computability of sets S ∈ A[0,1]2 that has been used by many computable analysts: we say
that S is (nondeterministic) polynomial-time computable if there is a (nondeterministic)
polynomial-time Turing machine that computes a function ϕ ∈ Pred such that for any
n ∈ N and u, v ∈ D,

• ϕ(u, v, 0n) = 1 if dist((JuK, JvK), S) < 2−n, and

• ϕ(u, v, 0n) = 0 if dist((JuK, JvK), S) > 2 · 2−n,

where dist(p, S) := infq∈S‖p − q‖ denotes the Euclidean distance of point p ∈ R2 from S
(Figure 3.4). The motivation for this definition is that a set is polynomial-time computable
if it can be efficiently displayed on a computer screen where the user can zoom in (we
require that a part of the set should be visible on the screen however “thin” it is). See e.g.
Braverman [Bra05] for a discussion on this definition and its variants.

Now we define the representation ψ} of A[0,1]2 by saying that ϕ ∈ Pred be a ψ}-name
of S ∈ A[0,1]2 when it satisfies the above conditions.

Note that this representation is more succinct than the one that we would be able to
define using the infinite string model (see [Wei03, Example 6.9]).

Since dom ψ} ⊆ Pred, it makes sense to talk about ψ}-NP, (ψ}, ψ})-NP, etc. (Sec-
tion 3.1), and we will do so in one of the applications in Chapter 4.

The following is immediate from the definition:
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Lemma 3.29. A set in A[0,1]2 is (nondeterministic) polynomial-time computable if and
only if it is in ψ}-P (resp. ψ}-NP).

3.4.4 Real functions

For A ⊆ Rd, we abbreviate C[A → R] (the set of continuous functions from A to R) to C[A].
Define the representation δ¤ of C[0, 1] as follows (see Lemma 3.30 and Theorem 3.33 below
for the reasons why we believe δ¤ to be a natural representation): for µ : N→N, ϕ ∈ Reg
and f ∈ C[0, 1], we set δ¤(〈µ, ϕ〉) = f if and only if µ and ϕ satisfy the two conditions in
Theorem 3.24, i.e., µ is a modulus of continuity of f and for every n ∈ N and u ∈ D, we
have v := ϕ(0n, u) ∈ D and |f(JuK)− JvK| < 2−n (the string v may have to have leading 0s
padded in order to make ϕ regular—but this need for padding is inconsequential, see the
penultimate paragraph of Section 2.2.3; in the sequel, we sometimes omit this padding in
the description of algorithms).

To see that δ¤(ϕ) is well-defined, suppose that the above condition holds for two real
functions f and f ′. Let t ∈ [0, 1] be arbitrary. Then for each n ∈ N, there is u ∈ D with
|t − JuK| ≤ 2−µ(n) and thus

|f(t) − f ′(t)| ≤ |f(t) − f(JuK)| + |f(JuK) − Jϕ(0n, u)K|
+ |f ′(JuK) − Jϕ(0n, u)K| + |f ′(t) − f ′(JuK)|

≤ 2−n + 2−n + 2−n + 2−n = 2−n+2. (3.13)

Since n ∈ N was arbitrary, f(t) = f ′(t). Since t ∈ [0, 1] was arbitrary, f = f ′.
Recall that the only reason that a real number can require long ρR-names was having

a large absolute value. In contrast, functions in C[0, 1] may have long δ¤-names for two
possible reasons: having big values, and having a big modulus of continuity.

The following lemma says that the complexity of δ¤-names of f ∈ C[0, 1] matches the
complexity of f that was defined in Section 3.4.1 by representing real numbers by ρR:

Lemma 3.30. A function in C[0, 1] is in (ρR|[0,1], ρR)-FP (resp. (ρR|[0,1], ρR)-FPSPACE) if
and only if it is in δ¤-FP (resp. δ¤-FPSPACE).

Proof. Immediate from Theorem 3.24.

Lemma 3.31. A function in C[0, 1] is PSPACE-complete in the sense of [Kaw10, Sec-
tion 1.2] if it is δ¤-FPSPACE-≤1

mF-complete and has a polynomial modulus of continuity.

Proof. Suppose that f ∈ C[0, 1] is δ¤-FPSPACE-≤1
mF-complete and has a polynomial mod-

ulus of continuity µ. Then for any A ∈ PSPACE there are polynomial-time functions t and
r that satisfy the left picture of Figure 2.4 for any B ∈ δ−1

¤ [f ]—and thus for any B of the
form 〈µ, ϕ〉 (that is, those which have this particular polynomial µ as the first component).
A query to B can ask either a value of µ or a value of ϕ, but µ is just a polynomial, so we
may assume that t only asks a query of form “ϕ(0n, v)?”. Thus given a quantified boolean
formula u, its truth value can be computed by r from a 2−n-approximation of f(JvK). This
implies that f is PSPACE-complete in the sense of [Kaw10].
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Because a δ¤-name contains the information on the modulus of continuity, we can extract
from it an upper bound of the function:

Example 3.32 (Upper bound). Define a (C[0, 1], R)-problem ub by ub[f ] = [max f, +∞).
Then ub is in (δ¤, ρR)-P, i.e., it is easy, given (a δ¤-name of) a continuous ([0, 1], R)-
function, to obtain an upper bound of it. For suppose that 〈µ, ϕ〉 is a δ¤-name of f ∈ C[0, 1].
Then u0 := ϕ(ε, +0/1) satisfies

|Ju0K − f(0)| < 1. (3.14)

Also, m := µ(0) is a number such that |f(s) − f(t)| < 1 for all |s − t| < 2−m, and hence

|f(s) − f(0)| < 2m (3.15)

for all s ∈ [0, 1]. These imply that Ju0K + 1 + 2m ∈ ub[f ]. This number can be obtained in
time polynomial in µ and |ϕ|.

In contrast, finding the exact maximum of a real function is harder unless P = NP; see
Section 4.3.1.

A universal property The representation δ¤ of C[0, 1] may look somewhat arbitrary at
first sight. Here we show a property of δ¤ that seems to make it a “natural” representation
(once we have chosen ρR as the representation for real numbers).

Define the (C[0, 1]× [0, 1], R)-function Apply by Apply(f, x) = f(x), as in Theorem 3.13.
The following theorem says that δ¤ is the weakest representation of C[0, 1] that makes
Apply efficiently computable (see Section 3.2.1 for the definitions of ≤FP and ≡FP). Note
that the analogous claims for ≤cont and ≤FRec have been proved in Theorem 3.13 in a more
general form, since δ¤ ≡FRec [ρR|[0,1] → ρR].

Theorem 3.33. For any representation δ of C[0, 1], we have Apply ∈ ([δ, ρR|[0,1]], ρR)-FP
if and only if δ ≤FP δ¤.

Proof. For the “if” part, it suffices to prove that Apply is in ([δ¤, ρR|[0,1]], ρR)-FP. Let a
δ¤-name 〈µ, ϕ〉 of f ∈ C[0, 1] and a ρR|[0,1]-name θ of t ∈ [0, 1] be given. We get a ρR-name
ξ of f(t) by computing ξ(0n) (that is, a 2−n-approximation of f(t)) as follows. First read
m := µ(n + 1) to see how precisely we need to know t in order to determine f(t) within
error bound 2−n−1. Then read u := θ(0m) to get a 2−m-approximation JuK of t. Because
µ is a modulus of continuity, |f(JuK) − f(t)| < 2−n−1. Finally, read v := ϕ(0n+1, u). ThenJvK is a 2−n−1-approximation of f(JuK), and hence a 2−n-approximation of f(t). All this
can be done in second-order polynomial time in µ, |ϕ| and |θ|.

For the other direction, suppose that Apply is in ([δ, ρR|[0,1]], ρR)-FP. That is, there is a
second-order polynomial P such that given a δ-name ψ of a function f ∈ C[0, 1], a ρR|[0,1]-
name θ of a number t ∈ [0, 1], and a unary string 0n, it is possible to compute a ρR-name
of f(t) in time P (|ψ|, |θ|)(n). We need to translate δ to δ¤. Let a δ-name ψ of f ∈ C[0, 1]
be given. To get a δ¤-name 〈µ, ϕ〉 of f , we do as follows. Let µ = P (|ψ|, λ), where λ
is a (usual) polynomial such that any number in [0, 1] has a ρR|[0,1]-name of size λ; for
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example, λ(n) = 2n + 4 will do, because every number in [0, 1] has a 2−n-approximation
of form (3.1) where x has length n + 1. Then µ is a modulus of continuity of f , because a
2−n-approximation of f(t), where t is given as a ρR|[0,1]-name θ of size λ, can be computed
within time bound P (|ψ|, λ)(n) and hence without reference to θ’s values on strings longer
than this bound. The other part ϕ of the δ¤-name is such that ϕ(0n, u), where u ∈ D,
is a 2−n-approximation of f(JuK). This can be computed from ψ, 0n, u as follows. Let
θ ∈ Reg be the constant function taking value u. Note that θ is a ρR-name of JuK. We
then run the assumed algorithm for Apply on oracles ψ and θ and string 0n. This takes
time P (|ψ|, |θ|)(n), which is polynomial in |ψ| and |u|, n.

The above definitions and lemmas generalize easily to C[A], where A ⊆ Rd is a fixed
compact rectangle other than [0, 1]; we keep writing δ¤ by abuse of notation.
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This chapter lists examples of complexity results about various real functions and operators
obtained by applying the theory developed in the previous chapters. In Section 4.1, we
discuss problems that are in FP (with respect to suitable representations, mainly ρR). In
Section 4.2, we deal with problems related to sets of real numbers, using the representation
ψ} of subsets of [0, 1]2. The next two chapters are about operators on real functions and
thus use the representation δ¤ of continuous real functions. In Section 4.3, we formulate
and prove the effective versions of Ko and Friedman’s results about the complexity of
maximization and integration of real functions. In Section 4.4, we discuss the complexity
of the initial value problem of ordinary differential equations. The problems considered
here are not meant to be exhaustive in any sense. We believe that the same framework
can be applied to many other problems in numerical computation.

4.1 Within polynomial time

In Section 4.1.1 we point out that Schönhage’s algorithm to approximate the roots of
a polynomial means the polynomial-time computability in our sense. Thus, whether to
represent a polynomial by listing its coefficients or in the factorized form does not matter
(up to polynomial-time). In Section 4.1.2 we show that, an analytic function on the
compact domain [0, 1] is polynomial-time computable (under the representation δ¤) if and
only if the sequence of its Taylor coefficients is polynomial-time computable. However, this
result is ineffective: we do not have a procedure to convert between the δ¤-name and the
Taylor sequence. In Section 4.1.3, we show a stronger version of Takeuti’s result that the
fixed point of a polynomial-time computable contractive function on an effective metric
space with a certain property has a polynomial-time computable name.

4.1.1 Polynomials and their roots

In Examples 3.14 and 3.15 we have seen that addition and multiplication are polynomial-
time computable (i.e., in ([ρR, ρR], ρR)-FP). Hence any polynomial function is polynomial-
time computable. This is still so if we consider complex polynomials by introducing the
representation ρC of C by ρC(〈ϕ, ψ〉) = ρR(ϕ) +

√
−1 ρR(ψ).

Schönhage proved a polynomial-time version of the fundamental theorem of algebra,
which in our terminology can be stated as follows.
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4 Operators in Analysis and Geometry

Let n ∈ N, and define an equivalence relation ∼ on Cn by saying that r ∼ s if r ∈ Cn is
a permutation of s ∈ Cn. Thus, the quotient Cn/∼ is the space of multisets of n complex
numbers. Define a (Cn, Cn/∼)-function rootsn by saying that rootsn(an−1, . . . , a0) is a
multiset of roots of the polynomial

∑n−1
i=0 aix

i.

Theorem 4.1 (Essentially [Sch82]). rootsn ∈ (ρn
C, ρn

C/∼)-FP.

4.1.2 Power series

The discussion presented in this section is from [Kaw]. Some of the results below (Lemmas
4.2 and 4.3) were essentially pointed out earlier by Müller [Mül87, Theorems 3.4 and 3.6].

In this section, we use subscripts to denote the components of any vector µ ∈ Nm or
x ∈ Rm: thus µ = (µ0, . . . , µm−1) and x = (x0, . . . , xm−1). For any µ, ν ∈ Nm and x ∈ Rm,
we write

|µ| =
m−1∑
i=0

µi, µ! =
m−1∏
i=0

µi!,

(
µ

ν

)
=

µ!

ν! (µ − ν)!
, xµ =

m−1∏
i=0

xµi

i . (4.1)

For ε > 0, write B(x, ε) for the open cube (x0 − ε, x0 + ε) × · · · × (xm−1 − ε, xm−1 + ε).
A function f : D → R on an open set D ⊆ Rm is said to be analytic at x̂ ∈ D if there

are an open neighbourhood V ⊆ D of x̂ and real numbers aµ, one for each µ ∈ Nm, such
that for all x ∈ V , the series ∑

µ∈Nm

aµ(x − x̂)µ (4.2)

converges to f(x). It is easy to see [KP02, Proposition 2.1.7] that if (some serial rear-
rangement of) the sum (4.2) converges, so does the sum of |aµ| · rµ over µ ∈ Nm for any
r ∈ [0, |x0 − x̂0|) × · · · × [0, |xm−1 − x̂m−1|). The above definition therefore makes sense
regardless of the order of summation, and the maximal such open neighbourhood V equals
the interior of the set of all x for which |aµ| · |(x − x̂)µ| is bounded. We call this maximal
V the domain of convergence, and aµ the Taylor coefficients, of f at x̂. A real function
on set K ⊆ Rm is said to be analytic if it can be extended to a function on some open
set D ⊇ K that is analytic at every point in D.

Computing Taylor coefficients of analytic functions

We compare the computability of an analytic function and its Taylor coefficients.
To discuss computation of Taylor coefficients, recall from Section 3.3.2 the construction of

the representation of infinite sequences. By using appropriate pairing functions for indices,
it is easy to define a representation ρNm

R of RNm
, the space of m-dimensional sequences of

real numbers. Thus a sequence (xµ)µ∈Nm is in the class ρNm

R -FP if there is a polynomial-time
machine that, given n ∈ N and (each component of) µ in unary notation as inputs, outputs
some d ∈ D with |d − xµ| < 2−n. This is the case if and only if the (Nµ, R)-function that
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maps µ to xµ is in (κτ , R)-FP, where κm
τ is the representation of Nm defined in the way

explained in Sections 3.3.1 and 3.3.2 from the tally notation τ of N.
We will show in Theorem 4.6 that an analytic (K, R)-function on a compact set K ⊆ Rm

is in δ¤-FP (or equivalently, in (ρm
R |K , ρR)-FP) if and only if the sequence of its Taylor

coefficients (or equivalently the sequence of derivatives) at a rational point is in ρNm

R -FP.
A similar fact is pointed out by Ko and Friedman [KF88] for m = 1. Generalization to
m > 1 is not hard, but we present it here for the sake of completeness and simpler proof.
For readability we say that a real function or a sequence of real numbers is polynomial-time
computable when it is in δ¤- or ρNm

R -FP.
We begin by showing that series (4.2) is easy to compute on a compact subset of the

domain of convergence.

Lemma 4.2. Suppose that a function f : D → R on an open set D ⊆ Rm is analytic at
x̂ ∈ D ∩ Qm, with domain of convergence V ⊆ D and Taylor coefficients (aµ)µ∈Nm. If the
sequence (aµ)µ∈Nm is polynomial-time computable, so is the restriction of f to any compact
subset K of V .

Proof. Fix any r ∈ Rm with x̂ + r ∈ K. We will show that there is a compact set Kr

containing both x̂ and x̂+r in its interior such that the restriction of f to Kr is polynomial-
time computable. This suffices because K is compact.

Since V is open, x̂+r/(1−ε)2 ∈ V for some ε ∈ (0, 1). As mentioned above, |aµ|·|(r/(1−
ε)2)µ| is bounded, say by M . Let Kr be the hyperrectangle with vertices (x̂0 ± |r0|/(1 −
ε), . . . , x̂m−1 ± |rm−1|/(1− ε)). Then |aµ| · |(x− x̂)µ| ≤ M(1− ε)|µ| for each x ∈ Kr. Hence,
(4.2) converges fast: the sum (4.2) differs from the partial sum over µ0, . . . , µm−1 < N by
at most ∑

µ∈Nm\{0,...,N−1}m

M(1 − ε)|µ| = M · 1 − (1 − (1 − ε)N)m

εm
≤ Mm

εm
(1 − ε)N , (4.3)

which is bounded by 2−n by making N only polynomially large in n. Thus, (4.2) is
approximated by (approximately) adding up polynomially many terms. This can be done
in time if (aµ)µ∈Nm is polynomial-time computable and x̂ is rational.

Now we consider the other direction: computing the Taylor coefficients aµ from the
values of f near x̂. If f is analytic at x̂, then each derivative Dµf(x̂) of f at x̂ of order µ
exists and equals aµµ! [KP02, Remark 2.2.4]. Since µ! has length polynomial in |µ| and can
be multiplied easily, (aµ)µ∈Nm is polynomial-time computable if and only if (Dµf(x̂))µ∈Nm

is. Therefore, we will consider how to compute the sequence of derivatives.
The following lemma allows us to approximate the kth derivative of a unary function f

at x̂ by using the values of f at k + 1 points near x̂.

Lemma 4.3. Let n, k, A ∈ N and B > kA2n. If a real function f on an open interval
(u, v) is k +1 times differentiable and |Dk+1f(x)| ≤ A for all x ∈ (u, v), then for all x̂ with
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u < x̂ < v − k/B, the value

B
k∑

i=0

(−1)i

(
k

i

)
f

(
x̂ +

i

B

)
(4.4)

differs from Dkf(x̂) by at most 2−n.

Proof. Fix n, k, A, B, (u, v), f and x̂ as assumed. Consider the polynomial

P (X) = B
k∑

i=0

(−1)i

i! (k − i)!
f

(
x̂ +

i

B

) ∏
j 6=i

(
X − x̂ − j

B

)
. (4.5)

This P is called the Lagrange interpolating polynomial. It agrees with f at k + 1 points x̂,
x̂ + 1/B, . . . , x̂ + k/B. The mean value theorem yields inductively on j = 0, . . . , k that
DjP agrees with Djf at (at least) k + 1 − j distinct points between x̂ and x̂ + k/B. In
particular, DkP (ξ) = Dkf(ξ) for some ξ ∈ (x̂, x̂ + k/B). Hence,

|Dkf(x̂) − DkP (ξ)| = |Dkf(x̂) − Dkf(ξ)|

≤
∫ ξ

x̂

Dk+1f(X) dX ≤
∫ ξ

x̂

A dX ≤ kA

B
< 2−n. (4.6)

Calculating the leading coefficient in (4.5), we see that DkP (ξ) equals (4.4).

Observe that perturbing each f(x̂ + i/B) by ε affects (4.4) by at most ε · 2µ ·B. We use
this to prove polynomial-time computability of the Taylor coefficients.

Lemma 4.4. Assume that a function f : V → R on an open set V ⊆ Rm is infinitely
differentiable and that there is a polynomial α : Nm → N such that |Dµf(x)| ≤ 2α(µ) for
all µ ∈ Nm and x ∈ V . Let K ⊆ V be a compact set containing a point x̂ ∈ Qm in its
interior. If the restriction of f to K is polynomial-time computable, so is the sequence
(Dµf(x̂))µ∈Nm.

Proof. Given µ ∈ Nm in unary notation, we can find in polynomial time integers A and B
that are big enough to satisfy B > |µ|A2n, B(x̂, µ/B) ⊆ K and A ≥ 2α(µ0,...,µi−1,µi+1,0,...,0)

for all i = 0, . . . ,m − 1, but yet B = 2n+β(µ)−|µ|−1 for some polynomial β. For each i,
Lemma 4.3 implies that D(µ0,...,µi−1,µi,0,...,0)f(x) can be approximated to precision 1/2n−1 in
time polynomial in µ and n if we are given approximations of D(µ0,...,µi−1,0,0,...,0)f at certain
µi + 1 points near x to precision 1/(2n · 2µi ·B) ≥ 1/22n+β(µ)−1. Repeating this inductively
for i = 0, . . . ,m − 1, we can approximate Dµf(x̂) to precision 2−n in polynomial time
using approximations of f at certain (µ0 + 1) · · · (µm−1 + 1) points near x̂ to precision
1/22m(n+β(µ))−β(µ)−1.
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4.1 Within polynomial time

If f is analytic at x̂, then it can be shown [KP02, Proposition 2.2.10] that there are an
open neighbourhood V of x̂ and constants C and R such that

|Dµf(x)|
µ!

≤ C

R|µ| , x ∈ V, µ ∈ Nm. (4.7)

Thus f (restricted to some small enough V ) meets the requirement of Lemma 4.4.
We prove the converse by extending the local result we saw in Lemma 4.2.

Lemma 4.5. Let K ⊆ Rm be a compact connected set containing x̂ ∈ Qm, and let f be an
analytic (K, R)-function. If the sequence (Dµf(x̂))µ∈Nm is polynomial-time computable, so
is f .

Proof. Let f be an analytic extension of f to an open set D ⊇ K. For each x ∈ D, let
εx > 0 be so small that B(x, 3εx) ⊆ Vx, where Vx is the domain of convergence of f at x.
It is easy to see that B(x, εx) ⊆ Vr for every r ∈ B(x, εx) by the remark following (4.2).

Let y ∈ K. Since K is connected and compact, there are x0, . . . , xp ∈ D such that
x̂ = x0, y ∈ B(xp, εxp) and B(xi−1, εxi−1

) intersects B(xi, εxi
) for each i = 1, . . . , p. Let

ri ∈ B(xi−1, εxi−1
) ∩ B(xi, εxi

) ∩ Qm. By the above paragraph, r1 ∈ Vx̂, r2 ∈ Vr1 , . . . ,
rp ∈ Vrp−1 , y ∈ Vrp . The conclusion follows inductively by using Lemmas 4.2 and 4.4 at
each step.

Theorem 4.6. Let K ⊆ Rm be a compact connected set containing x̂ ∈ Qm. A an analytic
(K, R)-function f is polynomial-time computable if and only if the sequence of Taylor
coefficients of f at x̂ is.

Proof. By Lemma-ta 4.4 and 4.5.

For a (K, R)-function f and its Taylor sequence (aµ)µ∈Nm , Theorem 4.6 asserts the
equivalence of f ∈ δ¤-FP and (aµ)µ∈N ∈ ρNm

R -FP. This inspires us to ask whether the
operator that maps f to (aµ)µ∈N is in (δ¤, ρNm

R )-FP, and whether the operator that maps
(aµ)µ∈N to f is in (ρNm

R , δ¤)-FP. An easy adversarial argument shows that neither is the
case.

4.1.3 Contractions

Recall the definition (3.12) of a contractive (X,X)-function on a metric space X. When an
(X,X)-function T is contractive and X is complete, it is easy to see that T has a unique
fixed point fixT that can be approached by iterating T on arbitrary point x ∈ X in the
sense that

d
(
fixT , T k(x)

)
< ck · d(fixT , x). (4.8)

This fact is called the contraction mapping principle, also known as the Banach fixed point
theorem. Here we will discuss the complexity of this point fixT when (X, d, α) is an effective
metric space (Definition 3.25). Let δ̂ be the corresponding Cauchy representation of X.
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As we pointed out in Lemma 3.28, a contractive (X,X)-function T is in δ̂-FP if and only
if it only satisfies the condition (a) of Definition 3.26, i.e., there is a (Σ∗×Σ∗, Σ∗)-function g
such that

d
(
T (α(u)), α(g(m)(u))

)
≤ 2−m (4.9)

for all u ∈ Σ∗ and m ∈ N, where we write g(m) for the function that takes each string v to
g(v, 0m). For each nonnegative integer i, write T i for T iterated i times. We have

d
(
T i+1

(
α(u)

)
, T i

(
α
(
g(m)(u)

)))
< ci · 2−m, (4.10)

since T i is a contraction with ratio ci. Let k be a nonnegative integer. Substituting
u = gk−i−1

(m) (λ) into the above inequality and summing over i, we obtain

k−1∑
i=0

d
(
T i+1

(
α
(
gk−i−1
(m) (λ)

))
, T i

(
α
(
gk−i
(m)(λ)

)))
<

k−1∑
i=0

ci · 2−m <
2−m

1 − c
. (4.11)

By the triangle inequality, the left-hand side bounds d(T k(α(λ)), α(gk
(m)(λ))) from above.

This and (4.8) with x = α(λ) show, again by the triangle inequality, that

d
(
fixT , α

(
gk
(m)(λ)

))
< ck · d

(
fixT , α(λ)

)
+

2−m

1 − c
. (4.12)

Thus, α(gk
(m)(λ)) approximates fixT with precision 2−n, if we set m = n+1− lg(1− c) and

k = (n+1+ lg d(fixT , α(λ)))/(− lg c), which are bounded by polynomials in n. This string
gk
(m)(λ) can be computed in time polynomial in m+k and thus in n, as long as the lengths

of λ, g(m)(λ), g2
(m)(λ), . . . , gk

(m)(λ) are polynomially bounded. We have shown:

Theorem 4.7. Let (X, d, α) be a complete effective metric space, and δ̂ be the Cauchy
representation of X. Let T be a contractive (X,X)-function. Suppose that there is a
polynomial-time function g satisfying (4.9) (thus T ∈ (δ̂, δ̂)-FP). Suppose also that |gk

(m)(λ)| <

p(m + k) for some polynomial p and string λ. Then the fixed point of T is in δ̂-FP.

Takeuti’s version [Tak01, Theorem 1] assumes additionally that X be a polynomial-time
computable metric space. We have seen that this additional assumption is not needed.

Example 4.8 (Fixed points of real functions). Recall that X = R is an effective metric
space with the Cauchy representation ρR (see the paragraph after Definition definition:
effective metric space), and let T be a contractive (R, R)-function. Suppose that T is in
(ρR, ρR)-FP and hence there is a function g satisfying 4.9. We may assume that this g
satisfies the additional property required in Theorem 4.7, namely that |gk

(m)(λ)| is polyno-

mially bounded in m and k. For if it does not, then we may redefine g(m)(u) as the result of
rounding g(m+1)(u) to the nearest multiple of 2−m−1. Thus the fixed point of T is in ρR-FP.
Hoover shows a lower bound that complements this [Hoo91]: there is an NC-computable
contraction on disjoint intervals for which the problem of finding a fixed point on a given
interval is P-complete in a certain precise sense.
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As another application of Theorem 4.7, we reprove Takeuti’s result [Tak01, Corollary
4.26] that the Takagi curve is in (ρR|[0,1], ρR|[0,1])-FP. The Takagi curve, also called the
blancmange function, was defined in 1903 as an example of continuous but nowhere differen-
tiable function. It is the fixed point fixT of the following (C[[0, 1] → [0, 1]], C[[0, 1] → [0, 1]])-
function T :

T (f)(x) =

{
f(2x)/2 + x if x ≤ 1/2,

f(2 − 2x)/2 + 1 − x if x ≥ 1/2.
(4.13)

It is immediate from the definition that T is contractive with respect to the distance d on
C[[0, 1] → [0, 1]] defined by d(f, g) = maxx∈[0,1]|f(x) − g(x)|.

Theorem 4.9. The Takagi curve is in (ρR|[0,1], ρR|[0,1])-FP.

Thus, the nowhere differentiability of Takagi curve, which says that it is “complicated in
an analytic sense”, does not at all contradict the fact that it is “simple in a computational
sense”. In fact, it can be proved [BJL04] that, in the sense of Baire category, almost every
polynomial-time computable ([0, 1], R)-function is nowhere differentiable.

By Lemma 3.30, Theorem 4.9 says that the Takagi curve is in δ¤|C[[0,1]→[0,1]]-FP. We
are going to prove this by applying Theorem 4.7. Although Takeuti [Tak01] formulated a
theorem similar to Theorem 4.7, his version required that the space be a polynomial-time
computable metric space, which is unlikely to be the case, and therefore he used a different
(more complicated) argument.

To apply Theorem 4.7 to the space C[0, 1], we regard it as an effective metric space
(C[0, 1], d, α), where d is the sup-norm and the partial (Σ∗, C[0, 1])-function α is defined
as follows. For each n ∈ N, recall that Dn was defined at (3.1), and let

D−
n =

{
u ∈ Dn ∩ {0, 1, +, /}2n+4 : JuK ∈ [0, 1]

}
(4.14)

Note that every multiple of 2−n in [0, 1] is encoded by exactly one element of D−
n . We set

α(M) = f if M is a circuit with inputs D−
l and outputs D−

k and f is the piecewise linear
function with vertices (JuK, JM(u)K)u∈D−

l
.

Let δ̂ be the Cauchy representation of this effective metric space. It is routine to verify
that δ̂-FP = δ¤|C[[0,1]→[0,1]]-FP.

Proof of Theorem 4.9. Because a circuit corresponds to a machine with fixed input and
output lengths, we specify a circuit by an informal program below.

Let (C[0, 1], d, α) and δ̂ as above. It suffices to find the function g in Theorem 4.7. Given
0m and a circuit M with inputs in D−

l and outputs in D−
k , let N = g(m)(M) be the circuit

with inputs in D−
l+1 and outputs in D−

max{l,k+1} specified by the following program:

input: u ∈ D−
l+1;

if JuK ≤ 1/2 thenJvK := 2JuK (where v ∈ D−
l );

else
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JvK := 2 − 2JuK (where v ∈ D−
l );

fi
w := M(v) ∈ D−

k ;
if JuK ≤ 1/2 thenJxK := JwK/2 + JuK (where x ∈ D−

max{l,k+1});
elseJxK := JwK/2 + 1 − JuK (where x ∈ D−

max{l,k+1});
fi
output x;

It is clear that α(N) = T (α(M)). The size of N is larger than that of M only by a
polynomial in l and k (we have written it down above). Thus, |gi

(m)(λ)| < p(m + i) for
some polynomial p, and we can apply Theorem 4.7.

4.2 Geometric operations

Recall the representation ψ} of A[0,1]2 , the set of all closed subsets of [0, 1]2 (Section 3.4.3).

4.2.1 Some basic operations

Example 4.10 (Union, intersection and complement). The binary union ∪ (as an (A2
[0,1]2 ,A[0,1]2)-

problem) is in ([ψ}, ψ}], ψ})-P. For if ϕ0 and ϕ1 are ψ}-names of S0, S1 ∈ A[0,1]2 , respec-
tively, then a ψ}-name ϕ of S0∪S1 is given by ϕ(u, v, 0n) = max{ϕ0(u, v, 0n), ϕ1(u, v, 0n)}.
However, the binary intersection ∩ is not in ([ψ}, ψ}], ψ})-P, because it is not even
(ψ}, ψ})-continuous. The (A[0,1]2 ,A[0,1]2)-problem of taking the closure of the complement
is also not (ψ}, ψ})-continuous.

Example 4.11 (Polygons). Drawing line segments and polygons with specified vertices is one
of the most basic geometric primitives. For k ∈ N, let polygonk be the (([0, 1]2)k,A[0,1]2)-
function that maps each n-tuple of points to their convex hull. We claim that polygonk ∈
(((ρR|[0,1])2)k, ψ})-FP.

In the special case where k = 2 (thus polygon2(r0, r1) is the line segment with endpoints
r0 and r1), this means that given a (ρR|[0,1])2-names ϕ0, ϕ1 of points r0, r1 ∈ [0, 1]2 as
oracles and (u, v, 0n) as string input, we can put a finger on one of the cases: whether
the distance d := dist((JuK, JvK),polygon2(r0, r1)) is ≥ 2−n or ≤ 2 · 2−n. To do so,
first read ϕ0 and ϕ1 to obtain dyadic numbers u0, v0, u1, v1 ∈ D such that the points
(Ju0K, Jv0K) and (Ju1K, Jv1K) are at distance < 2−n−1 from r0 and r1, respectively. Note
that d′ := dist((JuK, JvK),polygon2((Ju0K, Jv0K), (Ju1K, Jv1K))) differs from d by < 2−n−1.
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4.2 Geometric operations

Simple calculation shows that

d′ =


√

α2
0 + β2

0 if α0(α0 − α1) + β0(β0 − β1) ≤ 0,√
α2

1 + β2
1 if α1(α0 − α1) + β1(β0 − β1) ≥ 0,

|α0β1 − α1β0|/
√

(α0 − α1)2 + (β0 − β1)2 otherwise,

(4.15)
where α0 = Ju0K − JuK, α1 = Ju1K − JuK, β0 = Jv0K − JvK, β1 = Jv1K − JvK. We can tell
whether d′ ≥ 3

2
· 2−n or not, in time polynomial in |u|, |v|, |u0|, |v0|, |u1|, |v1|. Because

|d′ − d| < 1
2
· 2−n, this lets us safely say either d ≥ 2−n or d ≤ 2 · 2−n.

The general claim with k ≥ 3 can be proved by the same approach, solving the problem
exactly for dyadic numbers close to the input real numbers.

There are many algorithms for finding the convex hull of given points. Some of them
perform poorly on “bad” (degenerate) inputs, while some are more robust than others.
Now that we have a solid formulation of computing of a set with guaranteed precision,
comparing them in our framework would be an interesting future work.

4.2.2 Convex hulls

This time, we consider the problem of drawing the convex hull of a given set, rather than
points (cf. Example 4.11). For each S ∈ A[0,1]2 , let ch(S) be the convex hull of S. Thus,
ch is an (A[0,1]2 ,A[0,1]2)-function.

Ko and Yu [KY08] and Zhao and Müller [ZM08] essentially proved1 the following non-
constructive theorems about the complexity of ch.

Theorem 4.12. If a closed set S ∈ A[0,1]2 is polynomial-time computable, then ch(S) is
nondeterministic polynomial-time computable.

Theorem 4.13. Unless P = NP, there exists a closed set S ∈ A[0,1]2 which is polynomial-
time computable, but whose convex hull ch(S) is not.

Using our framework, we can state and prove the following effectivized version, from
which Theorems 4.12 and 4.13 follow as corollaries.

Theorem 4.14. ch is (ψ}, ψ})-NP-≤2
m-complete.

1Ko and Yu state both the positive and the negative results (Theorems 4.12 and 4.13) for polynomial-
time strong recognizability instead of computability [KY08, Corollaries 4.3 and 4.6, respectively], but
their proof almost works for computability as well. See Braverman [Bra05] for a comparison of the
two notions ([Bra05] says weak computability for Ko’s strong recognizability). Zhao and Müller use the
polynomial-time computability equivalent to ours and prove Theorem 4.12 [ZM08, Theorem 4.3]. For
the positive part, in fact they prove a constructive result essentially equivalent to the positive part of
our Theorem 4.14 [ZM08, Theorem 4.1]. Although they state the upper bound of “exponential time”,
their proof contains the argument that is necessary to derive the non-constructive NP upper bound
(our Theorem 4.13), as essentially pointed out in their [ZM08, Lemma 4.2].
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. . . . . .
Yw

S

?

. . . . . .
Yw

S

Figure 4.1: Widget for reducing NP to ch. We have Yw ∈ ch(S) if and only if there is u
such that the slot for 〈w, u〉 has a bump. In Ko and Yu’s construction of S, the
bumps can be high (left), and there can be a query that requires the knowledge
of B(〈w, u〉) for many u. We make the bumps low (right) in order to make S
polynomial-time computable in our sense.

Proof. The main technical ideas are already in Ko and Yu’s proof of the corresponding
ineffective versions (Theorems 4.12 and 4.13), so we will only sketch the proof.

That ch belongs to (ψ}, ψ})-NP is no surprise: A point p belongs to ch(S) if there are
two points p′ and p′′ in S such that p is on the line segment p′p′′. All we need is to guess
p′ and p′′ using nondeterminism, with appropriate consideration of precision.

For hardness, we need to modify the proof slightly, because, as we noted in footnote 1, Ko
and Yu’s original results were about a different notion of computability: our computability
of sets is more demanding in the sense that on query (u, v, 0n), where u, v ∈ D and n ∈ N,
if (JuK, JvK) is within distance 2−n from the set, then we must say 1 (see the definition
before Theorems 4.12 and 4.13), whereas for weak computability both 0 or 1 are allowed
in this case.

We assume that the reader has Ko and Yu’s proof [KY08, Corollary 4.6] at hand. The
proof of their Lemma 4.4 begins by taking an arbitrary set A ∈ NP and noting that there
are B ∈ P and a polynomial p such that w ∈ A if and only if (w, u) ∈ B for some string u
of length exactly p(|w|). Relativizing this, we take A ∈ NP, and note that there are B ∈ P
and a second-order polynomial P such that A(ϕ)(w) = 1 if and only if B(ϕ)(w, u) = 1 for
some string u of length P (|ϕ|)(|w|).

We need to provide s and t of Definition 2.12. We define s by describing the set S =
ψ}(s(ϕ)) for a given ϕ ∈ Reg. The construction of S is similar to that of the original
proof, replacing p(n) by P (|ϕ|)(n) and B by B(ϕ). But we need to modify one part to get
s ∈ P.

The original proof constructs a widget depicted in Figure 4.1 left (or Figure 2 of [KY08])
for each string w. In each of the left and right halves, there are exponentially many slots,
one for each u, that has a bump if and only if (w, u) is in B (or B(ϕ) for us). The point
of this construction is that, while the set S is easy to compute, ch(S) is hard in the sense

58



4.3 Operators on real functions

that we can tell if w is in A (or A(ϕ)) by checking whether the middle point Yw belongs
to ch(S).

However S is not easy in our sense, because in order to answer the query shown in
Figure 4.1, we need to know B(ϕ)(w, u) for exponentially many u. To avoid this, we make
the bumps low, so they make an angle of at most 45◦ (Figure 4.1 right). This ensures that
any one query to the ψ}-name of S can be answered by checking B(ϕ)(w, u) for at most
one (w, u). Thus a name of S can be P-computed from ϕ.

The function t of Definition 2.12 queries whether the point Yw is in ch(S) with appro-
priate precision. Note that t needs access to ϕ in order to find the location of Yw and the
necessary precision.

As corollaries of Theorem 4.14, we get Theorem 4.12 by Lemmas 3.3.1 and 3.29, and
Theorem 4.13 by Lemmas 3.4.1 and 3.29.

4.3 Operators on real functions

The first complexity results about real functions were Ko and Friedman’s work [KF82,
Fri84] on the operators taking the maximum and the integral of a real function. As men-
tioned in the introduction, their original results are in ineffective forms: they studied how
complex the outcome of the operator can be when the input to the operator is assumed
to be polynomial-time computable. Here we state and prove the effective versions that
directly talk about the complexity of the operators.

4.3.1 Maximization

Define the (C[[0, 1]2], C[0, 1])-function max by

max(f)(x) = max
y∈[0,1]

f(x, y), x ∈ [0, 1]. (4.16)

We will show that max is (δ¤, δ¤)-FPNP-≤2
T-complete. Note that the two δ¤ here denote the

representations of C[[0, 1]2] and C[0, 1], respectively, that were introduced at the beginning
of Section 3.4.4 (and generalized at the end of that section). The proof is by an easy
relativization of the argument by Friedman [Fri84]. It is also true, by the argument also
presented there, that the (C[0, 1], C[0, 1])-function max′ defined by

max′(f)(x) = max
y∈[0,x]

f(y), x ∈ [0, 1] (4.17)

is (δ¤, δ¤)-FPNP-≤2
T-complete, but we omit the proof.

Lemma 4.15. max is in (δ¤, δ¤)-FPNP.
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4 Operators in Analysis and Geometry

Before proving Lemma 4.15, it is convenient to introduce another representation of C[K]
(for a compact subset K ⊆ Rd for some d ∈ N) that is ≡FP-equivalent to δ¤.

Define the representation δgraph of C[0, 1] as follows: for µ : N → N, ϕ ∈ Pred, M ∈ N
and f ∈ C[0, 1], we set δgraph(〈µ, ϕ, 0M〉) = f if and only if µ is a modulus of continuity of
f , the values of f are in [−2M , 2M ], and for every n ∈ N and u, w ∈ D, we have

ϕ(0n, u, w) =

{
1 if f(JuK) > JwK + 2−n,

0 if f(JuK) < JwK − 2−n.
(4.18)

Thus, ϕ(0n, u, w) tells us whether the point (JuK, JwK) is below the graph of f , but an error
is allowed when this point is just above or below the graph by an amount smaller than
2−n.

Lemma 4.16. δ¤ ≡FP δgraph.

Proof. To see δ¤ ≤FP δgraph, recall from Example 3.32 that an upper bound can be obtained
from its δ¤-name (translating the ϕ-part is easy). For δgraph ≤FP δ¤, read the bound in the
δgraph-name and then use binary search to translate the ϕ-part.

Proof of Lemma 4.15. Because δ¤ ≡FP δgraph, it suffices by Lemma 3.6 to prove that max
is in (δgraph, δgraph)-FPNP. We claim that the partial (Reg,Reg)-function B defined as
follows is in FPNP and (δgraph, δgraph)-computes max.

Let dom B = dom δgraph and define B(〈µ, ϕ, 0M〉) = 〈µ, ψ, 0M〉 for each 〈µ, ϕ〉 ∈ dom B,
where

ψ(0n, u, w) =

{
1 if ϕ(0n+1, u, v, w) = 1 for some v ∈ D−

µ(n+1),

0 if ϕ(0n+1, u, v, w) = 0 for all v ∈ D−
µ(n+1)

(4.19)

for all n and u, w ∈ D (recall from (4.14) that D−
m ⊆ Dm is the set of strings encoding a

multiples of 2−m in [0, 1]). This B is in FPNP because the above ψ can be computed from
〈µ, ϕ〉 by nondeterministically guessing a string v ∈ D−

µ(n+1) of length 2µ(n + 1) + 4. To

see that max is (δgraph, δgraph)-computed by B (i.e., that the above ψ is a δgraph-name of
max(f)), we need to argue that µ is a modulus of continuity of max(f) and that

ψ(0n, u, w) =

{
1 if max(f)(JuK) > JwK + 2−n,

0 if max(f)(JuK) < JwK − 2−n.
(4.20)

The first claim is obvious (max(f) cannot change its values faster than f). To see the
second claim, notice that the upper and lower if-clauses on the right-hand side of (4.20)
imply those of (4.19), respectively, by the triangle inequality.

Now we prove the negative result, the (δ¤, δ¤)-FPNP-≤2
T-hardness of max. We use the

following lemma, which is obtained simply by unwinding Definitions 2.13 (reduction ≤2
T)

and 3.1.5 ((γ, δ)-C-≤2
T-hardness).
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4.3 Operators on real functions

x1

y

1

y = bump(x1)

x1

y

1

y = bump(x1, x2)
x2

1

Figure 4.2: The functions bump.

Lemma 4.17. Let γ and δ be representations of X and Y , respectively. An (X,Y )-
problem B is C-≤2

T-hard if and only if for any A ∈ C, there are R ∈ ([id, δ], id)-FP and
S ∈ (id, γ)-FP such that for any ϕ ∈ dom A, we have ϕ ∈ dom(B ◦ S) and for any
Ψ ∈ (B ◦ S)[ϕ] we have (ϕ, Ψ) ∈ dom R and R[(ϕ, Ψ)] ⊆ A[ϕ].

Theorem 4.18. max is (δ¤, δ¤)-FPNP-≤2
T-complete.

Proof. The positive part (max ∈ (δ¤, δ¤)-FPNP) was proved in Lemma 4.15. For the
hardness, it suffices to give the functions R and S of Lemma 4.17 for A = sat2 and
B = max (see Lemma 2.15 for the definition of the NP-≤2

mF-complete problem sat2). In
fact, we will give a reduction where S is single-valued and R ignores the first component
of its argument: thus, we will give a problem R ∈ (δ¤, id)-FP and a partial function
S ∈ (id, δ¤)-FP such that R ◦ max ◦ S = sat2. For each k ∈ N, define bump : [0, 1]k → R
by bump(x1, . . . , xk) = 1/2 − maxk

i=1|xi − 1/2| (Figure 4.2).

Let dom S = Pred and for each p ∈ Pred define S(p) ∈ C[0, 1] by specifying its value
S(p)(x, y) at each point (x, y) ∈ [0, 1]2 as follows. For each binary string u, define

lu = 1 − 2−|u| + 2−2|u|−1u, ru = lu + 2−2|u|−1, (4.21)

where the u at the end of the first equation is to be read as an integer in {0, . . . , 2−|u| − 1}
written in binary notation (possibly with leading zeros). This divides the interval [0, 1) into
infinitely many subintervals [lu, ru), one for each u, without overlap. We set S(p)(1, y) = 0
for all y ∈ [0, 1], and define S(p)(x, y) for each x ∈ [0, 1) as follows. Let u be the unique
binary string with x ∈ [lu, ru), i.e.,

x = lu + (ru − lu)ξ (4.22)

for some ξ ∈ [0, 1). Furthermore, if this u encodes a boolean formula involving a predicate
symbol, then let n be the number of boolean variables in this formula, let v ∈ {0, 1}n and
η ∈ [0, 1] be such that

y = 2−n(v + η), (4.23)
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and define

S(p)(x, y) =

{
2−2|u|−1−nbump(ξ, η) if up is satisfied by assignment v,

0 otherwise.
(4.24)

If u does not encode a formula, let n = 0 and S(p)(x, y) = 0 for all y.
By the definition of this function S(p) and the operator max, we have

max
(
S(p)

)
(x) =

2−2|u|−1−nbump(ξ) if u encodes a boolean formula involving
a predicate symbol and up is satisfiable,

0 otherwise,
(4.25)

and in particular
max

(
S(p)

)
(cu) = 2−2|u|−2−n · sat2(p)(u), (4.26)

where cu = (lu +ru)/2 is the midpoint of the interval [lu, ru). Hence, we have R◦max◦S =
sat2 if we define R by saying that R[f ] consists of functions ψ satisfying

ψ(u) =

{
1 if f(cu) > 3

4
· 2−2|u|−2−n,

0 if f(cu) < 1
4
· 2−2|u|−2−n.

(4.27)

It is routine to verify that R ∈ (δ¤, id)-FP and S ∈ (id, δ¤)-FP. For S, note that since
bump has modulus of continuity 1, and in the definition of S(p) we have scaled it down
appropriately, S(p) also has modulus of continuity 1.

This and Lemmas 3.3 and 3.4 yield the following corollary.

Corollary 4.19. For all f ∈ δ¤-FP, we have max(f) ∈ δ¤-FPNP. There is a function
f ∈ δ¤-FP such that max(f) is δ¤-FPNP-≤1

T-complete.

Corollary 4.20 ([Fri84]). P = NP if and only if max(f) ∈ δ¤-FP for all f ∈ δ¤-FP.

Recall from Lemma 3.30 that a real function with a compact promise K ⊆ Rd is in
δ¤-FP if and only if it is in (ρd

R|K , ρR)-FP, which is the same class as the one defined by
Ko and Friedman’s approach.

4.3.2 Integration

Define the (C[[0, 1]2], C[0, 1])-function int by

int(f)(x) =

∫ 1

0

f(x, y) dy, x ∈ [0, 1]. (4.28)

The following can be proved in a similar way to Theorem 4.18.
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Theorem 4.21. int is (δ¤, δ¤)-FP#P-≤2
T-complete.

The ineffective statement analogous to Corollary 4.20, due to Friedman [Fri84], also
follows from this theorem. Again, we omit the proof of the other version which states that
the (C[0, 1], C[0, 1])-function int′ defined by

int′(f)(x) =

∫ x

0

f(y) dy, x ∈ [0, 1] (4.29)

is (δ¤, δ¤)-FP#P-≤2
T-complete.

Proof sketch of Theorem 4.21. The positive part (int ∈ (δ¤, δ¤)-FP#P) can be proved sim-
ilarly to Lemma 4.15 using the representation δgraph. Instead of (4.19), we use

ψ(0n, u, w) =

{
1 if 2−µ(n+1)2−n−1N − 2MJvK ≥ JwK,
0 otherwise,

(4.30)

where N is the number of pairs (v, w) ∈ D−
µ(n+1)×D′

n+1 with (JvK, JwK) ∈ [0, 1]× [−2M , 2M ]

and ϕ(0n+1, u, v, w) = 1. Here, D′
n+1 ⊆ Dn+1 is the set of strings of form (3.1) where the

numerator has no leading zeros (so that one dyadic number does not get two codes in
D′

n+1). Note that the number 2−µ(n+1)2−n−1N − 2MJvK in the right-hand side of (4.30) is
an approximate value of int(f)(JuK) as estimated by counting the number of points that
ϕ deems to be below the graph of f .

For hardness, we need to reduce #sat2 instead of sat2 in Theorem 4.18, where #sat2

is the obvious “counting version” of sat2. To give a reduction (R,S) from #sat2 to int,
we use exactly the same S as in Theorem 4.18. The other part R is easy, because the
integral int(S(p))(x) indicates how many bumps S(p) has on the line (x, R).

As was the case with maximization, we can derive the corollaries analogous the ones at
the end of Section 4.3.1 using Lemmas 3.3 and 3.4. The ineffective statement about int
in the same form as Corollary 4.20 also appears in [Fri84].

4.4 Differential equations

Consider the differential equation

h(0) = 0, h′(t) = g
(
t, h(t)

)
(4.31)

called the initial value problem (IVP), where g ∈ C[[0, 1] × R] is given and h ∈ C[0, 1] is
the unknown.
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4.4.1 The Lipschitz continuous case

It is well known (see [Kaw10, beginning of Section 3]) that the solution h exists and is
unique if g is Lipschitz continuous (in the second argument), that is,

|g(t, y0) − g(t, y1)| ≤ L · |y0 − y1| (4.32)

for some nonnegative number L (called the Lipschitz constant) independent of t, y0, y1.
As is the case with max (Section 4.3.1), the complexity of the operator of solving this sort

of differential equation has been addressed in ineffective forms: the following results state
how complex h can be, assuming that g is polynomial-time computable. Since polynomial-
time computability is defined only for functions with compact domain, we restrict g to the
rectangle [0, 1] × [−1, 1]. If there is a solution h ∈ C[0, 1] whose values stay in [−1, 1] (in
which case h is unique, as mentioned above), we write livp(g) for this h. Thus livp is a
partial function from CL[[0, 1] × [−1, 1]] to C[0, 1], where the former set is the subset of
C[[0, 1] × [−1, 1]] consisting of functions Lipschitz continuous in the second argument.

Theorem 4.22 (Essentially [Ko83, Section 4]2). livp(g) ∈ δ¤-FPSPACE for every g ∈
dom livp ∩ δ¤-FPSPACE.

Theorem 4.23 ([Kaw10, Theorem 3.2]). There is g ∈ dom livp∩δ¤-FP such that livp(g)
is polynomial-space complete (in the sense defined in [Ko92] or [Kaw10]).

We can derive from Theorem 4.23 a statement of the form similar to Theorem 4.13:

Corollary 4.24 ([Kaw10, Corollary 3.3]). Unless P = PSPACE, there is a real function g ∈
dom livp which is polynomial-time computable but livp(g) is not.

We are going to present an effectivized version of the above statements about the com-
plexity of livp. To do so, we define a representation δ¤L of the space CL[[0, 1] × [−1, 1]]
of Lipschitz continuous functions by setting δ¤L(〈ϕ, 0L〉) = g if and only if ϕ is a δ¤-name
of g and L ∈ N satisfies (4.32) (regard the string 0L as the constant function whose value
is 0L).

Theorem 4.25. livp is (δ¤L, δ¤)-FPSPACE-≤2
mF-complete.

As corollaries, we have Theorem 4.22 by Lemmas 3.3.2 and 3.30, and Theorem 4.23 by
Lemmas 3.4.2 and 3.31.

The following weaker version of Theorem 4.25, stated with the reduction ≤2
T (Defini-

tion 2.12), is slightly easier to prove (see the end of the section):

Corollary 4.26. livp is (δ¤L, δ¤)-FPSPACE-≤2
T-complete.

2The original theorem is stated with a condition slightly weaker than Lipschitz continuity.

64



4.4 Differential equations

As we noted in Lemma 3.7, this is a more robust result in the sense that it is invariant
under replacing representations to ≡FP-equivalent ones. This seems to be especially nice
in view of Theorem 3.33. A drawback is that Corollary 4.26 does not directly yield The-
orem 4.23, because Lemma 3.31 requires FPSPACE-≤1

mF-completeness, whereas replacing
≤2

mF by ≤2
T in the assumption of 3.4.2 also changes ≤1

mF to ≤1
T in the conclusion. We can

still obtain Corollary 4.24.
The rest of the section is devoted to the proof of Theorem 4.25. The positive part will be

verified by checking that the proof of Theorem 4.22 can be effectivized. For the hardness
part, we need to modify slightly the construction in the original proof of Theorem 4.23 in
order to get Theorem 4.25 (this modification is not needed if we only want Corollary 4.26).
We begin with the positive part.

Proof of the positive part of Theorem 4.25. Given a δ¤L-name 〈µ, ϕ, 0L〉 of g, we need to
find a δ¤-name 〈ν, ψ〉 of h = livp(g). Recall that µ is a modulus of continuity of g, and ϕ
gives approximations of the the values g at dyadic points, that is,

|Jϕ(0q, u, v)K − f(JuK, JvK)| < 2−q (4.33)

for each u, v ∈ D (such that (JuK, JvK) ∈ [0, 1] × [−1, 1]).
It is easy to find a modulus of continuity ν of h: let ν(n) = n + M , where M ∈ N

is any number such that 2M bounds the maximum absolute value of g. For example,
M = dlog2(|Jϕ(ε, +0/1, +0/1)K| + 1 + 2µ(0))e will do.

To obtain the ψ part of a δ¤-name 〈ν, ψ〉 of h, we apply the forward Euler method with
step size 2−p to the approximation of g with precision 2−q (we will specify p and q shortly).
That is, we define an approximation h̃p,q ∈ C[0, 1] of h by letting h̃p,q(0) = 0 and then
saying, for each T = 0, . . . , 2p − 1 inductively, that h̃p,q(0) = 0 is linear on the interval
[2−pT, 2−p(T + 1)], with slope approximately g(2−pT, h(2−pT )): formally,

h̃p,q(2
−pT + ∆t) = h̃p,q(2

−pT ) + ∆tJϕ(0q, u, v)K, 0 ≤ ∆t ≤ 2−p, (4.34)

for some u, v ∈ D with JuK = 2−pT and JvK = h̃p,q(2
−pT ). Obviously, we can compute such

a function h̃p,q in space polynomial in p and q in the sense that there is Euler ∈ FPSPACE
such that JEuler(ϕ)(0p, 0q, u)K = h̃p,q(JuK) for every u ∈ D.

Let ψ(0n, u) = Euler(ϕ)(0p, 0q, u), where p = max{µ(n+8L), n+8L+M} and q = n+8L.
We claim that 〈ν, ψ〉 is a δ¤-name of h (note that this shows the desired membership in
FPSPACE, since p and q are bounded polynomially in |ϕ|, µ and n, L). This means that
|h̃p,q(t) − h(t)| ≤ 2−n for any t ∈ [0, 1]. More strongly, we prove, by induction on T = 0,
. . . , 2p − 1, that

|h̃p,q(t) − h(t)| ≤ 2−ne4L(t−1) (4.35)

for all t ∈ [2−pT, 2−p(T +1)]. We may assume (4.35) for t = 2−p as the induction hypothesis.
The approximate value h̃p,q(2

−pT + ∆t) is defined by (4.34), whereas the true solution h
satisfies

h(2−pT + ∆t) = h(2−pT ) +

∫ 2−pT+∆t

2−pT

g
(
τ, h(τ)

)
dτ. (4.36)
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The error added by this approximation is∣∣∣∣∆tJϕ(0q, u, v)K − ∫ 2−pT+∆t

2−pT

g
(
τ, h(τ)

)
dτ

∣∣∣∣ ≤ 4L2−ne4L(2−pT−1)∆t, (4.37)

because∣∣Jϕ(0q, u, v)K − g
(
τ, h(τ)

)∣∣
≤

∣∣Jϕ(0q, u, v)K − g(JuK, JvK)∣∣ +
∣∣g(JuK, JvK) − g(τ, JvK)∣∣ +

∣∣g(τ, JvK) − g
(
τ, h(τ)

)∣∣
≤ 2−q + 2−n−8L + L|JvK − h(τ)|
≤ 2−n−8L + 2−n−8L + L

(
|JvK − h(2−pT )| + |h(2−pT ) − h(τ)|

)
≤ 2−n−8L + 2−n−8L + L

(
2−ne4L(2−pT−1) + 2−p2M

)
≤ L

(
2−n−8L + 2−n−8L + 2−ne4L(2−pT−1) + 2−n−8L

)
≤ 4L2−ne4L(2−pT−1), (4.38)

where the second, third and fifth inequalities come from p ≥ µ(n + 8L), q ≥ n + 8L,
p ≥ M + n + 8L, respectively. Using (4.37) and the induction hypothesis, we compare
(4.34) and (4.36) to obtain∣∣h̃p,q(2

−pT + ∆t) − h(2−pT + ∆t)
∣∣ ≤ 2−ne4L(2−pT−1) + 4L2−ne4L(2−pT−1)∆t

= 2−ne4L(2−pT−1)
(
1 + 4L∆t

)
≤ 2−ne4L(2−pT−1)e4L∆t = 2−ne4L(2−pT−1+∆t), (4.39)

as desired.

For the hardness, we use the following lemma. This is an effectivized version of Lemma 4.28,
which we will prove in Section 4.4.2 using the PSPACE-≤1

mF-complete problem qbf. The
effectivized version below is obtained by replacing in this proof the problem qbf with the
relativized version qbf2 from Lemma 2.16.

Lemma 4.27. Let L ∈ PSPACE. Then there are a second-order polynomial P and a
function G ∈ FP such that the following holds for each ϕ ∈ dom L, λ : N→N and u ∈ Σ∗.
Consider the partial function from Reg to Reg whose domain is dom[ρR|[0,1], ρR|[−1,1]] and
which maps each θ in it to the function that maps each string v to G(ϕ, λ, θ)(u, v). Then
this function ([ρR|[0,1], ρR|[−1,1]], ρR)-computes a real function gϕ

u : [0, 1] × [−1, 1] → R such
that

(a) gϕ
u (0, y) = gϕ

u (1, y) = 0 for all y ∈ [−1, 1];

(b) |gϕ
u (t, y0) − gϕ

u (t, y1)| ≤ 2−λ(|u|)|y0 − y1| for any t ∈ [0, 1] and y0, y1 ∈ [−1, 1];

(c) gϕ
u belongs to dom livp, and hϕ

u := livp(gϕ
u ) satisfies hϕ

u(1) = 2−P (λ)(|u|) · L(ϕ)(u).

Thus G encodes a family of functions gϕ
u , indexed by ϕ, λ and u, such that hϕ

u := livp(gϕ
u )

contains the information on L(ϕ)(u).
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lv,0 lv,1 lv,2 cv

. . .

. . .

copy of g〈v,0〉 copies of g〈v,1〉

Figure 4.3: Widget for reducing FPSPACE to livp.

Proof of the hardness part of Theorem 4.25. Let F ∈ FPSPACE. We need to show that
F ≤2

mF δ−1
¤ ◦ livp ◦ δ¤L. We may assume that F is a total function and that there is a

second-order polynomial Q such that F (ϕ)(v) has length exactly Q(|ϕ|)(|v|) for all ϕ ∈ Reg
and v ∈ Σ∗. There is L ∈ PSPACE such that L(ϕ)(v, 0i) equals the ith symbol of F (ϕ)(v)
for any ϕ ∈ Reg, v ∈ Σ∗ and i ∈ {0, 1, . . . , Q(|ϕ|)(|v|) − 1}.

Apply Lemma 4.27 to this L to obtain the P and G. Let gϕ
u and hϕ

u be as in the Lemma,
corresponding to λ(k) = 3k + 2.

We define s (of Definition 2.12) by describing the real function g = δ¤L(s(ϕ)) ∈ CL[[0, 1]×
[−1, 1]] for a given ϕ. It has Lipschitz constant 1. It will be straightforward to check that,
by the FP-computability of G, a δ¤-name (and hence a δ¤L-name) of g can be FP-computed
from ϕ.

For each binary string v, let Λv = 2−2|v|−2 and

cv = 1 − 1

2|v|
+

2v + 1

Λv

, l∓v = cv ∓
1

Λv

, (4.40)

where v ∈ {0, . . . , 2|v|−1} means v read as an integer in binary notation. This divides [0, 1)
into intervals [l−v , l+v ] indexed by v ∈ {0, 1}∗. We further divide the left half [l−v , cv] into
Q(|ϕ|)(|v|) + 1 subintervals [lv,0, lv,1], [lv,1, lv,2], . . . , [lv,Q(|ϕ|)(|v|)−1, lQ(|ϕ|)(|v|)], [lv,Q(|ϕ|)(|v|), cv],
where

lv,i = cv −
1

2iΛv

, i = 0, 1, . . . , Q(|ϕ|)(|v|). (4.41)

On each strip [lv,i, lv,i+1]×[−1, 1], we define g by putting the copies of gϕ
(v,0i)

as in Figure 4.3.

Precisely, on the strip [lv,i, lv,i+1] × R, we define g by

g

(
lv,i +

t

2i+1Λv

,
2m + (−1)my

2i+1ΛvΓv,i

)
=

gϕ
(v,0i)

(t, y)

Γv,i

(4.42)
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for each t ∈ [0, 1] and m ∈ N, y ∈ [−1, 1], where Γv,i is an appropriate factor (of vertical
shrinkage) that can be written exponentially in second-order polynomial in |ϕ| and |v|, i.
On the last strip [lv,Q(|ϕ|)(|v|), cv]× [−1, 1], we define g to be constantly 0. On the right half
[cv, l

+
v ], we define g symmetrically: g(l+ − t, y) = −g(l− + t, y) for 0 ≤ t ≤ 1/Λv.

Recall that gϕ
(v,0i)

is a vector field such that hϕ
(v,0i)

:= livp(gϕ
(v,0i)

) tells us whether

L(ϕ)(v, i) = 1 in the way described in (c) of Lemma 4.27. Thus by arranging the copies
of gϕ

(v,0i)
in this way, we can see the values L(ϕ)(〈v, 0〉), . . . , L(ϕ)(〈v,Q(|ϕ|)(|v|) − 1) by

looking at h(cv). The reducing functions r and t (of Definition 2.12) do this lookup. That
is, t(ϕ)(v) is the encoding of the rational number cv with appropriate precision, and r(ϕ)
is the function that, given the encoding of (an approximation of) h(cv), extracts the values
L(ϕ)(v, i).

In [Kaw10], the ineffective version of Lemma 4.27 was used to construct a function that
proved the ineffective Theorem 4.23 (Theorem 3.2 of [Kaw10]). We needed to use a different
construction, because for our Theorem 4.25 (with the reduction ≤2

mF), we needed to get the
values L(ϕ)(〈v, 0〉), . . . , L(ϕ)(〈v,Q(|ϕ|)(|v|)−1) in one query. For Corollary 4.26 (with the
reduction ≤2

T), we are allowed to make many queries, so the straightforward effectivization
of a slightly simpler construction used for Theorems 3.2 of [Kaw10] would have worked (we
would not have to stack the copies of g〈v,i〉 vertically).

4.4.2 The Lipschitz continuous case: main part of the hardness proof

To keep the notation simple, we state and prove the non-constructive version of Lemma 4.27
here.

Lemma 4.28 ([Kaw10, Lemma 4.1]). Let L ∈ PSPACE and let λ : N→N be a polynomial.
Then there exist a polynomial ρ : N → N and families of functions gu : [0, 1]× [−1, 1]→ R
and hu : [0, 1]→R indexed by binary strings u such that the family (gu)u is polynomial-time
computable and for each u we have

(a) hu(t) ∈ [−1, 1] for all t ∈ [0, 1];

(b) gu(0, y) = gu(1, y) = 0 for all y ∈ [−1, 1];

(c) hu(0) = 0 and h′
u(t) = gu(t, hu(t)) for all t ∈ [0, 1];

(d) |gu(t, y0) − gu(t, y1)| ≤ 2−λ(|u|)|y0 − y1| for any t ∈ [0, 1] and y0, y1 ∈ [−1, 1];

(e) hu(1) = 2−ρ(|u|)L(u).

Discrete initial value problem and the Lipschitz condition

A first attempt to prove 4.28 would be as follows. Consider a polynomial-space Turing
machine that decides whether a given string u belongs to L. Its configuration at each time

68



4.4 Differential equations

1 t

y
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u
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)
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Q
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u
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)

· · ·

H
u
(T

)

H
u
(T
+

1
)

· · ·

T
2Q(|u|)

T+1
2Q(|u|)

Hu(T )

2C(|u|)

Hu(T+1)

2C(|u|)

y = hu(t)

computed by Gu

L(u)

Figure 4.4: An attempt to simulate a polynomial-space Turing machine by an initial value
problem is to encode the machine configuration Hu(T ) at each time T into the
value hu(t) = Hu(T )/2C(|u|) at time t = T/2Q(|u|).

can be encoded into a nonnegative integer less than 2C(|u|), where C is a polynomial. There
is a simple rule that maps u (the input), T (time) and d (the current configuration) to a
number Gu(T, d) (the next configuration) such that the recurrence

Hu(0) = 0, Hu(T + 1) = Gu

(
T,Hu(T )

)
(4.43)

leads to Hu(2
Q(|u|)) = L(u) for some polynomial Q. Now this situation looks similar to

the one in 4.28: starting at 0, the value of Hu (or hu) changes over time according to a
simpler function Gu (or gu), to reach a value eventually that indicates the answer L(u).
Thus we are tempted to simulate the “discrete initial value problem” (4.43) by embedding
each value Hu(T ) as real number Hu(T )/2C(|u|) (4.4).

The obstacle to this attempt is that the differential equation of the form (c) of 4.28 cannot
express all discrete recurrences of form (4.43): continuous trajectories cannot branch or
cross one another; besides, we have the Lipschitz condition (d) that puts restriction on how
strong the feedback of h to itself can be. We thus need to restrict the discrete problem (4.43)
so that it can be simulated by the continuous version.
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Hu(0, T )

Hu(1, T )

Hu(2, T )

Hu(P (|u|), T )

0

0 0 0 0 0 0

0

0

0 1 2 3 4 2Q(|u|)T :

L(u)

Figure 4.5: The discrete initial value problem (4.44)–(4.47). Each cell Hu(T ) in Figure 4.4
is now divided into Hu(0, T ), . . . , Hu(P (|u|), T ); the increment from Hu(i+1, T )
to Hu(i + 1, T + 1) is computed by Gu using the upper left cell Hu(i, T ).

To do so, let us reflect on what the Lipschitz condition (d) means. A rough calculation
shows that if two trajectories differ by ε at time t, then they can differ at time t + 2−Q(|u|)

by at most ε exp(2−λ(|u|)2−Q(|u|)) ≈ ε(1 + 2−λ(|u|)−Q(|u|)). Thus, the gap can only widen (or
narrow) by a factor of ±2−λ(|u|)−Q(|u|) during each time interval of length 2−Q(|u|). In other
words, the feedback caused by equation (c) is so weak that each digit of hu can only affect
far lower digits of hu in the next step.

Now we define a discrete problem that reflects this restriction. Let P and Q be polyno-
mials and let

Gu : [P (|u|)] × [2Q(|u|)] × [4] →{−1, 0, 1}, (4.44)

Hu : [P (|u|) + 1] × [2Q(|u|) + 1] → [4], (4.45)

where we write [N ] = {0, . . . , N − 1} for N ∈ N. Our restricted discrete initial value
problem is as follows:

Hu(i, 0) = Hu(0, T ) = 0, (4.46)

Hu(i + 1, T + 1) = Hu(i + 1, T ) + Gu

(
i, T,Hu(i, T )

)
. (4.47)

Thus, Hu(T ) of (4.43) is now divided into polynomially many (in |u|) components Hu(0, T ),
. . . , Hu(P (|u|), T ); compare Figures 4.4 (bottom) and 4.5. We have added the restriction
that Gu sees only the component Hu(i, T ), which in 4.5 means the upper left of the current
cell. The following lemma states that, despite this restriction, we still have PSPACE-
completeness. Note that making Gu completely oblivious to its last argument would be an
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overkill, because then Hu would just add up the values of Gu, resulting in the complexity
merely of #P.

Lemma 4.29. Let L ∈ PSPACE. Then there are polynomials P , Q and families (Gu)u,
(Hu)u satisfying (4.44)–(4.47) such that (Gu)u is polynomial-time computable and Hu(P (|u|), 2Q(|u|)) =
L(u) for each string u.

Before proving this, we will reduce Lemma 4.28 to Lemma 4.29 by simulating the new
system (4.44)–(4.47) by the differential equation. Using Gu and Hu of 4.29, we will con-
struct gu and hu of 4.28 such that hu(T/2Q(|u|)) =

∑
i Hu(i, T )/Bi for each T , where B

is a big number. Thus, each column in Figure 4.5 will be encoded in one real number
so that upper/lower cells in the column correspond to upper/lower bits of the real num-
ber. Thanks to the restriction that Gu sees only the upper row, the differential equation
h′

u(t) = gu(t, hu(t)) only needs to cause a weak feedback on hu where each bit of the value
of hu affects only much lower bits of its next value. This keeps gu Lipschitz continuous.
Now we fill in the details.

Proof of 4.28. Let P , Q, (Gu)u, (Hu)u be as in 4.29. By “dividing each unit time into P (|u|)
steps,” we may assume that for each T , there is at most one i such that Gu(i, T, Y ) 6= 0
for some Y . Write ju(T ) for this unique i (define ju(T ) arbitrarily if there is no such i).
We may further assume that

Hu

(
i, 2Q(|u|)) =

{
L(u) if i = P (|u|),
0 if i < P (|u|).

(4.48)

Thus, not only does the bottom right corner of Figure 4.5 equal L(u), as stated already in
4.29, but we also claim that the other cells in the rightmost column are all 0. This can be
achieved by doubling the time frame and extending G symmetrically so that in the second
half it cancels out what it has done. Precisely, we extend Gu by

Gu(i, 2 · 2Q(|u|) − 1 − T, Y ) =

{
0 if i = P (|u|) − 1,

−Gu(i, T, Y ) if i < P (|u|) − 1
(4.49)

for (i, T, Y ) ∈ [P (|u|)] × [2Q(|u|)] × [4], and Hu by

Hu(i, 2 · 2Q(|u|) − T ) =

{
Hu

(
P (|u|), 2Q(|u|)) if i = P (|u|),

Hu(i, T ) if i < P (|u|)
(4.50)

for (i, T ) ∈ [P (|u|) + 1] × [2Q(|u|) + 1], and then add 1 to Q(|u|). It is easy to verify that
the equations (4.46) and (4.47) are still satisfied.

Now, assuming (4.48), we construct the families of functions (gu)u and (hu)u of 4.28. For
each string u and each (t, y) ∈ [0, 1] × [−1, 1], let T ∈ N, θ ∈ [0, 1], Y ∈ Z, η ∈ [−1/4, 3/4]
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be such that t = (T + θ)2−Q(|u|) and y = (Y + η)B−ju(T ), and define

gu(t, y) =


2Q(|u|)π sin(θπ)

2Bju(T )+1
Gu

(
ju(T ), T, Y mod 4

)
if η ≤ 1

4
,

3 − 4η

2
gu

(
t,

Y

Bju(T )

)
+

4η − 1

2
gu

(
t,

Y + 1

Bju(T )

)
if η ≥ 1

4
,

(4.51)

hu(t) =
1 − cos(θπ)

2
·
Gu

(
ju(T ), T,Hu(ju(T ), T )

)
Bju(T )+1

+

P (|u|)∑
i=0

Hu(i, T )

Bi
, (4.52)

where B = 2λ(|u|)+Q(|u|)+5. Note that the second branch of (4.51) says that when η ∈
[1/4, 3/4], we define gu(t, y) by interpolating between the nearest two y at which gu is
already defined by the first branch. Equation (4.52) says that, when θ = 0 (i.e., t is a
multiple of 2−Q(|u|)), the value hu(t) is the real number that encodes the T th column of
Figure 4.5; as θ goes from 0 to 1, it moves to the next value along a cosine curve, whose
slope, as we will verify below, matches the sine function in the first branch of (4.51). It
is easy to verify that the definition is consistent; in particular, we use (4.47) to show that
(4.52) stays the same for the two choices of (T, θ) when t is a multiple of 2−Q(|u|).

Conditions (a) and (b) of 4.28 are easy to verify. We have (e) with ρ(k) = P (k)(λ(k) +
Q(k) + 5), since hu(1) = Hu(P (|u|), 2Q(|u|))/BP (|u|) = L(u)/BP (|u|) = L(u)/2ρ(|u|) by (4.52)
and (4.48). Polynomial-time computability of (gu)u can be verified using Theorem 3.24.

To see (c), observe that in the right-hand side of (4.52),

• the absolute value of the first term is bounded by B−ju(T )−1 ≤ B−ju(T )/32,

• the summands corresponding to i ≤ ju(T ) are multiples of B−ju(T ), and

• the summands corresponding to i > ju(T ) are nonnegative numbers, each bounded by
3/Bi = 3B−ju(T )/Bi−ju(T ) ≤ 3B−ju(T )/32i−ju(T ), and thus altogether by 3B−ju(T )/31.

Hence, we can write hu(t) = (Y + η)B−ju(T ) for some η ∈ [−1/4, 1/4], where

Y =

ju(T )∑
i=0

Hu(i, T ) · Bju(T )−i. (4.53)

Since B is a multiple of 4, we have Y mod 4 = Hu(ju(T ), T ). Substituting these Y and η
into (the first branch of) (4.51), we get

gu

(
t, hu(t)

)
=

2Q(|u|)π sin(θπ)

2Bju(T )+1
Gu

(
ju(T ), T,Hu(ju(T ), T )

)
. (4.54)

This equals h′
u(t) calculated from (4.52).

For the Lipschitz condition (d), note that since the value of Gu in the first branch of
(4.51) is in {−1, 0, 1}, the difference between the two values of gu in the second branch
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is bounded by 2 × 2Q(|u|)π sin(θπ)/(2Bju(T )+1) < 2Q(|u|)+2/Bju(T )+1. Thus, the slope of gu

along the second argument is at most

2Bju(T ) · 2Q(|u|)+2

Bju(T )+1
=

2Q(|u|)+3

B
≤ 2−λ(|u|) (4.55)

by our choice of B.

The discrete initial value problem is hard

It remains to prove 4.29. At first sight, our system (4.44)–(4.47) (Figure 4.5) looks too
weak to simulate a polynomial-space computation: although we have polynomial amount
of memory (rows) and exponential amount of time (columns), the “chains of dependence”
of values must run from top to bottom and thus are polynomially bounded in length.

Thus, we give up embedding a general PSPACE computation into Figure 4.5. Instead,
we embed another PSPACE-complete problem, qbf, which asks for the truth value of the
given formula u of form

Qnxn . . . Q1x1. ψ(x1, . . . , xn), (4.56)

where ψ is a boolean formula and Qi ∈ {∀, ∃} for each i = 1, . . . , n.

The truth value of (4.56) is obtained by evaluating a binary tree of depth n whose 2n

leaves each correspond to an assignment to (x1, . . . , xn) and whose internal nodes at level i
are labeled Qi. This is roughly why it can be simulated by the tableau in Figure 4.5
despite the restriction that the dependence of values must run from top to bottom. We
give a formal proof and then an example (Figure 4.6).

Proof of 4.29. We may assume that L = qbf. We will construct the polynomials P , Q
and families (Gu)u and (Hu)u in 4.29. Let u be of form (4.56). For each i = 0, . . . , n
and n − i bits bi+1, . . . , bn ∈ {0, 1}, we write ψi(bi+1, . . . , bn) ∈ {0, 1} for the truth value
(1 for true) of the subformula Qixi . . . Q1x1. ψ(x1, . . . , xi, bi+1, . . . , bn), so that ψ0 = ψ and
ψn( ) = qbf(u). We regard quantifiers as functions from {0, 1, 2, 3} to {0, 1}:

∀(2) = ∃(2) = ∃(1) = 1, ∃(0) = ∀(0) = ∀(1) = 0 (4.57)

(the values ∀(3) and ∃(3) do not matter). These correspond to the meaning of the quan-
tifiers: ∀x (resp. ∃x) means that the subsequent formula is satisfied by 2 (resp. 1 or 2) of
the two possible assignments to x. Thus,

Qi+1

(
ψi(0, bi+2, . . . , bn) + ψi(1, bi+2, . . . , bn)

)
= ψi+1(bi+2, . . . , bn) (4.58)

for each i = 0, . . . , n − 1. For 2n + 1 bits b0, . . . , b2n ∈ {0, 1}, we write b2n . . . b0 for the
number b0 + 2b1 + 22b2 + · · · + 22nb2n.
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To define Gu, let

Gu(i, T2nT2n−1 . . . T2i+2T2i+1100 . . . 0, Y )

= (−1)T2i+2 ×

{
ψ0(T1 ⊕ T2, T3 ⊕ T4, . . . , T2n−1 ⊕ T2n) if i = 0,

Qi(Y ) otherwise,
(4.59)

where ⊕ denotes the exclusive or; let Gu(i, T, Y ) = 0 for other T (that is, when T is not
an odd multiple of 22i). Define Hu from Gu by (4.46) and (4.47).

We prove by induction on i = 0, . . . , n that Hu(i, T ) ∈ {0, 1, 2} for all T , as we mentioned
earlier, and that

Gu(i, S,Hu(i, S)) = (−1)S2i+2ψi(S2i+1 ⊕ S2i+2, . . . , S2n−1 ⊕ S2n) (4.60)

for all S of form S2nS2n−1 . . . S2i+1100 . . . 0 (it is immediate from the definition of Gu that
Gu(i, S,Hu(i, S)) = 0 for other S). Once we have proved this, the case i = n yields
Gu(n, 22n, Hu(n, 22n)) = ψn( ) = qbf(u), and hence Hu(n + 1, 22n + 1) = qbf(u). Since
n < |u|, we can add dummy rows and columns so that Hu(P (|u|), 2Q(|u|)) = qbf(u) for
some polynomials P and Q, as required.

The claims for i = 0 follow immediately from (4.46) and (4.59). Now suppose (4.60) as
the induction hypothesis and fix T = T2nT2n−1 . . . T0. Let Y = Hu(i+1, T ). By (4.46) and
(4.47), we have

Y =
T−1∑
S=0

Gu

(
i, S,Hu(i, S)

)
. (4.61)

Since the assumption (4.60) implies that flipping the two bits S2i+2 and S2i+1 of any
S = S2nS2n−1 . . . S0 reverses the sign of Gu(i, S,Hu(i, S)), most of the nonzero sum-
mands in (4.61) cancel out. The only terms that can survive are those that correspond
to S = T2nT2n−1 . . . T2i+300100 . . . 0 and S = T2nT2n−1 . . . T2i+301100 . . . 0. This proves
Y ∈ {0, 1, 2}.

When T = T2nT2n−1 . . . T2i+3100 . . . 0, both of these terms survive, so that

Y = ψi(0, T2i+3 ⊕ T2i+4, . . . , T2n−1 ⊕ T2n) + ψi(1, T2i+3 ⊕ T2i+4, . . . , T2n−1 ⊕ T2n). (4.62)

Therefore, Qi+1(Y ) = ψi+1(T2i+3 ⊕ T2i+4, . . . , T2n−1 ⊕ T2n) by (4.58). Thus,

Gu(i + 1, T, Y ) = (−1)T2i+4ψi+1(T2i+3 ⊕ T2i+4, . . . , T2n−1 ⊕ T2n) (4.63)

by (4.59), completing the induction step.

Figure 4.6 shows the table when u be the formula ∃x2.∀x1. (x1 ∨ x2). The values
Gu(0, T, 0) encode (redundantly) the truth table of the matrix x1 ∨ x2 (first branch of
(4.59)). For example, Gu(0, T, 0) = ±1 (resp. 0) for T = 3, 5, 27, 29 (resp. 1, 7, 25, 31)
because (x1, x2) = (1, 0) (resp. (0, 0)) makes x1 ∨ x2 true (resp. false). Also observe
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Hu(3, T )

Hu(2, T )

Hu(1, T )

Gu(2, T,Hu(2, T ))

Gu(1, T,Hu(1, T ))

Gu(0, T, 0)

T : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0

+0
0 0 0 0 0 0 0 0

+1
1 1 1 1 1 1 1 1

−1
0 0 0 0 0 0 0 0

−0
0 0 0 0

0 0

(x1, x2) = (0, 0)

+0
0 0

(1, 0)

+1
1 1

(1, 0)

−1
0 0

(0, 0)

−0
0 0

(0, 1)

+1
1 1

(1, 1)

+1
2 2

(1, 1)

−1
1 1

(0, 1)

−1
0 0

(0, 1)

+1
1 1

(1, 1)

+1
2 2

(1, 1)

−1
1 1

(0, 1)

−1
0 0

(0, 0)

+0
0 0

(1, 0)

+1
1 1

(1, 0)

−1
0 0

(0, 0)

−0
0

Figure 4.6: The discrete initial value problem corresponding to the formula u =
∃x2. ∀x1. (x1 ∨ x2). We follow the convention in Figure 4.5 (but omit the top
cells Hu(0, T ) which are always 0): the cells contain Hu(i, T ), and the signed
number above the cell Hu(i + 1, T ) indicates the increment Gu(i, T,Hu(i, T ))
(which is 0 when omitted). The increments Gu(0, T, 0) for the top row are
determined by the truth values of x1 ∨ x2 for various assignments to (x1, x2).

that Hu(1, T ) returns to 0 every eight cells. As a result, the cell Hu(1, 4) = 1 (resp.
Hu(1, 12) = 2) represents the fact that when x2 is false (resp. true), x1 ∨ x2 is satisfied by
one (resp. two) of the assignments to x1. Now look at the next row. The second branch
of (4.59) says that for odd multiples T of 4, the values Gu(1, T,Hu(1, T )) are ±1 or 0
according to whether the upper left cell has a 2 or not. Thus, they encode the smaller
truth table for the subformula ∀x1. (x1 ∨ x2) under each assignment to x2. As a result, the
cell Hu(2, 16) = 1 indicates that this subformula is satisfied by one of the assignments to
x2, which causes the last row to get incremented at T = 17. Observe that the final cell
Hu(3, 32) has a 1, exactly because u is true.

4.4.3 The analytic case

If g in the initial value problem (4.31) is analytic (and hence Lipschitz continuous), then so
is the solution h (which is known to be unique) by the Cauchy–Kowalewsky theorem [KP02,
Section 2.4].

As we mentioned in Section 4.1.2, polynomial-time computability of an analytic function
is equivalent to that of its Taylor sequence. Therefore, an operator on analytic functions
preserves polynomial-time computability if it is polynomial-time when viewed as an oper-
ator on Taylor series. This gives us some operators, including the initial value problem,
which are not in polynomial-time with respect δ¤ but still preserve polynomial-time com-
putability of analytic functions [KF88, MM93, Kaw]:

Theorem 4.30. Let g : [0, 1]× [−1, 1]→R and h : [0, 1]→R be analytic functions. Assume
that h takes values in [−1, 1] and satisfies (4.31). If g is polynomial-time computable, then
so is h.
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Proof. Let g and h be as assumed. There are sequences (ai,j)(i,j)∈N2 and (bk)k∈N such that

g(t, y) =
∞∑
i=0

∞∑
j=0

ai,j · ti · yj, h(t) =
∞∑
i=0

bi · ti (4.64)

for all t and y sufficiently close to the origin. By Theorem 4.6, it suffices to prove that if
(ai,j)(i,j)∈N2 is polynomial-time computable, then so is (bk)k∈N.

Substituting (4.64) into (4.31), we get b0 = 0 and

∞∑
k=0

(k + 1) · bk+1 · tk =
∞∑
i=0

∞∑
j=0

ai,j · ti ·
( ∞∑

k=0

bk · tk
)j

=
∞∑

k=0

k∑
i=0

k−i∑
j=0

ai,j · Bk−i,j · tk, (4.65)

where we put

Bs,j =
∑

(k1,...,kj)∈Nj

k1+···+kj=s

bk1 · · · bkj
=


1 if j = 0 and s = 0,

0 if j = 0 and s > 0,
s∑

k=0

bk · Bs−k,j−1 if j > 0

(4.66)

for integers j ≥ 0 and s ≥ j. Comparing the coefficients of tk in (4.65), we get

bk+1 =
1

k + 1
·

k∑
i=0

k−i∑
j=0

ai,j · Bk−i,j. (4.67)

Note that (4.66) and (4.67) give a mutual recurrence defining Bs,j and bj in the order

b0, B0,0, b1, B1,0, B1,1, b2, B2,0, B2,1, B2,2, b3, B3,0, . . . . (4.68)

In fact, they allow us to compute easily the rth term of this list with precision 2p(r) · ε, for
some polynomial p, if all the preceding r − 1 terms are known to within ε > 0, since |ai,j|
and |bk| are bounded exponentially in their subscripts by (4.7). Using this inductively, we
obtain the approximation of the rth term to precision 2−m in polynomial time in r + m by
computing the r′th term, for r′ = 1, . . . , r, to precision 2−m−p(r)−p(r−1)−···−p(r′+1).

In fact, the proof gives a constructive method to convert the sequence (ai,j)(i,j)∈N2 to
(bk)k∈N. However, since Theorem 4.6 is not constructive, this does not give us a way to
(δ¤, δ¤)-compute h from g.

4.4.4 Related results

Table 4.1 summarizes what is known about the computability and complexity of the initial
value problem (4.31) in our sense. Complexity of some other forms of differential equations
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4.4 Differential equations

Table 4.1: Assuming that g is polynomial-time computable, how complex can the solution h
of (4.31) be?

Assumptions Upper bounds Lower bounds

None —— can be (non-unique and)
all non-computable:
[Abe71], [PR79], [Ko83]

h is the unique solution computable: [Osg98], [PR79] can take arbitrarily long time:
[Mil70], [Ko83]

the weak Lipschitz
condition in [Ko92]

exponential-space: [Ko92] can be EXPSPACE-hard:
[Kaw10, Theorem 5.5]

the Lipschitz
condition (4.32)

polynomial-space: [Ko83] can be PSPACE-hard
(our Theorem 4.23)

g is analytic polynomial-time
(our Theorem 4.30)

——

with the Lipschitz condition is also discussed in [Kaw10]. Computability of other aspects
of the solution is discussed by [CR04], [GBC08] and [Kaw09]. A domain-theoretic account
for the problem is given in [EP04].

Computability (or not) of other classes of differential equations is studied by [PR81],
[PZ97], [GZZ01], [WZ02], [WZ06] and [Zho07]. Less is known about their computational
complexity.
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