
Computational Complexity of Continuous Problems

Columbia University Computer Science Department Report CUCS�������

Henryk Wo�zniakowski

University of Warsaw and Columbia University

May ��� ����

Abstract

Computational complexity studies the intrinsic di�culty of solving mathematically
posed problems� Information�based complexity is a branch of computational complex�
ity that deals with continuous problems de�ned on spaces of multivariate functions�
For such problems only approximate solutions are possible to compute� The complex�
ity is de�ned as the minimal cost needed to compute an approximation with error at
most �� Error and cost can be de�ned in di�erent settings such as the worst case�
average case� probabilistic or randomized settings�

In this paper� we survey recent results on complexity of linear multivariate prob�
lems and on path integration� In particular� we show that multivariate integration
and approximation are �strongly	 tractable in the average case setting for the class of
continuous functions equipped with the Wiener sheet measure� This means that their
complexity is a polynomial in �

���
We consider path integration for the Wiener measure in the worst case and ran�

domized settings� For the class of r times Frechet di�erentiable functions� the problem
is intractable in the worst case setting� whereas it is tractable in the randomized set�
ting and the classical Monte Carlo algorithm is optimal� On the other hand� for the
speci�c class of entire functions� the problem is tractable in the worst case setting and
its complexity is proportional to �

�����

� Introduction

The goal of this paper is to introduce the reader to computational complexity� This is
a relatively new and fast developing area of theoretical computer science� Computational

	



complexity studies the intrinsic di
culty of solving mathematically posed problems�
To study complexity we must �rst de�ne a model of computation� The model states

which operations are allowed� what the cost of each operation is� and how computation
is performed� Not surprisingly� complexity results depend on the model of computation�
and sometimes an apparently innocent change of a model leads to a completely dierent
complexity result�

In discrete computational complexity� the Turing machine model is usually assumed�
Roughly speaking� in this model we operate on bits� the cost depends on the size of numbers�
and we count how many bit operations are necessary to solve the problem� The Turing
machine model is used for discrete problems� and there is a deep theory culminating in the
famous question whether P ��NP� see e�g�� ����

In continuous computational complexity� we study continuous problems� Many scienti�c
phenomena correspond to continuous problems� They are usually solved using �xed precision
�oating point arithmetic� The cost of �oating point operations is independent of the size
of the numbers� Furthermore� all arithmetic operations cost about the same to execute� If
we ignore rounding errors� �oating point arithmetic corresponds to the real number model
of computation� That is why� for continuous problems� we usually choose the real number
model and study computational complexity in this model� For the precise de�nition of the
real number model the reader is referred to ��� 	���

Continuous computational complexity may be split into two branches� The �rst branch
deals with problems for which the information is complete� Informally� information may be
complete for problems which are speci�ed by a �nite number of inputs� Examples include
matrix multiplication� and the solution of linear algebraic systems or systems of polynomial
equations�

To illustrate this branch of continuous computational complexity� consider the problem
of solving linear systems Ax � b with a given n�n matrix A and a n�	 given vector b� If n
is not too large and the matrix A is dense then we input n��n data given by all coe
cients
of A and b� Information is then complete�

What is the complexity of solving systems of linear equations� That is� what is the
minimal number of arithmetic operations needed to solve Ax � b for an arbitrary nonsingular
n � n matrix A and an arbitrary n � 	 vector b� We do not know exactly the complexity�
We only know bounds on it� The lower bound is given by the total number of data and is
proportional to n�� The upper bound is given by the cost of an algorithm that solves the
problem� Classical algorithms compute the solution vector x � A��b using ��n�� arithmetic
operations�� Examples of such algorithms include Gaussian elimination and Householder�s

�By ��n�� we mean a function which can be bounded from below and from above by a multiple of n��
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method� However� we can do better� In 	���� Strassen �	�� found an algorithm which
computes the solution using ��nlog

�
�� arithmetic operations� Since log� � � ���	���� this

yields a better upper bound� at least for large n� Today� the best known upper bound is due
to Coppersmith and Winograd ��� and it is ��n������� The constant in the theta notation of
the latter bound is� unfortunately� huge�

We stress that problems with complete information may be very hard in the real number
model� The �rst NP�complete problem over the reals was established in ���� This is the
problem of deciding whether a real polynomial of degree � in n variables has a real root�
Hence� modulo the conjecture P ��NP� but this time over the reals� the complexity of the
latter problem is not polynomial in n�

The second branch of continuous computational complexity is information�based complex�
ity� denoted for brevity as IBC� It deals with problems for which the information is partial�
Typically� IBC studies problems whose input is an element of an in�nite�dimensional space�
Examples of such problems include multivariate integration or approximation� solution of
ordinary or partial dierential equations� integral equations� optimization� and solving non�
polynomial equations� The input of such problems is often a multivariate function on the
reals� Information is usually supplied by a subroutine which computes function values�
Using this subroutine �nitely many times� we know only partial information about the func�
tion� Typically� this partial information is contaminated with errors such as round�o errors
or measurement errors� Thus� the available information is partial and�or contaminated�
Therefore� the original problem can be solved only approximately� The goal of IBC is to
compute such an approximation at minimal cost� The error and the cost of approximation
can be de�ned in dierent settings� including the worst case� average case� probabilistic�
randomized and mixed settings� The ��complexity is then de�ned as the minimal cost of
computing an approximation with error at most �� The reader who wants to �nd more about
IBC is referred to the books and recent surveys ��� �� 		� 	�� 	�� ��� ����

We believe that the readers of this proceedings are mainly interested in solving scienti�c
problems for which only partial information is available� That is why we restrict ourselves
in the rest of this paper to IBC issues� To make this paper self�contained� we present an
abstract formulation of IBC in Section �� This abstract formulation is illustrated by a simple
example of scalar integration�

We then brie�y survey recent results on complexity of linear multivariate problems in
Section �� Many problems in science� engineering� economics and �nance are modeled by
multivariate problems involving functions of d variables with large or even huge d� For path
integration� we even have d � ��� the approximation of path integrals yields multivariate
integration with huge d�

We are interested in the complexity of linear multivariate problems in various settings�
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In particular� the complexity depends on the error parameter �� and on the number d of
variables�

In the worst case setting� it is known that many problems are intractable� More specif�
ically� for many problems the complexity is an exponential function of d� This means that
for large d the complexity is so huge that it is impossible to solve the problem� This is
sometimes called the curse of dimension�

We stress that the exponential dependence on d is a complexity result and it is impossible
to get around it by designing e
cient algorithms� The only way to break the curse of
dimension is to weaken the notion of error and�or cost� This can sometimes be done by
switching from the worst case setting to another setting� Hence� we wish to examine how
complexity depends on � and d in other settings� If the dependence is polynomial in d and
��� then the curse of dimension is broken�

For a given setting� we say that a linear multivariate problem is tractable if its complex�
ity depends polynomially on d and ���� It is called strongly tractable if its complexity is
independent of d and depends polynomially on ���� There are some general results charac�
terizing which linear multivariate problems are tractable or strongly tractable� see� ����� In
particular� multivariate integration and approximation are strongly tractable in the average
case setting for the class of continuous functions equipped with the Wiener sheet measure�
Speci�c complexity bounds are given in Section ��

The �nal section deals with path integration� see ���� ���� Usually Monte Carlo algo�
rithms are used to approximate path integrals� We study deterministic algorithms in the
worst case setting� Then path integration is tractable �i�e�� its complexity is polynomial in
���� if the class of integrands consists of entire functions� Finite smoothness of integrands
is not enough if the measure of the path integration problem is supported on an in�nite
dimensional subspace� In this case� the classical Monte Carlo algorithm is almost optimal in
the randomized setting� We conclude with a remark on Feynman�Kac path integrals�

� Basic Concepts of IBC

In this section� we present an abstract formulation of IBC and illustrate it by a simple
example� A proof technique which leads to tight complexity bounds for some problems will
also be indicated� Let

S � F � G�

�This section is based on Section � of ��	
�
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where F is a subset of a linear space and G is a normed linear space over the real or complex
�eld� We wish to approximate S�f� for all f from F �

Let U�f�� where U � F � G� denote a computed approximation to S�f� for f � F �
We now explain how the approximation U can be constructed� To do this we �rst need to
discuss the concept of information�

The basic assumption of IBC is that� in general� we do not have full knowledge of an
element f since typically f is a multivariate function and it cannot be represented exactly
on a digital computer� Instead� it is assumed that we can gather some knowledge about f
by computations of the form L�f�� where L � F � H for some set H�

Let � denote a class of permissible information operations L� That is� L � � i L�f�
can be computed for each f from F � For example� if F is a set of functions then � is often
taken as a set of L consisting of function evaluations� L�f� � f�x�� � f � F� for some x from
the domain of f � Such � is denoted by �std� If the class � is taken as a set of all linear
functionals L then it is denoted by �all� Let

N�f� � �L��f�� L��f�� � � � � Ln�f��� Li � �� � f � F� �	�

be the computed information about f � We stress that the Li as well as the number n
can be chosen adaptively� That is� the choice of Li may depend on the already computed
L��f�� L��f�� � � � � Li���f�� The number n may also depend on the computed Li�f�� �This
permits arbitrary termination criteria��

N�f� is called the information about f � and N the information operator� In general� N
is many�to�one� and thus knowing y � N�f� it is impossible to recover the element f � For
this reason� the information N is called partial�

The approximation U�f� is constructed by combining the computed information N�f��
That is� U�f� � ��N�f��� where � � N�F �� G� A mapping � is called an algorithm� The
approximation U can thus be identi�ed with the pair �N���� where N is an information
operator and � an algorithm that uses the information N �

We illustrate these concepts by an example�

Example� Integration
Let F be a class of functions f � ��� 	�� IR that satisfy a Lipschitz condition with constant q�

jf�x�� f�y�j � q jx� yj� � x� y � ��� 	��

Let G � IR and

S�f� �
Z �

�
f�t� dt�
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The class � is a collection of L � F � IR� such that for some x from ��� 	�� L�f� � f�x��
�f � F � The information N is given by

N�f� � �f�x��� f�x��� � � � � f�xn��

with the points xi and the number n adaptively chosen� The approximation U is now of
the form U�f� � ��N�f�� � ��f�x��� f�x��� � � � � f�xn��� An example of an algorithm � is a
quadrature given by U�f� � ��N�f�� �

Pn
i�� ai f�xi� for some numbers ai� �

We now present a model of computation� It is de�ned by two postulates�

	 We are charged for each information operation� That is� for every L � � and for every
f � F � the computation of L�f� costs c� where c is positive and �xed� independent of
L and f �

	 Let  denote the set of permissible combinatory operations including the addition of
two elements in G� multiplication by a scalar in G� arithmetic operations� comparison
of real numbers� and evaluations of certain elementary functions� We assume that each
combinatory operation is performed exactly with unit cost�

In particular� this means that we use the real number model� where we can perform operations
on real numbers exactly and at unit cost�

We now discuss the cost of the approximations U�f� � ��N�f��� Let cost�N� f� denote
the cost of computing the information N�f�� Note that cost�N� f� 
 cn� and the inequality
may occur since adaptive selection of Li and n may require some combinatory operations�
If N�f� cannot be computed by using n information operations and a �nite number of
operations from  � then cost�N� f� � ���

Knowing y � N�f�� we compute U�f� � ��y� by combining the information Li�f��
Let cost��� y� denote the number of combinatory operations from  needed to compute
��y�� If ��y� cannot be computed by using a �nite number of operations from  � then
cost��� y� � ���

The cost of computing U�f�� cost�U� f�� is given by

cost�U� f� � cost�N� f� � cost���N�f���

We now de�ne the concepts of error and cost of the approximation U � The de�nitions
of error and cost depend on the setting� We �rst discuss three settings� worst case� average
case and probabilistic� Then we turn to a randomized setting�
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In the worst case setting� the error and cost of U are de�ned as

e�U� � sup
f�F

kS�f�� U�f�k�

cost�U� � sup
f�F

cost�U� f��

In the average case and probabilistic settings� we assume that the set F is equipped with a
probability measure �� In the average case setting the error and cost of U are de�ned as

e�U� �
�Z

F
kS�f�� U�f�k���df�

����

�

cost�U� �
Z
F
cost�U� f���df��

In the probabilistic setting� we assume that we are given a number � � ��� 	�� and the error
and cost of U are de�ned as

e�U� � inf

�
sup

f�F�A
kS�f�� U�f�k � A such that ��A� � �

�
�

cost�U� � sup
f�F

cost�U� f��

We now discuss a randomized setting� In this setting the approximation U is de�ned
by a random selection of information and algorithm� More precisely� let � be a probability
measure on a set T � Then for each t � T we select information Nt and an algorithm �t�
and compute Ut�f� � �t�Nt�f��� Here t is a random variable distributed according to the
measure �� Random information Nt is of the form �	� with randomly chosen Li and n� A
random algorithm is �t � Nt�F � � G� The approximation U can now be identi�ed as the
��tuple� U � �N��� T� ���

The error of U in the randomized setting is de�ned as

e�U� � sup
f�F

Z
T
kS�f�� Ut�f�k ��dt��

In the randomized setting� the cost of Ut�f� � �t�Nt�f�� is de�ned as above� and then the
cost of U is de�ned as

cost�U� � sup
f�F

Z
T
cost�Ut� f� ��dt��

We illustrate the randomized setting by continuing the integration example�
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Example �continued� Consider the classical Monte Carlo algorithm

Ut�f� �
	

n

nX
i��

f�ti��

with uniformly distributed points ti� That is� t � �t�� t�� � � � � tn� � T � ��� 	�n and � is the
uniform distribution over the unit n dimensional cube� In this case�

Nt�f� � �f�t��� f�t��� � � � � f�tn��

is random information with randomly chosen points ti and deterministically chosen n� The
algorithm �t is deterministic and equal to �t�y�� y�� � � � � yn� �

�
n

Pn
i�� yi� The error of U is

proportional to n���� and the cost of U is proportional to n� �

We are ready to de�ne the computational complexity of IBC problems The basic notion
is the ��complexity which is de�ned as the minimal cost of all U with error at most ��

comp��� � inf fcost�U� � U such that e�U� � �g�

Here we use the convention that the in�mum of the empty set is in�nity�
Depending on how e�U� and cost�U� are speci�ed� this de�nes ��complexity in each of the
four settings discussed above�

We stress that we take the in�mum over all possible U for which the error does not
exceed �� In the worst case� average case and probabilistic settings� U can be identi�ed
with the pair �N���� where N is the information and � is the algorithm that uses that
information� This means that we take the in�mum over all information N consisting of
information operations from the class �� and over all algorithms � that use N such that
�N��� computes approximations with error at most �� In the randomized setting� U can be
identi�ed with the ��tuple �N��� T� �� and we take the in�mum over all random information
Nt and all random algorithms �t� where t � T is distributed accordingly to an arbitrary
probability measure �� Sometimes we write

compwor���� compavg���� compprob��� ��� and compran���

to emphasize the setting and the dependence on the parameter � in the probabilistic setting�
If we want to stress that we use one of the deterministic settings we then say� for exam�
ple� the worst case deterministic setting or the average case deterministic setting and write
compwor�det��� or compavg�det����
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Example �continued� For the integration problem� the model of computation assumes
that one function evaluation costs c� and each arithmetic operation� comparisons of real
numbers� and evaluations of certain elementary functions can be performed exactly at unit
cost� Usually c� 	�

The worst case ��complexity for the class F of Lipschitz functions with constant q is

compwor��� � �
�
c
q

�

�
as �� ��

For the average case and probabilistic settings� assume that � is a truncated classical
Wiener measure placed on the �rst derivatives� Then in the average case setting we have

compavg��� � �

�
c
�
	

�

�����
as �� ��

In the probabilistic setting� for q� ln�		��� we have

ompprob��� �� � �

�
B	c

�
	
q
ln�		��

�



A

���
CA as �� ��

Finally� in the randomized setting we have

compran��� � �

�
c
�
	

�

�����
as �� ��

The complexity of integration in dierent settings has been studied for various classes of
functions by many researchers� see ��� 	�� for a list of references� �

One of the main goals of IBC is to �nd or estimate the ��complexity� and to �nd an ��
complexity optimal U � or equivalently� an ��complexity optimal pair �N���� In the random�
ized setting� we want to �nd an ��complexity optimal ��tuple �N��� T� ��� By ��complexity
optimality of U we mean that the error of U is at most � and the cost of U is equal to� or not
much greater than� the ��complexity� For a number of problems this goal has been achieved
due to the work of many researchers�

We brie�y indicate a proof technique often used to obtain tight bounds on computational
complexity of IBC problems� In what follows� we restrict ourselves to the worst case setting
although a similar approach can be used in other settings�
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As already explained� the approximation U�f� is computed by combining information
operations from the class �� Let y � N�f� denote this computed information� In general�
the operator N is many�to�one� and therefore the set N���y� consists of many elements from
F which are indistinguishable from f � Then the set S�N���y�� consists of all elements from
G which are indistinguishable from S�f�� Since U�f� is the same for any f from the set
N���y�� the element U�f� must serve as an approximation to any element g from the set
SN���y�� It is clear that the quality of the approximation U�f� depends on the !size" of
the set SN���y��

The intuitive notion of size can be formalized by using the concept of radius� The radius
of the set A � SN���y� is de�ned as the smallest radius of the ball which contains A�

rad�A� � inf
g�G

sup
a�A

ka� gk�

The radius of information r�N� is then de�ned as the maximal radius of the set SN���y�
for y � N�F ��

r�N� � sup
y�N�F 	

rad�SN���y���

Clearly� the radius of information r�N� is a sharp lower bound on the worst case error of any
U � We can guarantee an ��approximation i r�N� does not exceed � �modulo a technical
assumption that the corresponding in�mum is attained��

The cost of computing N�f� is at least cn� where n� called the cardinality of N � denotes
the number of information operations in N � By the ��cardinality number m��� we mean the
minimal number n of information operations for which the information N has radius r�N�
at most ��

m��� � minfn � there exists N of cardinality at most n such that r�N� � �g�

From this we obtain a lower bound on the ��complexity�

compwor��� 
 cm����

It turns out that for many problems it is possible to �nd an information operator N�

consisting of m��� information operations� and a mapping �� such that the approximation
U�f� � ���N��f�� has error at most � and U�f� can be computed with cost at most �c �
��m���� �For examples of such problems see �	��� Chapter � and ��� This yields an upper
bound on the ��complexity�

compwor��� � �c� ��m����

	�



Since usually c� 	� the last two inequalities yield the almost exact value of the ��complexity�

compwor��� � cm����

This also shows that the pair �N�� ��� is almost ��complexity optimal�
In each setting of IBC one can de�ne a radius of information such that we can guarantee

an ��approximation i r�N� does not exceed �� This permits one to sometimes obtain tight
complexity bounds in other settings�

The essence of this approach is that the radius of information as well as the ��cardinality
number m��� and the information N� do not depend on particular algorithms� and they can
often be expressed entirely in terms of well known mathematical concepts� Therefore we can
sometimes obtain tight complexity bounds by drawing on powerful mathematical results�

� Linear Multivariate Problems

In this section� we discuss complexity of linear multivariate problems� By a linear multi�
variate problem we mean an approximation of a linear operator de�ned on functions f of d
variables� More precisely� let Fd be a class of functions f � ��� 	�d � IR� and let

Sd � Fd � Gd�

where Gd is a normed linear space�
We wish to approximate Sd�f� for f � Fd� Two primary examples are multivariate

integration�

Sd�f� �
Z

����d

f�t� dt with Gd � IR�

and multivariate approximation�

Sd�f� � f with Gd � L����� 	�
d��

with Fd being a class of functions that are continuously r times dierentiable�
As in Section �� the cost of one function evaluation �or one evaluation of L�f�� is denoted

by c� To stress the dependence on the number d of variables� we write c � c�d��
We are particularly interested in the complexity for large d and�or in large ���� To stress

the dependence on the error parameter � and on the number of variables d� we denote the
complexity by comp��� d��

�This section is based on Section � of ���
�

		



Many multivariate problems are intractable and their complexity grows exponentially
with the number d of variables� This is sometimes called the curse of dimension� Typically�

comp��� d� � ��c�d���d�r�� as �� ��

where r stands for the smoothness of the functions in the class Fd�
Problems which suer the curse of dimension in the worst case setting include integration�

approximation� global optimization� integral and partial dierential equations for classes of
functions whose rth derivatives are uniformly bounded in L�� see �	� �� �� �� 	�� 	�� ����

In the average case and randomized settings� the curse of dimension is present for ap�
proximation over the class of functions with r continuous derivatives which is equipped with
the folded isotropic Wiener measure� see �	�� ��� for the average case� and ��� 	�� �	� for the
randomized setting�

For some problems we can break the curse of dimension by switching to a dierent
setting� For example� in the randomized setting� it is well known that the classical Monte
Carlo algorithm breaks the curse of dimension for multivariate integration� In the average
case setting� the curse of dimension is broken for multivariate integration no matter what
probability measure is given on the class of functions� However� in general� the proof is not
constructive� For the Wiener sheet measure� the proof is constructive and we know almost
optimal algorithms� see ���� ���� For multivariate approximation� the curse of dimension is
broken only for some probability measures� For instance� it is broken for the Wiener sheet
measure� see ���� ���� however� as already mentioned� it is not broken for the isotropic Wiener
measure� see �	�� ����

It seems natural to characterize which multivariate problems are tractable or strongly
tractable in various settings� More precisely� we say that the multivariate problem is tractable
if there exist nonnegative numbers K� p and q such that

comp��� d� � K c�d� dq ��p� � d� � � � 	� ���

If q � � then we say that the multivariate problem is strongly tractable� For strongly tractable
problems� the only dependence of the complexity on d is through the cost c�d��

Tractability and strong tractability of linear multivariate problems have been studied in
���� for the information classes �std and �all� In the worst case and randomized settings
we assume that the domain Fd and the range of Sd are Hilbert spaces� In the average case
and probabilistic settings we assume that Fd is a Banach space equipped with a Gaussian
measure �d and that the range of Sd is a Hilbert space�

For the class �all� necessary and su
cient conditions for tractability and strong tractabil�
ity can be obtained by using known IBC results on complexity of linear problems� They
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are expressed in terms of singular values of Sd or in terms of eigenvalues of the covariance
operator of the measure �dS

��
d � Roughly speaking� tractability and strong tractability hold

if the singular values tend to zero su
ciently fast�
Tractability and strong tractability in the randomized setting and the worst case setting

are equivalent� and the corresponding complexities dier only by constants� This follows
easily from �	��� Similarly� tractability and strong tractability in the probabilistic setting
and the average case setting are equivalent due to relations between these two settings for
linear problems� see �	���

We stress that for the class �all the construction of an ��approximation with minimal cost
is easy since we know the optimal choice of linear functionals� and that linear algorithms are
optimal�

We now turn to the class �std� Under mild assumptions� we prove in ���� that tractability
and strong tractability in the classes �std and �all are equivalent� In particular� we prove that
the exponents in ��� may dier by at most two� The proof of this equivalence is� however�
not constructive�

One may suspect that only trivial problems are strongly tractable� However� even in the
worst case setting� this is not true� More precisely� if Fd is a unit ball of a reproducing kernel
Hilbert space and the linear problem is suitably normalized� then there exists a constant K
such that

comp��� d� � K c�d� ��p�

where p � � for the class �all� and p � � for the class �std� see ����� It is also known that
p � � for the class �all is sharp� whereas it is open whether p � � for the class �std can be
improved�

As before� the proof for the class �std is not constructive� A construction is known for
linear multivariate problems that are de�ned by tensor products� ���� �	�� For tractable
tensor product problems and for the class �std� we construct polynomial�time algorithms�
see ����� This construction is based on Smolyak�s algorithm� see �	��� More precisely� in
the worst case and average case settings� we present linear algorithms that compute an
��approximation for the multivariate tensor product problem with cost

cost��� d� � �c�d� � �� 
�

�

� � 
�

ln 		�

d� 	

����d��	 �	
�

���
�

The coe
cients 
i�s do not depend on d� they are determined by the properties of the problem
for d � 	�

Note the intriguing dependence of the cost bound on d� The leading term ���� does not
depend on d� whereas ln 		� is divided by a multiple of d� 	 and then raised to a multiple
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of d � 	� If the tensor product problem is tractable then the cost bound does not exceed
c�d�K ��p for some numbers K and p� both independent of d�

We illustrate the results for multivariate approximation and integration for the class �std

in the average case setting for the class of continuous functions f � ��� 	�d � IR equipped
with the Wiener sheet measure� For the approximation problem� we know a linear algorithm�
see ����� that computes an ��approximation with cost

cost��� d� � c�d� ������
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������ � ������

����	�� � ln 		�
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���d��	 �
	

�

��
�

This algorithm has optimal powers of ��� and ln 		� since

comp��� d� � �
�
��� �ln 		����d��	

�
�

see ����� This approximation problem is strongly tractable since

cost��� d� � c�d� ������� ��������

The exponent ����� seems to be too high� however� no smaller exponent has been found so
far�

We would like again to add that the choice of the Wiener sheet measure is essential�
It is known� see ����� that if we replace the Wiener sheet measure by the isotropic Wiener

measure then the approximation problem is intractable since comp��� d� � �
�
c�d� ���d

�
�

Consider now the integration problem Sdf �
R

����d f�x�dx in the average case setting for

the class of continuous functions f � ��� 	�d � IR equipped with the Wiener sheet measure�
Then we know a linear algorithm� see ����� which computes an ��approximation with cost��� d�
bounded by

cost��� d� � c�d� �����

�
	������ � ���	�

�	�	�	�� � ln 		�

d � 	

�����d��	
	

�
�

The power of ��� is optimal and the power of ln 		� is too large since

comp��� d� � �
�
��� �ln 		���d��	��

�
�

see ����� This integration problem is strongly tractable since

cost��� d� � c�d� ���� ������
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The exponent ����� is too high� There exists an algorithmwith an exponent at most 	���������
see ����� The proof of this latter fact is� however� not constructive�

This integration problem is related to discrepancy in the L��norm� see ����� Using this
relation we obtain an upper bound� which is independent of d� for the number n��� d� of
points for which discrepancy �with unequal weights� is at most ��

n��� d� � ���� ������ � d� � � � 	�

� Path Integration

Path integrals occur in many applied �elds including quantum physics and chemistry� dier�
ential equations� and �nancial mathematics� as well as average case complexity� The path
integration problem is de�ned as the approximation of

S�f� �
Z
X
f�x���dx�� � f � F�

Here� X is a separable in�nite dimensional Banach space and � is a zero mean Gaussian
measure on X� The class F is a class of �Borel� measurable real functions de�ned on X�

A typical approach is to approximate the path integral by high dimensional integrals
and apply a Monte Carlo �randomized� algorithm� Do we really need to use randomized
algorithms for path integrals� Perhaps we can �nd an eective deterministic algorithm that
approximates path integrals with small error� To answer this question� we study the worst
case complexity of path integration in the class �lstd� Path integration is considered with
respect to dierent Gaussian measures � and dierent classes F of integrands�

Tractability of path integration means that the complexity depends polynomially on ����
For the class F of integrands that are r times Frechet dierentiable� tractability of path
integration holds i the covariance operator of the Gaussian measure � has �nite rank�
Hence� if the Gaussian measure � is supported on an in�nite dimensional space then path
integration is intractable� In this case� there exists no eective deterministic algorithm� and
the use of randomized algorithms is reasonable� In fact� for this class of integrands� the
classical Monte Carlo algorithm is optimal and the complexity in the randomized setting is
proportional to ���� see �����

On the other hand� for a particular class F of entire integrands� the worst case complexity
of path integration is at most of order ��p with p depending on the Gaussian measure ��
Hence� path integration is now tractable� Furthermore� for any Gaussian measure �� the
exponent p is less than or equal to �� For the Wiener measure we have p � �	�� For this
class of entire integrands� we provide eective deterministic algorithms that solve the path

	�



integration problem with �worst case� cost that is usually much less than the �randomized�
cost of the classical Monte Carlo algorithm� see �����

In ���� we consider a class of functions related to the Feynman�Kac formula� More
precisely� this is the class of potential and initial conditions functions that de�ne the heat
equation� Although these functions do not need to be very smooth� we prove tractability
of path integration� and in many cases� the worst case complexity is substantially smaller
than ����
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