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Abstract. We show that the satisfiability problem in core fragments of
modal logics T, K4, and S4 in whose languages diamond modal opera-
tors are disallowed is NL-complete. Moreover, we provide deterministic
procedures for satisfiability checking. We show that the above fragments
correspond to certain core fragments of linear temporal logic, hence our
results imply NL-completeness of the latter.
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1 Introduction

Modal logics are formal systems which enable us to talk about relational struc-
tures and have a wide range of applications [3]. In order to obtain modal lan-
guages of lower computational complexity a number of methods have been in-
troduced, e.g., restricting the nesting depth of modal operators [8,11,12,13] or
bounding the number of propositional variables [7]. In this paper we consider an-
other, recently investigated, way of restricting syntax of a language which leads
to sub-propositional fragments by [6,15]:

– limiting formulas to the Horn, Krom, or core forms (which are analogous as
in the propositional calculus [9,10]), denoted by “horn”, “krom”, and “core”,
respectively, in the lower index of a fragment’s symbol, and

– allowing only � or only ♦ operators, which is denoted by “�” and “♦”,
respectively, in the upper index of a fragment’s symbol.

This method often results in fragments which have a good compromise between
computational complexity and expressive power. Such fragments have been stud-
ied, e.g., in the case of linear temporal logic [1], temporal description logics [2],
interval temporal logics [5,4], and, recently, normal modal logics K, T, K4, S4,
and S5 [15,6]. Recall that K is the basic modal logic which semantically cor-
responds to the class of relational structures with an arbitrary binary relation,
whereas in T, K4, S4, and S5 the relation is reflexive, transitive, a preorder
(i.e., reflexive and transitive), and an equivalence, respectively. In this paper we
identify complexity of a logic with the computational complexity of the satisfi-
ability problem of its formulas. It is well-known that the logics K, T, K4, and
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S4 are PSpace-complete, whereas S5 is NP-complete [11]. A Hasse diagram for
fragments of these logics together with the computational complexity results is
depicted in Fig. 1, where an arrow indicates a syntactical extension of a given
fragment.
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Fig. 1. Computational complexity map for sub-propositional fragments of normal
modal logics, where results established in this paper are presented in a frame

In particular, it is known that L�
horn is P-complete for L ∈ {K,T,K4,S4} [6,15].

On the other hand, its fragment L�
core is known to be NL-complete for L = K

but its complexity for L ∈ {T,K4,S4} was not known. As stated in [15], it was
only known that the problem is in P (by P-completeness of L�

horn [6]), and NL-
hard (by NL-completeness of the core fragment of classical propositional calculus
[14]). The core fragment is particularly interesting since it is expressive enough
to represent some basic constraints used in conceptual modelling, and hence, it
has a potential for practical applications [2]. On the other hand, in most of the
investigated cases (e.g., in linear temporal logic [1] and interval logics [4]) tight
complexity bounds for the satisfiability problem in core fragments are usually
unknown.

The main result of this paper is that L�
core for L ∈ {T,K4,S4} is in NL,

which implies NL-completeness of these fragments. In particular, we show that
given an L�

core-formula ϕ, we can reduce the problem of checking its satisfiability
in S4�core to checking if ϕ is satisfiable in the minimal frame with 2 elements –
see Table 1. In the case of T�

core the minimal frame is of size md(ϕ) + 1, where
md(ϕ) is the modal depth of ϕ, i.e., the maximum number of nested modal
operators in ϕ. For K4�core there are two types of minimal frames, both of size
at most |ϕ|, where |ϕ| is the length of ϕ. Next, we show that for a minimal frame
of T�

core, K4�core, and S4�core we can construct the minimal model based on this
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Table 1. Minimal frames for K�
core, T�

core, K4�
core, and S4�

core, and the corresponding
LTL fragments

Modal logic: K�
core T�

core K4�
core S4�

core

Minimal
frame:

≤ md(ϕ) + 1 = md(ϕ) + 1

≤ |ϕ|

≤ |ϕ|

= 2

LTL fragment: LTL©core LTLcore LTL�
core LTL�

core

frame, such that ϕ is satisfiable in the minimal frame if and only if it is satisfied
in the the minimal model. As we show, the latter condition can be checked in
NL, which implies that these fragments are in NL.

By the form of the minimal frames for K�
core, T

�
core, K4�core, and S4�core it

follows that these logics coincide with core fragments of linear temporal logic
(LTL) with temporal modal operators © ‘in the next time-point’, ‘now and
in the next time-point’, � ‘always in the future’, and � ‘now and always in
the future’, respectively. Our results imply that the above-mentioned fragments
of LTL are NL-complete over time lines of arbitrary countable length. Slightly
different fragments of LTL (with clauses preceded by the universal modality) have
been classified according to their computational complexity over integers in [1],
where it is shown that LTL�

core with clauses preceded by universal modalities is
NL-complete over integers.

The paper is organized as follows. In Section 2 we define core fragments
of normal modal logics and in Section 3 we recall results on minimal frames,
which were established in [15]. In Section 4 we prove that T�

core, K4�core, and
S4�core are in NL, and in Section 5 we construct deterministic algorithms for the
satisfiability problem in these fragments. In Section 6 we describe implications
of our results for the complexity of LTL -fragments and in Section 7 we conclude
the paper.

2 Syntax and Semantics

We start by introducing syntax and semantics of core fragments of normal modal
logics. Let formulas of the core fragment with box modal operator only (i.e.,
without diamonds), denoted by L�

core-formulas, be generated by the following
abstract grammar:

ϕ := λ | ¬λ | �s(¬λ ∨ λ) | �s(¬λ ∨ ¬λ) | ϕ ∧ ϕ, (1)
λ := > | p | �λ,
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where for any s ∈ N (N is the set of all natural numbers including 0), �sϕ stands
for � . . .�︸ ︷︷ ︸

s times

ϕ and p ∈ PROP for PROP a countable set of propositional variables.

A Kripke frame (a frame in short) is a pair F = (W,R), where W is a non-
empty set of worlds and R ⊆W ×W is an accessibility relation. A model based
on a frame F is a pair M = (F, V ) (we will also write M = (W,R, V )), where
V : PROP −→ P(W ) is a valuation assigning a set of worlds to each propositional
variable. The satisfaction relation |= for a model M = (W,R, V ) and a world
w ∈W is defined inductively as follows:

M, w |= > for all w ∈W ;
M, w |= p iff w ∈ V (p), for all p ∈ PROP;
M, w |= ¬ϕ iff M, w 6|= ϕ;
M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 andM, w |= ϕ2;
M, w |= ϕ1 ∨ ϕ2 iff M, w |= ϕ1 orM, w |= ϕ2;
M, w |= �ϕ iff M, w′ |= ϕ for all w′ such that R(w,w′),

where ϕ,ϕ1, and ϕ2 are L�
core-formulas.

For convenience we introduce an equisatisfiable grammar for L�
core-formulas

given by:

ϕ := �sλ | �s(p→ λ) | �s(λ→ p) | �s(p ∧ p→ ⊥) | ϕ ∧ ϕ, (2)

where s ∈ N, p ∈ PROP, ⊥ is an abbreviation for ¬>, and ϕ1 → ϕ2 is an abbre-
viation for ¬ϕ1 ∨ ϕ2. We denote the set of all conjuncts in ϕ by clauses(ϕ) and
the set of all propositional variables occurring in ϕ by PROP(ϕ). The following
result is obtained by a straight forward translation.

Proposition 1 Any formula generated by (2) can be transformed in L into an
equisatisfiable formula generated by (1), and vice versa.

A formula ϕ is T-satisfiable if it is satisfied in some model M = (W,R, V ) in
which R is reflexive. Analogously, ϕ is K4-satisfiable if R is transitive and ϕ is
S4-satisfiable if R is transitive and reflexive.

3 Pre-linear Models

In this Section we will briefly recall results from [6] and [15] on minimal frames in
K�

core,K4�core, and S4
�
core, which will be useful in further Sections. Following [6],

we call a frame F = (W,R) a pre-linear frame ifW is countable (finite or infinite),
i.e., W = {w0, w1, . . .} and R = {(wk−1, wk) | wk ∈ W and k 6= 0} – see Fig. 2.
Moreover, for any R ⊆W ×W , we denote by R� its reflexive closure, by

−→
R its

transitive closure, and by R∗ its transitive and reflexive closure. If (W,R) is a
pre-linear frame, then (W,R�) is a pre-linear reflexive frame, (W,

−→
R ) is a strict

linear order (asymmetric, transitive, and total relation) and (W,R∗) a non-strict
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linear order (reflexive, antisymmetric, transitive, and total relation). A model
is pre-linear, reflexive pre-linear, strict linear, or non-strict linear if it is based,
respectively, on a pre-linear, reflexive pre-linear, strict linear, or non-strict linear
frame. As shown in [15], pre-linear models can be used to check satisfiability of
an L�

core-formula, as follows:

Theorem 2 ([15]). The following statements hold for all L�
core-formulas ϕ:

i) ϕ is T-satisfiable if and only if it is satisfiable in the root of a pre-linear
reflexive model of size at most md(ϕ) + 1;

ii) ϕ is K4-satisfiable if and only if it is satisfiable in the root of a model M
of size at most |ϕ| such that (i)M is strict linear or (ii)M is strict linear
and additionally its last world is in accessibility relation with itself;

iii) ϕ is S4-satisfiable if and only if it is satisfiable in the root of a non-strict
linear model of size at most |ϕ|.

w0 w1 w2 w3 w4 w5

Fig. 2. A pre-linear frame F = (W,R), where W = {w0, . . . , w5} and an arrow from wi

to wj denotes that R(wi, wj)

4 Computational Complexity

By L�
core-satisfiability, for L ∈ {T,K4,S4}, we denote the problem of checking

whether a given L�
core-formula is L-satisfiable. It is known that L�

core-satisfiability
for L ∈ {T,K4,S4} is NL-hard and in PTime [15,6] but, to the best of our
knowledge, the tight complexity bounds were unknown so far. In the following
Subsections we will show that each of these problems is in NL, which implies
that they are all NL-complete.

4.1 Core Fragment of T

The first result we will show is that T�
core-satisfiability is in NL. By Theorem 2

in order to check whether an L�
core-formula ϕ is T-satisfiable it suffices to check

if ϕ is satisfiable in the root of some pre-linear reflexive model of size at most
md(ϕ) + 1. We will show that in order to check whether ϕ is satisfiable in some
pre-linear reflexive model of size D+1 it suffices to construct the minimal model
of size D + 1, denoted by MT

D,ϕ, and to check whether ϕ is satisfied there
(Lemma 3). We show thatMT

D,ϕ is monotonic in a sense that if a propositional
variable holds in some world in MT

D,ϕ, then this propositional variable holds
in all ancestors of this world (Lemma 4). This property allows us to simplify
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rules used to construct the minimal model (Lemma 5) and to show that to check
satisfiability of ϕ it suffices to verify whether ϕ is satisfied in the minimal model
of size md(ϕ) + 2 (Corollary 6). Finally, we use the monotonicity property from
Lemma 4 to show that checking whether ϕ is satisfied in the minimal model of
sizemd(ϕ)+2 reduces to the reachability problem in a directed graph (Lemma 7),
hence the former is in NL.

For an L�
core-formula ϕ and D ∈ N we introduce the minimal pre-linear

reflexive model of size D + 1 with respect to ϕ, MT
D,ϕ = (W,R, V ), where

(W,R) is the pre-linear reflexive frame of size D+1, i.e.,W = {w0, . . . , wD} and
R = {(wk, wk) | k ≤ D} ∪ {(wk, wk+1) | k < D}. To define V : PROP −→ P(W )
we start by setting V0 : PROP −→ P(W ) such that for all p ∈ PROP:

V0(p) := {wk ∈W | �s(�mp) ∈ clauses(ϕ) and k ≤ s+m}. (3)

For a function f : PROP −→ P(W ), let cl(f) be the result of non-recursive
application of the below rules to f :

(cl1T) If �s(p1 → �mp2) ∈ clauses(ϕ) and wk ∈ f(p1) for some k ≤ s, then
add to f(p2) all wl such that k ≤ l ≤ k +m;

(cl2T) If �s(�mp1 → p2) ∈ clauses(ϕ) and for some k ≤ s it holds that for all
l such that k ≤ l ≤ k +m we have wl ∈ f(p1), then add wk to f(p2),

where k, l ≤ D. The rules (cl1T) and (cl2T) capture semantics of formulas of
the forms �s(p1 → �mp2) and �s(�mp1 → p2), respectively. Define the sets,
obtained by subsequent applications of cl to V0 as follows:

cl0(V0) := V0; cln+1(V0) := cl(cln(V0)).

Since W and PROP(ϕ) are finite, there are only finitely many functions of the
form f : PROP(ϕ) −→ P(W ), and so cl has the fixed point. We define V as this
fixed point. An example ofMT

D,ϕ is presented in Fig. 3.

w0 w1 w2 w3

p, q p, q p

Fig. 3. The minimal modelMT
D,ϕ for D = 3 and ϕ = �2(p) ∧�2(�p→ q)

By the construction of the minimal model we can show that the following result
holds.

Lemma 3 The following conditions are equivalent for all L�
core-formulas ϕ:

(1) ϕ is satisfied in the root of some pre-linear reflexive model of size D + 1;
(2) ϕ is satisfied in the root ofMT

D,ϕ.
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Moreover,MT
D,ϕ is monotonic in the following sense.

Lemma 4 For all p ∈ PROP and wk ∈ W , if MT
D,ϕ, wk |= p, then we have

MT
D,ϕ, wl |= p for all l < k.

This Lemma allows us to simplify construction of the minimal model by replacing
(cl1T) and (cl2T) with the following rules:

(cl1T′) If �s(p1 → �mp2) ∈ clauses(ϕ) and wk ∈ f(p1) for some k ≤ s, then
add to f(p2) all wl such that l ≤ k +m;

(cl2T′) If �s(�mp1 → p2) ∈ clauses(ϕ) and wk ∈ f(p1), then:
(i) if k = D, then for all l ≤ s add wl to f(p2);
(ii) if k < D, then for all l ≤ s such that l ≤ k −m add wl to f(p2).

To see that (cl2T) can be replaced with (cl2T′) note that by Lemma 4 the model
MT

D,ϕ is such that if wk ∈ V (p1), then all its ancestors belong to V (p1). If p1
is satisfied in all worlds, then a clause �s(�mp1 → p2) forces p2 to be satisfied
in worlds w0, . . . , ws. If p1 is satisfied in wk for some k < D, then a clause
�s(�mp1 → p2) forces p2 to be satisfied in MT

D,ϕ in worlds w0, . . . , wl such
that l ≤ s and l ≤ k − m. As we will show afterwards, the new form of rules
is essential to obtain the decision procedure in NL. We can also show that the
following property holds:

Lemma 5 Let ϕ be a L�
core-formula and D a positive natural number. If ϕ is

satisfied in the root ofMT
D,ϕ, then ϕ is satisfied in the root ofMT

D+1,ϕ.

As a result of Lemma 5, rather than checking whether ϕ is satisfied in the root of
some pre-linear reflexive model of size at most md(ϕ)+1, it suffices to check if ϕ
is satisfied in the root of the pre-linear reflexive model of size exactly md(ϕ)+1.

Corollary 6 An L�
core-formula ϕ is T�

core-satisfiable if and only if ϕ is satisfied
in the root ofMT

md(ϕ)+1,ϕ.

Next, we show that checking whether ϕ is satisfied in the root of MT
md(ϕ)+1,ϕ

reduces to the reachability problem.

Lemma 7 Checking whether an L�
core-formula ϕ is satisfied in the root ofMT

D,ϕ

is in NL.

Proof. We use the fact that NL= coNL [14] and introduce an NL procedure
checking whether ϕ is not satisfied in the root ofMT

D,ϕ.
Note that all rules in ϕ which do not contain ⊥ are satisfied in MT

D,ϕ by
its construction. Hence, to check whether MT

D,ϕw0 6|= ϕ it suffices to non-
deterministically guess a rule �s(p1 ∧ p2 → ⊥) in ϕ and then verify that
MT

D,ϕ, w0 6|= �s(p1 ∧ p2 → ⊥). If MT
D,ϕ, w0 6|= �s(p1 ∧ p2 → ⊥), then by
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Lemma 4 we haveMT
D,ϕ, w0 |= p1 andMT

D,ϕ, w0 |= p2. To check in NL whether
this is the case we construct a directed graph G = (V ert, E) such that:

V ert ={start} ∪ {(p, w) | p ∈ PROP(ϕ) and w ∈W};
E ={(start, (p, w)) | w ∈ V0(p)}

∪ {((p, w), (p′, w′)) | w ∈ f(p) implies w′ ∈ cl(f)(p′) by (cl1T′) }
∪ {((p, w), (p′, w′)) | w ∈ f(p) implies w′ ∈ cl(f)(p′) by (cl2T′) }.

This graph (see Fig. 4), which we call an application graph, is of a polynomial
size with respect to |ϕ| and can be constructed in L.

start

(p, w0) (p, w1) (p, w2) (p, w3)

(q, w0) (q, w1) (q, w2) (q, w3)

�2(p)

�2(�p→ q)

Fig. 4. An application graph for ϕ = �2(p) ∧ �2(�p → q) and D = 3, where curly
brackets indicate clauses used to construct corresponding edges (one of the arrows is
dashed only in order to make the figure more readable)

We claim that for all p ∈ PROP and w ∈ W we haveMT
D,ϕ, w |= p if and only

if there is a path in G starting in start and ending in (p, w). Indeed, assume
that there is a path in G from start to (p, w). Edges in E correspond to the
construction of V0 and applications of rules (cl1T′) and (cl2T′), hence w ∈ V (p).
For the other direction assume that w ∈ V (p). Then, there is a sequence of
applications of rules (cl1T′) and (cl2T′) to V0 which results in adding w to V (p).
Importantly, the rules (cl1T′) and (cl2T′) are linear in a sense that each of them
has only one precondition, so the above-mentioned sequence of applications can
be represented as a path in G, starting in start and ending in (p, w).

We have reduced in L checking whetherMT
D,ϕ, w |= p to checking if there is

a path in a directed graph. The latter problem is well-known to be in NL [14],
so the former is in NL as well. It follows that checkingMT

D,ϕ, w0 |= ϕ is in NL.

By Corollary 6 and Lemma 7 we obtain that T�
core-satisfiability is in NL, so the

following result holds.

Theorem 8. T�
core-satisfiability is NL-complete.
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4.2 Core Fragment of K4

Next, we consider K4�core-satisfiability and show that it is also in NL. The proof
is similar to the one for T�

core-satisfiability, however, there are some important
differences. First, there are two types of minimal models (Lemma 9) and second,
these models are monotonic but the direction of monotonicity is opposite to
the direction of the monotonicity in minimal models for T. In particular, if a
propositional variable holds in a minimal model for K4 in some world, then it
holds in all descendants of this world (Lemma 11). This property also allows
us to reduce the satisfiability problem to the graph reachability problem, which
implies that K4�core-satisfiability is in NL (Theorem 12).

By Theorem 2 a K4�
core-formula ϕ is satisfiable if it is satisfied in a root

of a model M of size at most |ϕ| such that (i) M is strict linear or (ii) M
is strict linear and additionally its last world is in accessibility relation with
itself. For a fixed D ∈ N we introduce two types of minimal strict linear models
with respect to ϕ, namelyMK4(i)

D,ϕ andMK4(ii)
D,ϕ which correspond to (i) and (ii),

respectively. Let MK4(i)
D,ϕ = (W,R, V ) and MK4(ii)

D,ϕ = (W,R′, V ′) be such that
W = {w0, . . . , wD}, R = {(wi, wj) | i < j ≤ D}, and R′ = R ∪ {(wD, wD)}.
We define V0 : PROP −→ P(W ) and V ′0 : PROP −→ P(W ) such that for all
p ∈ PROP:

V0(p) :={wk ∈W | �s(�mp) ∈ clauses(ϕ) and k ≥ s+m}
∪{wk ∈W | �s(�mq → p) ∈ clauses(ϕ), k ≥ s, and k +m > D};

V ′0(p) :={wk ∈W | �s(�mp) ∈ clauses(ϕ) and k ≥ s+m}
∪{wD | �s(�mp) ∈ clauses(ϕ) for all s,m ∈ N}.

For a function f : PROP −→ P(W ), let cl(i)(f) be the result of non-recursive
application of the following rules to f :

(cl1K4(i)) If �s(p1 → �mp2) ∈ clauses(ϕ) and wk ∈ f(p1) for some k ≥ s,
then add to f(p2) all wl such that l ≥ k +m;

(cl2K4(i)) If �s(�mp1 → p2) ∈ clauses(ϕ) and for some k ≥ s it holds that
for all l with l ≥ k +m we have wl ∈ f(p1), then add wk to f(p2),

where k, l ≤ D. Similarly, cl(ii)(f) is the result of non-recursive application of
the following rules to f : PROP −→ P(W ):

(cl1K4(ii)) If �s(p1 → �mp2) ∈ clauses(ϕ) and wk ∈ f(p1) for some k ≥ s,
then add to f(p2) the world wD and all wl such that l ≥ k +m;

(cl2K4(ii)) If �s(�mp1 → p2) ∈ clauses(ϕ), wD ∈ f(p1), and for some k ≥ s
it holds that for all l such that l ≥ k+m we have wl ∈ f(p1), then
add wk to f(p2),

where k, l ≤ D. We define:

cl0(x)(V0) := V0; cln+1
(x) (V0) := cl(x)(cl

n
(x)(V0)).
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SinceW and PROP(ϕ) are finite, there is a fixed point of cl(x) for x ∈ {i, ii}. Let
V be the fixed point of cl(i) and V ′ the fixed point of cl(ii). The modelsMK4(i)

D,ϕ

andMK4(ii)
D,ϕ satisfy the following properties.

Lemma 9 The following hold for all L�
core-formulas ϕ and all D ∈ N:

(1) MK4(i)
D,ϕ , w0 |= ϕ if an only if ϕ is satisfied in the root of a strict linear model

of size D + 1;
(2) MK4(ii)

D,ϕ , w0 |= ϕ if an only if ϕ is satisfied in the root of a strict linear model
of size D+1 with additional accessibility relation from the last world to itself.

Corollary 10 An L�
core-formula ϕ is K4�

core-satisfiable if an only if for some
D ≤ |ϕ| − 1 we haveMK4(i)

D,ϕ , w0 |= ϕ orMK4(ii)
D,ϕ , w0 |= ϕ.

By the transitivity of the accessibility relation in K4 we can show that both
MK4(i)

D,ϕ andMK4(ii)
D,ϕ are monotonic in the following sense.

Lemma 11 Let ϕ be an L�
core-formula, D ∈ N, p ∈ PROP, x ∈ {i, ii}, and

wk ∈ W such that wk 6= w0. If MK4(x)
D,ϕ , wk |= p, then MK4(x)

D,ϕ , wl |= p for all
wl ∈W such that l > k.

Therefore, each of (cl2K4(i)) and (cl2K4(ii)) can be replaced with the following
rule:

(cl2K4′) If �s(�mp1 → p2) ∈ clauses(ϕ), and wk ∈ f(p1) for some wk 6= w0,
then for any l ≥ k −m with l ≥ s add wl to f(p2).

Theorem 12. K4�
core-satisfiability is NL-complete.

Proof. Fix an L�
core-formula ϕ and nondeterministically guess the natural num-

ber D ≤ |ϕ|−1 and the type of a model, i.e., x ∈ {i, ii}. By Corollary 10 the for-
mula ϕ is K4�

core-satisfiable if and only ifMK4(i)
D,ϕ , w0 |= ϕ orMK4(ii)

D,ϕ , w0 |= ϕ.
Both of the latter conditions reduce to reachability in the application graph
which we construct in an analogous way as in the proof of Lemma 7. It follows
that the whole procedure is in NL. The matching lower bound is well-known.

4.3 Core Fragment of S4

In this Section we will study the satisfiability problem in S4�core. We will show
that to check whether an S4�core-formula is satisfiable in a frame of size D+1 it
suffices to construct the minimal model MS4

D,ϕ and check whether the formula
holds there (Lemma 13). Then, we show that if a propositional variable holds
in a non-root world in a minimal model MS4

D,ϕ , then it holds everywhere in
this model (Lemma 14). Hence, for all D > 1 we can construct a surjective
p-morphism from MS4

D,ϕ to MS4
1,ϕ, so S4�core-satisfiability reduces to checking

whetherMS4
1,ϕ, w0 |= ϕ (Corollary 15), which can be solved in NL (Theorem 16).
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For a fixed L�
core-formula ϕ, letMS4

D,ϕ = (W,R, V ) be the minimal non-strict
linear model of size D + 1, where (W,R) is the non-strict linear frame of size
D + 1, i.e., W = {w0, . . . , wD} and R = {(wi, wj) | i ≤ j ≤ D}. We define
V0 : PROP −→ P(W ) such that for all p ∈ PROP:

V0(p) :={w0 | �0(�0p) ∈ clauses(ϕ)}
∪{w0, . . . , wD | �s(�mp) ∈ clauses(ϕ) and s+m > 0}.

For a function f : PROP −→ P(W ), let cl(f) be the result of non-recursive
application of the following rules to f :

(cl1S4) If �0(p1 → p2) ∈ clauses(ϕ) and w0 ∈ f(p1), then add w0 to f(p2);
(cl2S4) If �s(p1 → p2) ∈ clauses(ϕ) and w ∈ f(p1), then add w to f(p2);
(cl3S4) If �0(p1 → �mp2) ∈ clauses(ϕ) and w0 ∈ f(p1), then f(p2) :=W ;
(cl4S4) If �s(p1 → �mp2) ∈ clauses(ϕ) and wk ∈ f(p1), add wk, . . . , wD to

f(p2);
(cl5S4) If �0(�mp1 → p2) ∈ clauses(ϕ) and f(p1) =W , then add w0 to f(p2);
(cl6S4) If �s(�mp1 → p2) ∈ clauses(ϕ) and wk, . . . , wD ∈ f(p1), then add wk

to f(p2),

where m, s > 0. We define the following sets, obtained by applying cl to V0:

cl0(V0) := V0; cln+1(V0) := cl(cln(V0)).

Let V be the fixed point of cl. For an example ofMS4
D,ϕ see Fig. 5.

w0 w1 w2 w3

p, q q q q

w0 w1

p, q q

Fig. 5. The minimal modelsMS4
3,ϕ andMS4

1,ϕ for ϕ = �0(p) ∧�2(p→ �q), where the
p-morphism fromMS4

3,ϕ toMS4
1,ϕ is indicated with dashed arrows

Lemma 13 An L�
core-formula is satisfied in the root of a non-strict linear model

of size D + 1 if and only if ϕ is satisfied in the root ofMS4
D,ϕ.

Furthermore, if a propositional variable is satisfied in MS4
D,ϕ in some wk 6= w0,

then this variable is satisfied in all worlds ofMS4
D,ϕ.

Lemma 14 Let ϕ be an L�
core-formula, D ∈ N, andMS4

D,ϕ = (W,R, V ). For all
k ≥ 1 and p ∈ PROP ifMS4

D,ϕ, wk |= p, thenMS4
D,ϕ, w |= p for all w ∈W .
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As a consequence of Lemma 14 and the form of the rules (cl1S4)–(cl6S4) we
can show that for all D > 1 there is a surjective p-morphism from MS4

D,ϕ to
MS4

1,ϕ (for a description of p-morphisms see [3]). This surjective p-morphism
maps the root ofMS4

D,ϕ into the root ofMS4
1,ϕ and all non-root worlds ofMS4

D,ϕ

into the non-root world of MS4
1,ϕ as depicted in Fig. 5. Then, by the existence

of such a p-morphism,MS4
D,ϕ, w0 |= ϕ impliesMS4

1,ϕ, w0 |= ϕ. Moreover, by the
form of the rules (cl1S4)–(cl6S4) it is easy to show that MS4

0,ϕ, w0 |= ϕ implies
MS4

1,ϕ, w0 |= ϕ, hence:

Lemma 15 An L�
core-formula ϕ is S4�

core-satisfiable if and only if it is satisfied
in the root ofMS4

1,ϕ.

It follows that to check if an L�
core-formula is S4�core-satisfiable it is sufficient

check whether MS4
1,ϕ, w0 |= ϕ. By Lemma 14 if D > 0, then the rules (cl5S4)

and (cl6S4) can be replaced with the following:

(cl5S4′) If �0(�mp1 → p2) ∈ clauses(ϕ) and w1 ∈ f(p1), then add w0 to
f(p2);

(cl6S4′) If �s(�mp1 → p2) ∈ clauses(ϕ) and w1 ∈ f(p1), then f(p2) =W ,

where s > 0. Each of the rules (cl1S4)–(cl4S4), (cl5S4′), and (cl6S4′) has only
one precondition, so we can construct an application graph forMS4

1,ϕ analogously
as in the proof of Lemma 7. Hence, S4�core-satisfiable reduces to reachability, so
it is in NL.

Theorem 16. S4�
core-satisfiability is NL-complete.

5 Algorithms

In the previous Section we have showed that the satisfiability problems for T�
core,

K4�
core, and S4�

core are NL-complete. In the current Section, we present deter-
ministic algorithms for solving these problems. The algorithms will construct a
minimal model and check if the formula is satisfied in the root of this model.

The pseudocode for satisfiability checking in T�
core is depicted in Algorithm 1.

For a given L�
core-formula ϕ the algorithm constructs a setM of pairs of the form

(w, p) such that (w, p) ∈M is to mean that in the minimal modelMT
md(ϕ),ϕ the

propositional variable p is satisfied in the world w. The construction is initialized
in the Lines 1-2 by fixing the size D of the minimal model and adding to M
elements corresponding to V0 as defined in (3). Afterwards, in the Lines 3-7, the
rules (cl1T′) and (cl2T′) are applied to M until a fixed point is reached (as we
have discussed in the previous Section this procedure terminates). It remains
to check in the Lines 8-9 whether some clause of the form �s(p1 ∧ p2 → ⊥)
occurring in ϕ raises a contradiction. If this is the case, the input formula is
not T�

core-satisfiable and the algorithm returns ‘False’, otherwise the formula is
T�

core-satisfiable and the algorithm returns ‘True’.
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Algorithm 1 Checking T�
core-satisfiability

Input: an L�
core-formula ϕ

Output: ’True’ if ϕ is T-satisfiable, ’False’ otherwise
1: D ← md(ϕ)
2: M ← {(w, p) | w ∈ V0(p)}
3: while something changes do
4: M ′ ← ∅
5: for all c ∈ clauses(ϕ) and (wk, p1) ∈M do
6: M ′ ←M ′ ∪ {(wl, p2) | wk ∈ f(p1) implies wl ∈ f(p2) by application

of (cl1T′) or (cl2T′) to c}
7: M ←M ∪M ′

8: for all �s(p1 ∧ p2 → ⊥) ∈ clauses(ϕ) do
9: if (w0, p1) ∈M and (w0, p2) ∈M then
10: return False
11: return True

The algorithms for checking S4�
core- and K4�

core-satisfiability are obtained by
suitable modifications of Algorithm 1. The procedure for S4�

core-satisfiability
requires the following changes: (a) the Line 1 becomes “D ← 1” as the minimal
model for S4�

core is of size 2, (b) in the Line 6 “(cl1T′) or (cl2T′)” is replaced
with “(cl1S4)–(cl4S4) or (cl5S4′)–(cl6S4′)”.

The algorithm forK4�
core-satisfiability is more complex. For an L�

core-formula
ϕ it has to be checked for all D ≤ |ϕ| − 1 and for all x ∈ {i, ii} whether
MK4(x)

D,ϕ , w0 |= ϕ. Hence, for a fixed D ≤ |ϕ| − 1 and x ∈ {i, ii} the following
modifications of Algorithm 1 needs to be done: (a) the Line is 1 deleted because
D is already fixed, (b) if x = i, then in the Line 6 “(cl1T′) or (cl2T′)” is re-
placed with “(cl1K4(i)) or (cl2K4′)”, otherwise it is replaced with “(cl1K4(ii))
or (cl2K4′)”, (c) in the Line 9 all occurrences of “w0” are replaced with “wD”.

The above described algorithms construct minimal models of a relevant type
and check whether no clause of the form �s(p1∧p2 → ⊥) raises a contradiction.
By Corollaries 6, 10, and 15, these procedures are sufficient for satisfiability
checking.

6 Correspondence to Linear Temporal Logic

Since there is a close correspondence between the minimal models which we have
introduced for checking T�

core-, K4�
core-, and S4�

core-satisfiability with fragments
of the linear temporal logic, our results transfer to the latter.

Let©, , �, and �, be modal temporal operators whose intuitive reading is,
respectively, ‘in the next time-point’, ‘now and in the next time-point’, ‘always
in the future’, and ‘now and always in the future’. For each X ∈ {©, ,�,�}
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let LTLX
core-formulas be generated by the following grammar:

ϕX := λX | ¬λX | �s(¬λX ∨ λX) | �s(¬λX ∨ ¬λX) | ϕX ∧ ϕX ; (4)
λX := > | p | Xλ,

where s ∈ N and p ∈ PROP.
As usual in linear temporal logic, LTLX

core-formulas are interpreted over a lin-
ear order of time-points, namely an LTL-model is a tupleM = (T,<, V ), where
(T,<) is a countable discrete and linear order of time-points and the valuation
V : PROP −→ P(T ) assigns sets of time points to propositional variables. The
satisfaction relation for a modelM and a time point t ∈ T is defined for temporal
modal operators as follows:

M, t |=©ϕ iff M, t′ |= ϕ for t′ the immediate <-succesor of t;
M, t |= ϕ iff M, t |= ϕ ∧©ϕ;
M, t |= �ϕ iff M, t′ |= ϕ for all t′ such that t < t′;
M, t |= �ϕ iff M, t |= ϕ ∧�ϕ,

where t′ ∈ T and for other propositional connectives the satisfaction relation
is defines as in normal modal logics. Let 0 be the smallest element in (T,<).
Then, an LTL-formula ϕ is satisfiable if there exists an LTL-modelM such that
M, 0 |= ϕ.

To show how the fragments of LTL correspond to the fragments of normal
modal logics we introduce a translation τX(ϕ) for X ∈ {©, ,�,�} and an
L�
core-formula ϕ, such that τX(ϕ) is an LTLX

core-formula obtained from ϕ by
replacing each occurrence of “�” in ϕ with “X” except �’s proceeding clauses,
which remain unchanged. Consider the following example:

ϕ = �2(p) ∧�2(�p→ q);

τ(ϕ)© =©2(p) ∧�2(©p→ q).

Then, by the form of minimal models in K�
core, T

�
core, K4�core, and S4�core we

obtain the following correspondence for all L�
core-formulas ϕ:

– ϕ is K�
core-satisfiable if an only if τ(ϕ)© is LTL-satisfiable;

– ϕ is T�
core-satisfiable if an only if τ(ϕ) is LTL-satisfiable;

– ϕ is K4�core-satisfiable if an only if ϕ(�) is LTL-satisfiable;
– ϕ is S4�core-satisfiable if an only if τ(ϕ) is LTL-satisfiable.

It follows that satisfiability in LTLXcore is NL-complete for all X ∈ {©, ,�,�}.
A similar result for LTL�core has been established in [1], where a slightly modified
version of the grammar of LTL�core-formulas was shown to be NL-complete over
time lines coinciding with the standard ordering of integers. The modification
was obtained by replacing “�s” preceding clauses in the grammar (4) with the
universal modality, stating that a formula holds in all time points.
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7 Conclusions and Future Work

In the paper we have showed that the satisfiability problem in core fragments
of normal modal logics T�

core, K4�
core, and S4�

core are NL-complete. We have
conducted the proofs by constructing minimal models and checking if the input
formula is satisfiable in them. We have showed that for a given L�

core-formula
ϕ there is a single T�

core and a single S4�
core minimal model of sizes md(ϕ) + 1

and 2, respectively. These results enabled us to construct simple algorithms for
satisfiability checking in T�

core and S4�
core. In the case of K4�

core there are two
types of minimal models which make the algorithm more complex.

Moreover, by the form of the minimal models we have showed a correspon-
dence of the above fragments with core fragments of linear temporal logic. There-
fore, our computational complexity results for T�

core, K4�
core, and S4�

core imme-
diately transfer to the corresponding fragments of linear temporal logic.

The complexity map for sub-propositional fragments of normal modal logics
still contains a number open problems – see Fig. 1. As a future work we plan to
investigate the following questions:

– What is the complexity of L♦
core for L ∈ {K.T,K4,S4}? These fragments

are known to be NL-hard and in P but no tight complexity bounds have
been established for them so far;

– What is the computational complexity of core fragments in the basic interval
logic, known as the logic of Halpern and Shoham? Is it possible to exploit
our proof techniques in the case of interval logics?
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