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ABSTRACT

Recent developments in the theory of computational complexity as applied

to combinatorial problems have revealed the existence of a large class of

so-called NP-complete problems, either all or none of which are solvable

in polynomial time. Since many infamous combinatorial problems have been

proved to be NP-complete, the latter alternative seems far more likely. In

that sense, NP-completeness of a problem justifies the use of enumerative

optimization methods and of approximation algorithms. In this paper we give

an informal introduction to the theory of NP-completeness and derive some

fundamental results, in the hope of stimulating further use of this valu-

able analytical tool.
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1. INTRODUCTION

After a wave of initial optimism, integer programming soon proved to be

much harder than linear programming. As integer programming formulations

were found for more and more discrete optimization problems, it also became

obvious that such formulations yielded little computational benefit. To this

day, integer programming problems of more than miniature size remain compu-

tationally intractable.

For some specially structured problems, however, highly efficient algo-

rithms have been developed. Network flow and matching provide well-known

examples of problems that are easy in the sense that they are solvable by

a good algorithm - a term coined by J. Edmonds [Edmonds 1965A] to indicate

an algorithm whose running time is bounded by a polynomial function of prob-

lem size. This notion is not only theoretically convenient, but is also

supported by overwhelming practical evidence that polynomial-time algorithms

can indeed solve large problem *instances very efficiently; the polynomial

involved is usually of low degree. For example, in a network on v vertices

a maximum flow can be determined in 0(v
3
) time [Dinic 1970; Karzanov 1974;

Even 1976] and a maximum weight matching can be found in 0(v
3
) time [Gabow

1976; Lawler 1976].

It is commonly conjectured that no good algorithm exists for the gener-

al integer programming problem. A similar conjecture holds with respect to

many other combinatorial problems that are notorious for their computational

intractability [Johnson 1973], such as graph coloring, set covering, travel-

ing salesman and job shop scheduling problems. Typically, all optimization

methods that have been proposed so far for these problems are of an enumera-

tive nature. They involve some type of backtrack search in a tree whose

depth is bounded by a polynomial function of problem size. In the worst

case, those algorithms require superpolynomial (e.g., exponential) time.

For the time being, we shall loosely denote the class of all problems

solvable in polynomial time by P and the class of all problems solvable by

polynomial-depth backtrack search by NP. It is obvious that P c NP.

The battle against hard combinatorial problems dragged on until S.

Cook [Cook 1971] and R.M. Karp [Karp 1972] showed the way to peace with

honor [Fisher 1976]. They exhibited the existence within NP of a large class

of so-called NP-complete problems [Knuth 1974] that are equivalent in the

following sense:

none of them is known to belong to P;
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if one of them belongs to P, then all problems in NP belong to P,

which would imply that P = NP.

NP-completeness of a problem is generally accepted as strong evidence

against the existence of a good algorithm and consequently as a justifica-

tion for the use of enumerative optimization methods such as branch-and-

bound or of approximation algorithms. By way of examples, even restricted

versions of all hard problems mentioned above are NP-complete.

NP-completeness theory has proved to be an extremely fruitful research

area. The computational complexity of many types of combinatorial problems

has been analyzed in detail. Under the assumption that P NP, this analy-

sis often reveals the existence of a sharp borderline between P and the

class of NP-complete problems that is expressible in terms of natural prob-

lem parameters. A truly remarkable feature of the theory is the large pro-

portion of time in which is given problem in NP can be shown to be either

in P or NP-complete. Moreover, the two types of problems really have proved •

to be quite different in character. As mentioned, extremely large instances

of problems in P are efficiently solvable, whereas only relatively small

instances of NP-complete problems admit of solution by tedious enumerative

procedures. Establishing NP-completeness of a problem provides important

information on the quality of the algorithm that one can hope to find,

which makes it easier to accept the computational burden of enumerative

methods or to face the inevitability of a heuristic approach.

In this paper we shall not attempt to present an exhaustive survey of

all NP-completeness results (see [Karp 1972; Karp 1975; Garey & Johnson

1978A]). Instead we shall examine some typical NP-complete problems, demon-

strate some typical proof techniques and discuss some typical open problems

(cf. [Aho et a/. 1974; Savage 1976; Reingold et al. 1977]). We hope that

as a result the reader will be stimulated to consider the computational

complexity of his of her favorite combinatorial problem and to draw the

algorithmic implications.
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2. CONCEPTS OF COMPLEXITY THEORY

A formal theory of NP-completeness would require the introduction of Turing

machines as theoretical computing devices [Aho et al. 1974]. Turing machines

can be designed to recognize languages; the input to the machine consists

of a string, which is accepted if and only if it belongs to the language.

P is then defined as the class of languages recognizable in polynomial time

by a deterministic Turing machine, an artificial but theoretically accessi-

ble model for an ordinary computer, that is polynomially related to more

realistic models such as the random access machine [Aho et al. 1974]. NP is

similarly defined as the class of languages recognizable in polynomial time

by a nondeterministic'Turing machine, which can be thought of as a deter-

ministic one that can duplicate its current state in zero time whenever

convenient.

For our purposes, we may identify languages with recognition problems,

which require a yes/no answer, and strings with instances of such problems.

A recognition problem is in P if the existence of a feasible solution can

be determined in polynomial time; it is in NP if any feasible solution can

be recognized as such in polynomial time.

Problem P' is said to be reducible to problem P (notation: P' m P) if

for any instance of P' an instance of P can be constructed in polynomial

time such that solving the instance of P will solve the instance of P' as

well. Informally, the reducibility of P' to P implies that P' can be con-

sidered as a special case of P, so that P is at least as hard as P'.

P is called NP-hard if P' P for every P' E NP. In that case, P is at

least as hard as any problem in NP. P is called NP-complete if P is NP-hard

and P E NP. Thus, the NP-complete problems are the most difficult problems

in NP.

A good algorithm for an NP-complete problem P could be used to solve

all problems in NP in polynomial time, since for any instance of such a

problem the construction of the corresponding instance of P and its solu-

tion can be both effected in polynomial time. Note the following two impor-

tant observations.

- It is very unlikely that P = NP, since NP contains many notorious com-

binatorial problems, for which in spite of a considerable research

effort no good algorithms have been found so far.

- It is very unlikely that P E P for any NP-complete P, since this would

imply that P = NP by the earlier argument.
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The first NP-completeness result is due' to Cook [Cook 1971]. He designed a

"master reduction" to prove that every problem in NP is reducible to the

SATISFIABILITY problem. This is the problem of determining whether a bool-

ean expression in conjuctive normal form assumes the value true for some

assignment of truth values to the variables; for instance, the expression

(x1) A (X V X
2 

V Tc 
3 
) A (x

3 
)

1 
(1)

is satisfied if x
1 
= x

2 
= x

3 
= true. Given this result, one can establish

NP-completeness of some P E NP by specifying a reduction P' cc P with P'

already known to be NP-complete: for every P" E NP, P" P' and P' cc P then

imply that P" cc P as well. In the following section we shall present sever-

al such proofs.

As far as optimization problems are concerned, we shall reformulate

a minimization (maximization) problem by asking for the existence of a fea-

sible solution with value at most (at least) equal to a given threshold.

It should be noted that membership of NP for this recognition version does

not immediately imply membership of NP for the original optimization prob-

lem as well. In particular, proposing a systematic search over a polynomial

number of threshold values, guided by positive and negative answers to t -the

existence question, is not a valid argument. This is because a nondeter-

ministic Turing machine is only required to give positive answers in poly-

nomial time. Indeed, no complement of any NP-complete problem is known to

be in NP!

As an obvious consequence of the above discussion, NP-completeness

can only be proved with respect to a recognition problem. However, the

corresponding optimization problem might be called NP-hard in the sense

that the existence of a good algorithm for its solution would imply that

P = NP.

So far, we have been purposefully vague about the specific encoding of

problem instances. Suffice it to say that most reasonable encodings are

polynomially related. One important exception with respect to the represen-

tation of positive integers will be dealt with in Section 3.5.

The classes P and NP are certainly not the only classes of interest to com-

plexity theorists. There is, for instance, the class PSPACE, which contains

all languages recognizable in polynomial space. This class is the same for

both deterministic and nondeterministic Turing machines. There is a notion
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of PSPACE-completeness analogous to NP-bompleteness. The standard PSPACE-

complete problem i "quantified" SATISFIABILITY or QSATISFIABILITY [Stock-

meyer & Meyer 1973; Aho et al. 19741. An instance of this problem results

from the quantification of a boolean expression by both existential and

universal quantifiers, e.g.

Vx
1 
3x

2 
Vx

3 
[(x

1 
vx)A(T.c

1
VX

2
\/";.()].

2

The question then becomes: does there exist a truth assignemnt to the exis-

tentially quantified variables such that the reduced expression (in terms

of universally quantified variables) is a tautology?

The QSATISFIABILITY problem can be viewed as defining a game between

two players: an "existential" player who tries to select values to make the

expression true and a "universal" player who tries to defeat him. This in-

sight has suggested a rich lore of simply-structured combinatorial games

for which the problem of determining the outcome of optimal play is PSPACE-

complete [Schaefer 1976]. One example of such a game is "generalized hex"

[Even & Tarjan 1976].

Clearly NP c PSPACE. It has not been proved that NP PSPACE. However,

it seems reasonable to conjecture that this is the case and that PSPACE-

complete problems are more difficult than NP-complete ones.

We should also mention that there are problems which have been shown

to be inherently more difficult than any problem in PSPACE. For example,

consider the "reachability" problem for vector addition systems: given a

finite set of vectors with integer components, an initial vector u and a

final vector v, is it possible to add vectors from the given set to u,

with repetition allowed, so as to reach v, while always staying within the

positive orthant? This problem has been shown to be decidable [Sacerdote &

Tenney 1977] but to require exponential space [Lipton 1976]. Some other

combinatorial problems have been shown to require exponential space as well

[Stockmeyer & Meyer 1973].



3. NP-COMPLETENESS RESULTS

In this section we shall establish some basic-NP-completeness results

according to the scheme given in Figure 1, and we shall mention similar

results for related problems. Our proofs will be sketchy; for instance, it

will be left to the reader to verify the membership of NP for the problems

considered and the polynomial-boundedness of the reductions presented.

SET PACKING]

SET COVER

SATISFIABILITY

CLIQUE

VERTEX PACKING

VERTEX COVER

DIRECTED HAMILTONIAN CIRCUIT

UNDIRECTED HAMILTONIAN CIRCUIT 1

0-1 PROGRAMMING

SET PARTITION

KNAPSACK

3-PARTITION]

3-MACHINE UNIT-TIME JOB SHOP

Figure 1 Scheme of reductions.

3. 1. SATISFIABILITY

SATISFIABILITY: Given a conjuctive normal form expression, i.e. a conjunc-

tion of clauses Ci,...,C
s
, eacb of which is a disjunction of literals

x1,x1,...,xt,xt where xl,...,xt are boolean variables and xl,...,xt

denote their complements, is there a truth assignment to the variables

such that the expression assumes the value true?
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NP-completeness

It has already been mentioned that SATISFIABILITY was the first problem

shown to be NP-complete. The proof of this key result is quite technical

and beyond the scope of this paper; we refer to [Cook 1971; Aho et al. 1974].

We shall take (1) as an example of an instance of SATISFIABILITY to illus-

trate subsequent reductions.

Related results

Even the 3-SATISFIABILITY problem, i.e. SATISFIABILITY with at most three

literals per clause, is NP-complete [Cook 1971]. The 2-SATISFIABILITY prob-

lem, however, belongs to P. Often, the borderline between easy and hard

problems is crossed when a problem parameter increases from two to three.

This phenomenon will be encountered on various occasions below, and is held

by some to explain the division of mankind in two and not three sexes.

3.2. CLIQUE, VERTEX PACKING & VERTEX COVER

CLIQUE: Given an undirected graph G = (V,E) and an integer k, does G have

a set of at least k pairwise adjacent vertices?

VERTEX PACKING (INDEPENDENT SET): Given an undirected graph G' =(V',E')

and an integer k', does G' have a set of at least k' pairwise non-

adjacent vertices?

VERTEX COVER: Given an undirected graph G = (V,E) and an integer k, does G

have a set of at most k vertices such that every edge is incident with

at least one of them?

NP-completeness

SATISFIABILITY cc CLIQUE:

V = {(x,i)lx is a literal in clause Ci};

E = {{(x,i),(17,j))1x / Y, i / j};

k = s.

Cf. Figure 2. We have created a vertex for each occurrence of a literal in

a clause and an edge for each pair of literals that can be assigned the

value true independently of each other. A clique of size k corresponds to

s literals (one in each clause) that satisfy the expression and vice versa



[Cook 1971]. The NP-completeness of CLIQUE now follows from (i) its member-

ship of NP, (ii) the polynomial-boundedness of the reduction, and (iii) the

NP-completeness of SATISFIABILITY.

CLIQUE m VERTEX PACKING:

V' = V;

E' = {{i,j1li j, {i,j} El;

k' = k.

Cf. Figure 3. A set of vertices is independent in G' if and only if it is a

clique in the complementary graph G. This relation between the two problems

belongs to folklore.

Figure 2 Instance of CLIQUE for the example.

Figure 3 Instance of VERTEX PACKING for the example.

Figure 4 Instance of VERTEX COVER for the example.
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VERTEX PACKING cc VERTEX COVER:

E = E';

IV11-k'.

Cf. Figure 4. It is easily seen that a set of vertices covers all edges if

and only if its complement is independent [Karp 1972].

Related results

Given the above results, it is not surprising (though less easy to prove)

that the problems of determining whether the vertex set of a graph can be

covered by at most k cliques or, after complementation, by at most k inde-

pendent sets are NP-complete [Karp 1972]. These problems are known as

CLIQUE COVER and GRAPH COLORABILITY respectively. In fact, it is already

an NP-complete problem to determine if a planar graph with vertex degree

at most 4 is 3-colorable [Garey et al. I976C], whereas 2-colorability is

equivalent to bipartiteness and can be checked in polynomial time.

3.3: SET PACKING, SET COVER & SET PARTITION

SET. PACKING: Given a finite set S, a finite family S of subsets of S and

an integer k, does S include a subfamily S' of at least 2, pairwise

disjoint sets?

SET COVER: Given a finite set S, a finite family S of subsets of S and an

integer 2,, does S include a subfamily S' of at most k sets such that

S' = S?Uves,

SET PARTITION (EXACT COVER): Given a finite set S and a finite family S of

subsets of S, does S include a subfamily S' of pairwise disjoint sets

such that U S' = S?
S'ES'

NP-completeness

VERTEX PACKING cc SET PACKING:

S = E';

S = f{{i,j}l{i,j} E E'lli E

k = k'.

VERTEX COVER m SET COVER:

delete the primes in the above reduction.



•

10

VERTEX PACKING and VERTEX COVER are easily recognized as special cases of

SET PACKING and SET COVER respectively, and these reductions require no

further comment.

VERTEX PACKING = SET PARTITION:

S = E' u

S = {s. Ji 
E V', h = 1,...,k'} u fs{i} E E'}, where

f

s
ih 

{{i/j)I {i,j} E E'l u

s
{} 

=

Cf. Figure 5. Suppose that d, has an independent set U' C 'V' of size k',

say, U' = {v1,...,vkd, Then the sets Sv11,...,Svkik, are pairwise disjoint,

and the elements of S not contained in any of them belong to E'. It follows

that a partition of S is given by

{S
v 1"

..,s
v k °} {} '

I{i j} E E', i U j j U'}.

1 k'
•

Conversely, suppose that there exists a partition S' of S. Then S' contains

k' pairwise disjoint sets Svo,...,S , and the vertices v,...,vm
v
k
,k ' 

1 

clearly constitute an independent set of size k' in G'.

This reduction simplifies the NP-completeness proof given in [Karp 1972].

S

.

S
21

S
31

S
41

S
51

S
12

S
22
I)S42 S

52
S
13 233;43
SS {1,2} S{2,3} 

s
{2,4} C3,4)

s
{4,5}

{1,2}0 0

.

0 0 0

.

0

,

0

{2,3} 0 0 0 0 0 0
k

0
,

{2 , 4 } 0 0 0 0 0 0
0

{3,4}

..

0 0

.

0 0 0 0
,

0 .

,{4,5}

,

0 0 0 0

. .. -

.
0 0 0

1 ()0000
- _.

,

,

2

- ,

0 0® 00

0 0 0 0

Figure 5 Instance of SET PARTITION for the example.

Related results

Even the EXACT 3-COVER problem, where all subsets in S are constrained to

be of size 3, is NP-complete, since it is an obvious generalization of the

3-DIMENSIONAL MATCHING problem, proved NP-complete in [Karp 1972].. An EXACT
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2-COVER corresponds to a perfect matching in a graph, which can be found in

polynomial time. The existence of good matching algorithms proves that EDGE

PACKING and EDGE COVER problems are members of P.

3.4. DIRECTED & UNDIRECTED HAMILTONIAN CIRCUIT

DIRECTED HAMILTONIAN CIRCUIT: Given a directed graph H = (W,A), does H have

a directed cycle passing through each vertex exactly once?

UNDIRECTED HAMILTONIAN CIRCUIT: Given an undirected graph G = (V,E), does

G have a cycle passing through each vertex exactly once?

NP-completeness

VERTEX COVER cc DIRECTED HAMILTONIAN CIRCUIT:

W = f(i,j),{i,j},(j,i)l{i,j} E E) U

A =

{((h,i),(i,j))1{h,i},{i,j} E E, h j1

U {((ik,j),h),(h,(i,j)),((j,i),h),(h,(j,i))1{i,j1€E,

Cf. Figure 6. For each edge {i,j} in G we have created a configuration in

H consisting of three vertices (1,j),{i,j},(j,i) and four arcs, as shown

in the figure. The configurations are linked by arcs from (h,i) to (i,j)

for h j. Further, we have added k vertices 1,...,k and all arcs between

-them and the vertices of type (i,j).

Suppose that G has a vertex cover U c V of size k, say, U = {v1...,vk}.

The edge set E can then be written as

E = {{v
h' wh1 } 

{v w }'h = 1,...
h' hk

h

j,i))1{i,j} E El

and it is easily checked that a hamiltonian circuit in H is given by

("(v 'wil"Iviiwilli(wiliv "--"(vi'wiii),Iviiwitili(wit ,vi)'

k, (v w ) {v Wk 1 (w ,v ) ,(v w ) Cl/ w ) (wk k
),wk ' k' 1 ' kl - k k' k

.2)‹ 
k' kk

k 
kk
k 

k

1).

Conversely, suppose that H has a lwliltonian circuit. By deletion of all

arcs incident with vertices 1,...,k, the circuit is decomposed into k paths.

A path starting at (i,j) for fi,j} E E has to go on to visit {i,j} and

(j,i); then it ends or goes on to visit (i,j'),{i,j'},(j',i) for some
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E, etc. Thus, this path corresponds to a specific vertex i E V,

covering edges {i,j},{i,j'}, etc. Since the circuit passes through each

{1,j1 exactly once, each edge {i,j} E E is covered by one of k specific

vertices, which therefore constitute a vertex cover of size k in G.

The above reduction is a modification of the original construction

due to E.L. Lawler [Karp 1972], based on ideas of M. Farer [Schuster 1976]

and P. van Emde Boas.

S.

• r

do.

Figure 6 Instance of DIRECTED HAMILTONIAN 
CIRCUIT for the example.

Not all arcs incident with vertices 1,...,k 
have been drawn.

DIRECTED HAMILTONIAN CIRCUIT cc UNDIRECTED HAMILTONIAN CIRCUIT:

V = {(i,in),(i,mid),(i,out)li E ra};

E = E W}

u {{(i,out),(j,in)}1(i,j) E A}.

The one-one correspondence between undirected hamiltonian circuits in 
G and

directed hamiltonian circuits in H is evident. This reduction is due to

R.E. Tarjan [Karp 1972].
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Related results

The above results have been strengthened in various ways. For instance, the

UNDIRECTED HAMILTONIAN CIRCUIT problem remains NP-complete if G is planar,

triply-connected and regular of degree 3 [Garey et a/. 1976D] or if G is

bipartite [Krishnamoorthy 1975]. The latter result is a simple extension of

the last reduction given above and we recommend it as an exercise.

NP-hardness of the (general) TRAVELING SALESMAN problem is another

obvious consequence. Intricate NP-hardness proofs for the EUCLIDEAN TRAVEL-

ING SALRSMAN problem can be found in [Garey et al. 1976A; Papadimitriou

1977]. It is well known that TRAVELING SALESMAN is a special case of the

problem of finding a maximum weight independent set in the intersection of

three matroids. Thus, the 3-MATROID INTERSECTION problem is NP-hard, where-

as 2-MATROID INTERSECTION problems, such as finding an optimal linear

assignment or spanning arborescence, can be solved in polynomial time

[Lawler 1976].

The TRAVELING SALESMAN problem serves as a prototype for a whole class

of routing problems where, given a mixed graph consisting of a set V of

vertices, a set E of (undirected) edges and a set A of (directed) arcs, a

salesman has to find a minimum-weight tour passing through subsets V' c V,

E' C E and A' C A. If V' = 0, E' = E and A' = A, we have the CHINESE POST-

MAN problem, which can be solved in polynomial time in the undirected or

directed case (A = 0 or E = 0) [Edmonds 1965B; Edmonds & Johnson 1973], but

is NP-hard in the mixed case [Papadimitriou 1976]. For the case that only

V' = 0, NP-hardness has been established for the UNDIRECTED and DIRECTED

RURAL POSTMAN problems (A = 0 and E = 0 respectively) [Lenstra & Rinnooy

Kan 1976] and for the STACKER-CRANE problem (E' = 0, A' = A) [Frederickson

et a/. 1976].

3.5. 0-1 PROGRAMMING, KNAPSACK & 3-PARTITION

0-1 PROGRAMMING: Given an integer matrix A and an integer vector b, does

there exist a 0-1 vector x such that Ax b?

KNAPSACK: Given positive integers a11... a ,b, does there exist a subset
t

T C {1,...,0 such that 1 = b?
j aer )

3-PARTITION: Given positive integers a1,...,a3t,b, do there exist t pair-

wise disjoint 3-element subsets S c 11,...,30 such that y •a. = b
jESi

(i = 1,...,t)?
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NP-completeness

SATISFIABILITY 0-1 PROGRAMMING:

•

1 if x is a literal in clause C

a.. -1 if is a literal in clause C (i = 1,...,s, j =xj

0 otherwise

b. = 1 - X 1{j1 i is a literal in clause Ci}J (i = 1,...,$). 

Cf. Figure 7 and [Karp 1972].

xl

+ -
xl x2 3 ?_ -1

x3 1

1

Figure 7 Instance of 0-1 PROGRAMMING for the example.

SET PARTITION cc KNAPSACK:

Given S = {e e
s
} and S =

1.1 if ei S.

cij =
•

0 if e. / S
j
/

1

U = t+1,

we define

(i = 1,...,s, j = 1,...,t

and specify the reduction by

i-1
a. X! c..0
3 1=1 13

b = (us-1)/t.

=

Cf. Figure 8. The one-one correspondence between solutions to KNAPSACK an
d

SET PARTITION is easily verified [Karp 1972].

Given this result, the reader should have little difficulty in
 estab-

lishing NP-completeness for the PARTITION problem, i.e
. KNAPSACK with

yt 
a. = 2b.

tj=1 3

3-PARTITION has been proved NP-complete through a com
plicated sequence of

reductions, which can be found in [Garey & Johnson 1975].
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C,LJO

+4.

2 3 4 5 6 7 0) 9 10 11 12 13 14® 16

'

17 © 19 20 •

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 cif-u°1-1- t2.0,-1-

2 1 0 0 0 1 (I) 0 0 0 1 1 0 0 0 1 0 0 0 c2j.(1.2-1- (112+

3 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 (I) 0 0 c3j.u,-.1- u_i-

4 00 1 1 0 0 0 (I) 1 0 0 0 1 1 0 0 0 0 1 0 c4i.u.:11- ceini-

5 0 0 0 1 1 0 0 0 1 1 0 0 0 1 (I) 0 0 0 0 1 c5A-u.5-1- u.4,-1-

6 (I) 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c6j-uri- 1.1.4-

7 0 0 0 0 0 1 1 (I) 1 1 0 0 0 0 0 0 0 0 0 0 e7j-2-1- a 4-

0 0 0 0 0 0 0 0 0 0 1 1 1 1 (I) 0 0 0 0 0 c8j-u7 u7

'Figure 8 Instance of KNAPSACK for the example, where s = 8, t = 20, u = 21.

!Binary vs. unary encoding

KNAPSACK was the first example of an NP-complete problem involving numeri-

cal data. The size of a problem instance is 0(t log b) in the standard

binary encoding and 0(tb) if a unary encoding is allowed. Readers will have

noticed that the reduction SET PARTITION 0: KNAPSACK is polynomial-bounded

only with respect to a binary encoding. Indeed, KNAPSACK can be solved by

dynamic programming in 0(tb) time [Bellmore & Dreyfus 1962], which might

be called a pseudopolynomial algorithm in the sense that it is polynomial-

bounded only with respect to a unary encoding. Thus, the binary NP-complete-

ness of KNAPSACK and its unary membership of P are perfectly compatible

' results, although it tends to make us think of KNAPSACK as less hard than

. other NP-complete problems.

3-PARTITION was the first example of a problem involving numerical

. data that remains NP-complete even if we measure the problem size by using

the actual numbers involved instead of their logarithms. This strong or

unary NP-completeness of 3-PARTITION indicates that already the existence

. of a pseudopolynomial algorithm for its solution would imply that P = NP

[Garey & Johnson 1978B].

Quite often, a binary NP-completeness proof involving KNAPSACK or

PARTITION can be converted to a unary NP-completeness proof involving 3-

PARTITION in a straightforward manner. Occasionally, however, the polyno-

mial-boundedness of a reduction depends essentially on allowing a unary

encoding for 3-PARTITION. An example of such a reduction is given in the

next section.
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3.6. 3-MACHINE UNIT-TIME JOB SHOP

3-MACHINE UNIT-TIME JOB SHOP: Given 3 machines M
1
,M
2
1M
3 
each of which can

process at mest one job at a time, n jobs J1,...,J
n 

where J. (j = 1,

...,n) consists of a chain of unit-time operations, the h-th of which

has to be processed on machine p with p
jh 

p for h > 1, and
jh j,h-1

an integer k, does there exist a schedule with length at most k?

NP-completeness

3-PARTITION ct 3-MACHINE UNIT-TIME JOB SHOP:

n = 3t+2;
a.

= (M1,M3'EM1
,M
2
I 3,M

3
) (j = 1,...,3t);pi

p i = am2
,m
3
,M
2
,M

1
,M
2
,MEm

2
,M
3
]
b
,M

1

,
M
2
,M

1

t 
;

p
n 

= (EM ,m ,m ,m ,m Cm m
b
,M ,M ,M

3 2 3 2 1 2' 3' 1 2 1 

2,t

k = (2b+9)t;

where Es]
h 
= s,[s]

h-1 
for h > 1 and Es] = S.

Note that both J
n-1 

and J
n 
consist of a chain of operations of length

equal to the threshold k. We may assume the h-th operations of these chains

to be completed at time h, since otherwise the schedule length would exceed

k. This leaves a pattern of idle machines for the other jobs that can be

described as

(E N ]
3 

EN 1
1 ' 1' 

. 
-2

jlb 
'L 

r 
M3'

itl
 '

(cf. Figure 9). We will show that this pattern can be filled properly if

and only if 3-PARTITION has a solution.

Suppose that 3-PARTITION has a solution (S
1' 
...,S ). In this case,

t

processing J with j e S entirely within the interval [(2b+9)(i-1),(2b+9)i]j

(j = 1,...,3t, i = 1,...,t) yields a schedule with length k.

Conversely, suppose that there exists a schedule with length k. We

will prove that in such a schedule exactly three jobs are started in

[0,210+91 and that they are completed in this interval as well; clearly,

these jobs indicate a 3-element subset S with 
XjeSi 

a
j 
= b. One easily

1

proves by induction that Si is similarly defined by the jobs started and

completed in E(2b4-9)(i-1),(2b+9)il < i t).

If LT, starts in [0,2b+9], its subchain of operations completed in that

3

interval is of one of four types:
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s.

type (141)
,

type 2: CM
l' 
M
3' 

EM
l'2

,h)

type (N111113,[141,11 < a-);

type 4: (M
1
,M
3'

Em
1
,m
2
i-j,M

3
).

Let x. denote the number of subchains of type i and yi the number of opera-

tions on M
2 
in subchains of type i. We have to prove that x

1 
= x

2 
= x

3 
= 0,

x
4 
= 3. Observing that a schedule of length k contains no idle unit-time

periods, we have

(1) x
1 
+ x

2 
+ y

2 
+ 2x

3 
+ y

3 
+ x

4 
+ y

4 
= b+3;

(2) y
2 

+y3

(3) x
2 

+ x + 2x
4 

= 6.
3

Subtracting (1) from the sum of (2) and (3), we obtain -x1-x3+x4 = 3 and

therefor
e 
x
4 

3. Also, (3) implies that x
4 

3. It follows that x
4 
= 3,

and x
1 
= x

2 
= x

3 
= 0.

r••••••••••••.....0

0 3 6 2b+6 2b+9

operation of J.j (1 < j < 3t)

operation of Jn...1

operation of Jn

Figure 9 First part of 3-MACHINE UNIT-TIME JOB SHOP schedule corresponding

to an instance of 3-PARTITION with b = 7.

Related results

The complexity of the 2-MACHINE UNIT-TIME JOB SHOP problem is unknown; to

introduce a competitive element we shall be happy to award a chocolate

windmill to the first person establishing membership of P or NP-complete-

ness for this problem. If the processing times of the operations are allow-

ed to be equal to 1 or 2, the 2-machine problem can be proved NP-complete

by a reduction similar to (but simpler than) the above one; this improves

upon related results given in [Garey et al. 1976B; Lenstra et al. 1977].

If each job' has at most two operations, the 2-machine problem belongs to
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P even for arbitrary processing times [Jackson 1956].

These results form but a small fraction of the extensive complexity

analysis carried out for scheduling problems. We refer to [Ullman 1975;

Garey & Johnson 1975; Coffman 1976; Garey et al. 1976B; Lenstra et al.

1977; Lenstra & Rinnooy Kan 1977] for further details and to [Graham et al.

1978] for a concise survey of the field.
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4. CONCLUDING REMARKS '

We hope that the preceding section has conveyed some of the flavor and ele-

gance of NP-completeness results. In only a few years an impressive amount

of results has been obtained. Nevertheless, there are still plenty of open

problems, for which neither a polynomial algorithm nor an NP-completeness

proof is available. We shall mention four famous ones, on whose complexity

status little or no progress has been made so far.

(a) GRAPH ISOMORPHISM

This is the problem of determining whether there exists a one-one mapping

between the vertex sets of two graphs which preserves the adjacency rela-

tion. The essential nature of the problem does not change if we restrict

our attention to graphs of certain types such as bipartite or regular ones;

these problems are polynomially equivalent to the general case [Booth 1976].

The status of the problem is totally unknown and we do not dare to guess

the final outcome.

(b) MATROID PARITY .

This problem is interesting because it gener41izes both the matroid inter-

section problem and the nonbipartite matching problem [Lawler 1976]. De-

spite serious investigation, its status is far from clear. A special case

of the matroid parity problem is as follows. Given a connected graph G

with an even number of edges, arbitrarily paired (i.e., each edge e has

a uniquely defined mate e), does G have a spanning tree T with the property

that if an edge is contained in T, then its mate is in T as well? An NP-

completeness proof for this special case would, of course, resolve the

question for the general problem. On the other hand, a polynomial-time

algorithm for this special case would probably suggest a similar procedure

for the general problem.

(c) 3-MACHINE UNIT-TIME PARALLEL SHOP

This problem involves the scheduling of unit-time jobs on three identical

parallel machines subject to precedence constraints between the jobs, so

as to meet a common deadline of the jobs. For a variable number of machines,

the problem is NP-complete [Ullman 1975; Lenstra & Rinnooy Kan 1977]; the

special case of tree-type precedence constraints can be solved in poly-

nomial time [Hu 1961]. The 2-machine problem belongs to P [Coffman & Graham
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J.

1972], even if for each job a time-interval is specified in which it has to

be processed [Garey & Johnson 1977]. The 3-machine problem has remained

open in spite of vigorous attacks. In this case we would be willing to

extrapolate on the magic quality of three-ness and conjecture NP-complete-

ness.

(d) LINEAR PROGRAMMING

This is perhaps the most vexing open problem. The simplex method performs

very well in practice and usually requires time linear in the number of

constraints. On certain weird polytopes, however, it takes exponential time

[Klee & Minty 1972]. Fortunately, in this case there is circumstantial

evidence against NP-completeness. Thanks to duality theory, determining the

existence or nonexistence of a feasible solution are equally hard problems,

and NP-completeness of LINEAR PROGRAMMING would therefore imply NP-complete-

ness for the complements of all other NP-complete problems as well. How-

ever, as mentioned, it is not even known whether the complement of any NP-

complete problem belongs to NP. In addition to the above rather technical

argument, it seems highly unlikely that all NP-complete problems would allow

a polynomial-bounded linear programming formulation.

Interpretation of NP-completeness results as more or less definite proofs

of computational intractability has stimulated the design and analysis of

fast approximation algorithms.

With respect to the worst-case analysis of such algorithms, a wide

variety of outcomes is possible. We give the following examples.

(1) For the optimization version of the KNAPSACK problem, a solution with-

in an arbitrary percentage c from the optimum can be found in time

polynomial in t and 1/c [Ibarra & Kim 1975; Lawler 1977].

(2) For the EUCLIDEAN TRAVELING SALESMAN problem, a solution within 50%

from the optimum can be found in polynomial time EChristofides 1976].

(3) For the GRAPH COLORABILITY problem, a solution within 100% from the

optimum cannot be found in polynomial time unless P = NP [Garey &

Johnson 1976A].

(4) For the general TRAVELING SALESMAN problem, a solution within any

fixed percentage from the optimum cannot be found in polynomial time

unless P = NP [Sahni & Gonzalez 1976].

We refer to [Garey & Johnson 1976B] for a survey of this area. Impressive

advances have been made and more can be expected in the near future.



21

s,
The above approach to performance guarantees may be accused of being

overly pessimistic - cf. the simplex method with its exponential worst-case

behaviors The probabilistic analysis of average or "almost everywhere" be-

havior, however, requires the specification of a probability distribution

over the set of all problem instances. For some problems, a natural distri-

bution function is available and some intriguing results have been derived

[Karp 1976], although technically this approach seems to be very demanding.

The worst-case analysis of approximation algorithms shows that there

are significant differences in complexity within the class of NP-complete

problems. These problems might be classifiable according to the best possi-

ble polynomial-time performance guarantee that one can get. Another refine-

ment of the complexity measure may be based on the way in which numerical

problem data are encoded, i.e. on the distinction between binary and unary

encoding mentioned in Section 3.5. Several other ways of measuring problem

size could be devised and each of them could be subjected to a complexity

analysis, producing new information on the best type of algorithm that is

likely to exist.

The concluding remarks above were intended to confirm to the reader

that the field of computational complexity is still very much alive. In the

first place, however, the theory of NP-completeness has yielded highly use-

ful tools for the analysis of combinatorial problems that deserve to find

acceptance in a wide circle of researchers and practitioners.
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