COMPUTATIONAL COMPLEXITY OF

FORMAL TRANSLATIONS

J. Hartmanis?®

TR 73-192

December 1973

pepartment of Computer Science
Cornell University
Ithaca, New York 14850

-

*This research has been supported in part by the National Science
Foundation Grant GJ-33171X.

COMPUTATIONAL COMPLEXITY OF

FORMAL TRANSLATIONS*

J. Bartmanis

Abstracg:

The purpose of this paper is to define a mathematical
model for the study Qf quantitative problems about transla-
tions between universal languages and to investigate such
problems. The results derived in this paper deal with the
efficiency of the translated algorithms, the optimality of
translations and the complexity of the translation process

between different languages.

kj”1u*f\a”: UANUAEquj JL‘ 42'0
Gﬁaﬂ*x qum:zznggf
%YAmmﬂﬁJk&np

5 M,O.QJ\IJ)’V)
Crmphacty 4] b

i _
&Lwﬁ¢b @%- ,OIAQL4ALi §%j3{&MM£/

*
*This rescarch has been supported in part by thce National Science
Foundation Grant GJ-33171X.

I. Introduction

The translation of programs from one universal language
into equivalent programs of an other universal language plays
a important role in practical computing and it has been an
active area of research in computer Qcience. Impressive pro-
gress has been made in the understanding of how to design com-
pilers (translators) for higher level programming languages
and much of the knowledge has by now been codified in a
systematic way so that we can successfully teach compiler writing
[1,4]. As a matter of fact, the practical understanding of
how to write compilers is a considerable success in the develop-
mént of computer science. For theoretical computer scientists
this development is particularly interesting since quite a few
theoretical results have found practical application and sore
theoretical methods have been helpful in the formalization of
concepts and in communication about translations and translators.

On the other hand, there is very little known about the
quantitative aspects of translations between arbitrary universal
languages and we have hardly any global results about the com-
plexity of translations, the quality of translated programs and
optimality of translations.

The purpose of this paper is to set up a mathematical model
to facilitate the study of quantitative problems about translations
between universal languages and to derive some such guantitative

results about translations.

To be able to formulate guantitative results about trans-
lations we consider two universal languages, a source and a

target language, and we define a computational complexity measure

i)

or each language. 1In terms of these complexity measures we
investigate the efficiency of translated programs, the optimality
of translators, the complexity of the translation process,
measured in the complexity measure of the target language, the
length of the translated programs, and the dependence of the
complexity of translations on the "syntactic" complexity of the
source language. We also discuss the adaquacy of this formulation
of the translation problem and suggest some possible research

directions.

II. Preliminaries

In this section we describe a mathematical formulation
of the translation problem and derive some elementary quantitative
results about translations between universal languages.

First, we specify the two universal languages §Zg and 52;,

referred to as the source and target language, respectively. Let

L and T be two non-empty finite alphabets and let SZS and 52}

be infinite recursive subsets of b and rt , respectively,

Fg= vy, 1 e

<&

rr=

P
—
.

tvyvyen)

Furthermore, we assume that the above indicated ordering of the

sequences of &?S and ;Z; , respectively, is recursively computable.

To specify the semantics and the complexity of the se-

quences or algorithms of S?S and §Z& let

N

{él,¢2,...} and {fl,fz,...;

be two admissible enumerations of all partial recursive functions

[9]1 (i.e. Godel numberings) and let
{
\Ol,éz,...} and {Fl,Fz,...}

be the step counting functions assigned to {¢l,¢2,...} and
{fl,fz,...}, respectively. The step counting functions satisfy

the two Computational Complexity Axioms [2,6]:

l. For all i and n ¢i(n) is defined iff ¢, (n)

is defined, i.e.

s

(Vi,n) [4; (M4 <=> &, (n)+].

2. For all i,n,m it is recursively decidable whether

éi(n) = n.

We assign to every W in ézg di which specifies the
meaning of W, and, correspondingly, Oi which defines the com-
plexity of the algorithm specified by Wi Similarly for every

vj in lz% we assign the meaning fj and the complexity Fj.

Thus the source and target languages are specified by the triples

Z - I A CHE TS

s L ¥ >

< ,{¢1,¢2,...

+ . »
<= vy vy e) ST R R E,,

respectively. All throuch this paper, for the sake of brevity,

we will refer to these triples as 525 and % respectively,

T r
and know that the semantics and complexity of them are defined
as above. We will refer to the seguences in SZS and 52& as

algorithms or programs.

Furthermore, we assume that # is a symbol not contained
in T and it will be used by a translation to indicate that the

input string is not a program of ;zg.

A translation from §Zg into éz% is a recursive mapping o,
ottt U ey,
such that:
1. for all w, in & o(wy) € &, and

o(wi) = vj implies that ¢i = fj

2. for all w not in ;Z; o{w) = #.

Thus a translation maps programs of £Z% onto equivalent
programs of S?T and strings not in iZ; onto the symbol #. In
the conclusion of this paper we discuss the adaquacy of this
formulation of translations.

Note that in this definition we depart from a previous
convention where 5?% and é?} themselves were the indices of
admissible enumerations [3,5]. This older convention, unfor-
tunately trivializes the syntax of the language and is not
sufficient for our purposes. At the same time, since we deal
with the complexity of the translation o and how it depends

on the syntax and semantics of é?q and é?% only in Section IV,

we assume in the first three sections, in order to simplify

our expressions, that
{wl,wz,...} = {vl,vz,...} = {1,2,3,...}.

This permits us, for example, to replace the first condition
in the definition of a translation by the assertion that for

all i

i % ey

Next we derive several elementary results. First we
M) . r3 : .
show that under any translation ¢ of é?s into é?T the running
times of the source language algorithms bound recursively the
running times of the translated programs and vica versa. For
the sake of completeness we give,a detailed proof of the first
result though the technique of these proofs are well known in

complexity theory [2,6].
Theorem: If o translates §Z; into §Z} then there exists
a recursive function HK(,)} such that for all i
Fo(i)(x) < H[x,@i(x)] a.e.
i.e. for almost all x.

Proof: Define
p(i,x,m) = ig_éi(x) = m then Fg(i)(X) else 0.

It is seen that p 1is a recursive function, since for all i,x,m

we can, because of second complexity axiom, decide whether @i(x)=m.
If Qi(x) # m then p(i,x,m) = 0, otherwise @i(x) = m and, using
the first complexity axiom, we know that ¢i(x) converges. But
then we know, from the definition of a translaticn, that fc(i)(x)
converges and therefore, using again the first complexity axiom,
Fu(i)(x) converges and yields p(i,x,m) = Fo(i)(X)' To obtain

the desired recursive function H we set
H(x,m) = max{p(i,x,m)|i < m}.

This completes the prcof.
Similarly we can show that,

Corollary: For any translation o of 52; into éZ} there
exists a recursive function D such that for all i
D[x,oi(x)] < FG(i)(X) a.e.

and

DIx, Fo(i)(x)] < bi(x) a.e.

Using the same technigue we can show that the running times
of the translated programs for any two translations °y and o,

of Qs into &

T are recursively bounded.

Corollary: If 9, and o, translates izg into S?T then there

exists a recursive function B such that for all i

A

Bix, Fcl(i)(x)])(x) a.e.

¥ .
02(1
and

Blx, F (i)(x)] <F) a.e.

9, - cl(i)(x

In many practical cases the translations ¢ of ;Z% into ézg
is a proper into mapping and thus many algorithms in 52} cannot
be obtained by translating algorithms in Q?S into algorithms in
;Z%. Thus it may turn out that o produces rather inefficient
algorithms and that the best algorithms are not images under c.
This is quite possible and happens for many ¢, at the same time,
as our next result shows, we can always effectively obtain a re-
cursive function which bounds the difference in running times
between algorithms which are and are not images under ¢. As in
.the previous results these bounds do not have to be "good" bounds

but they can be effectively computed if we know the algorithm for

0 and the languages élg and 5?&.

Theorem: For any translation o bf ;Zg into &

T We can effectively

construct a recursive function K such that for every fj there
exists an 1 with

foq1y) = £y

Fc(i)(x) < K[x,Fj(x)] a.e.

Proof: Since ¢l,¢2,... and fl,fz,... are admissible enumerations
we know by Rogers' Theorem [2] that they are recursively isomorphic,
and we can effectively obtain a recursive function o such that

for all j there exists an i such that

£5° %%y -

Let

t(j,x,m) = if p(j) = i and Fj(x) = m then F)(x) else 0

of(i
We see that t 1is a recursive function and the desired K 1is

obtained by setting
Kix,m] = max{t(j,x,m}|j < x}.

This completes the proof.

III. Quality of Translations

In practical applications one is primarily concerned with

two quantitative aspects of translations:

1. The quality or efficiency of the algorithms

translated by ¢.

2. The size and computational complexity of the translator

o itself.

In this section we will discuss the guality of the trans-
lated algorithms and deal with the size and speed of the trans-
lation process ¢ itself in the following section.

To properly understand what can and cannot be achieved by
translatiors we have to recall a few facts about the set of all

algorithms and their computational complexity. It is clear that

the properties of the "space" of all algorithms will play an
important role of how it can be translated and the properties
which hold for all such "spaces" of algorithms will set universal
bounds on the gquality of translated algorithms.

First of all we know from elementary recursive function

theory [9]:

Fact l: Every Goedel numbering has for every partial recursive
function ¢ an infinite number of indices (algorithms) il’ iz,... R
ol

that is ¢i = ¢ . Furthermore this set of,indices for ¢ is not

J
recursively enumerable.

From computational complexity theory [2,6] we know an easily

provable result:

Fact 2: In any computational complexity measure { (¢,

& .
l,;i)} for every

recursive function ¢ there exist arbitrarily inefficient algorithms.
More precisely, for every recursive function G and for every i we
can effectively construct a j such that

¢j = éi and G(x) < ®j(x) a.e.

Next we define an algorithm ¢i to be g-optimal if no other
algorithm can compute this function g-faster than oi. For a
given computational complexitv measure {(éi,éi)} and a recursive

g, we say that 6i is a-optimal iff for all Jj such that

we have

10

Fact 3: For every computational complexity measure there exists
a monotonically increasing recursive function g such that for

every total Qj(x) > x there exists a g-optimal éi with

@i(x) <g o¢j(x) a.e.

Thus near every sufficienctly large total 0j there are g-optimal

algorithms.

On the other hand, a considerably deeper result from com-
putational complexity theory [2,6] shows that in any measure for
every recursive G there exist functions which do not have G-optimal

algorithms.

Fact 4: In any computational complexity measure for every recur-
sive Function G there exists a recursive function ¢ such that

for every i with ¢i = ¢ there exists an index j for ¢ such that

G[Qj(x)] < ¢i(x) a.e.

From these observations we see that for any gZé and ;Z& the
set of algorithms is such that every total function has infinitely
many algorithms and that among these algorithms are arbitrarily
bad ones, furthermore, for sufficiently large g infinitely many
functions have g-optimal algorithms but for every recursive G
therc are recursive functions which do not have G~optimal algo-
rithms. Frem the last mentioned fact we conclude that no trans-
lation can map all algorithms onto g-optimal algorithms since
for some functions they simply do not exist. This follows from
the intrinsic nature of the set of all algorithms and holds also

for non-recursive translations.

11

Theorem: There is no translation, including non-recursive
translations, which can translate anyéZé into any éz% so
that all algorithms for recursive functions in ;Zg are mapped

onto g-optimal algorithms in &.., for any recursive function g.
L
Proof: Follows from Fact 4.

For every recursive translation o of 52% into %, as

T r
shown by one of our theorems, there exists a recursive bound

between F and ?i. This implies that very bad algorithms

o (1)
for a recursive function ¢ must again be mapped onto bad alco-
rithms. Thus even though good alcorithms may exist for the
function ¢, a recursive translation cannot improve very much

on inefficient algorithms for 4. The amount of the possible
improvement is bounded by the recursive bound D derived pre-
viously.

What is more interesting, as our next result shows, is
that every translation ¢ of éZ; into éZ} can be recursively
improved. As a matter of fact, using an index of ¢ and §Z;
and ;Z& we can constructively obtain a translation ¢' of ;Zg
into iz% such that every total function has an infinite number

of algorithms whose translations under ¢' run much faster then

their translations under o.

Theorem: For every recursive function g and every translation
o oféZé into §ZE we can effectively construct a translation
¢' such that for every recursive function oi there exist infinitely

many algorithms éi , 3 =1,2,..., for wnich
il

-

12

Fc(il)(x) 29 OFO'(i,)(X) a.e.
J 3
and such that for all other i, i # ij ,
FO(i) (x) 4 ng(i) (x).

Proof: We recall that there exists a recursive function B such

that for all i
@i(x) < B{x,Pg(i)(x)] a.e.

Without loss of generality we can assume that B is montonically
increasing in both variables. We also know that there exists a

recursive function o such that for all i
o(i) > i, éi = ¢o(i) and ¢O(i)(x) > B[xrg{B(x,Qi(x))]].
Define
o(i) if o(i) =3
o' (3) =

c(j) otherwise.

Clearly, ¢'(j) is a recursive function which translates ézg
into §Z}. Furthermore, for every recursive function there exist
infinitely many algorithms for which ¢' yields g-faster algorithms.

More precisely, if

o(i}) = j then

By 2 Blx,glB(x, ¢, (x}]]

But then

Torgy B 2 9B, 0, ()] 2 glF 5y)] a.e.

13

Since B bounds Qi to F and Qj to Fc(j)' Thus

¢ (1)

Fc(j)(x) > g[FU,(j)(x)] a.e.

For all other algorithms

Fora)) = Fouggy 9

o' (
and we conclude that ¢! is the desired improved translation of o.
For the sake of completeness we mention that for every
ﬁg and jz% there is a recursive bound h and a translation
o such that no translation c¢' of gzg into ;ZQ can yieléd h

. faster algorithms for all algorithms in 9%.

Corollary: For any §Z§ and ;Z% there exists a recursive func-
tion h and a ¢ such that for no o' mapping‘gg into éZ}

can we have for all i B

h[FG.(i)(X)] < Fg(i)(X) a.e.

Proof: This result follows directly from the fact that for
any computational complexity measure there is a recursive function
g such that infiniiely many recursive functions have g-best algo-

rithms.

The previous theorem showed that every translation ¢ of
éZ; into gz; can be recursively improved. Thus no ¢ can be
viewed as optimal. On the other hand, the improvement of ¢ was
achieved by "eliminating" some terribly bad algorithms. 1In
practical translations we are not concerned primarily with im-

proving on terribly bad algorithms; we are much mcre concerned

14

with translating reasonably good algorithms (written by pro-
grarmmers) into reasonably goocd machine language code.

To capture this idea precisely we define speed-up clas§es,
Py which consist of those algorithms for which there do not
exist h-faster ones.

For ‘Q% and any recursive function h the h-speed-up class

is defined as
pi = (il (v 18) = 65 = h o o, (x) 2 9, (x) 1.0.1),

T Py
The P, classes foxr &,

to the algorithms in Pi as h-best algorithms.

are defined correspondingly. We refer

In terms of these speed-up classes we now define optimality
of translations. We believe that the speed-up classes form an
interesting class of sets just as the complexity classes do and
that their structure should be investigated further.

Let ¢ be a translation ofgé into% and let p be
recursive function. Then o 1is said to be o-optimal iff for

every monotonically increasing recursive function h
S T
c
- Ppohop
Thus ¢ is p-optimal if ¢ maps h-best algorithms in
§?& onto pohoo-best algorithms in .
We can also define a translation ¢ ofj?% into ;Z% to be
r-h optimal iff
S T
< .
G(Pr) < Ph
The last concept could be of significance when we are
interested in what happens to a particular class of r-good

algorithms under translation o, whereas the first concept can

15

be used to describe what happens globally to h-good algorithms
under 6. We will now show that every o translating;?é into
Q?T is p-optimal for some recursive p which we can effectively
compute from an algorithm for ¢. To obtain this result we

first state a simple result, which can be easily proven.

Lemma: For every translation ¢ cf;?é into;Z% we can construct

a translation o of(Q% onto ;Z% such that for all i and x

Fc(i) (x) > Fo (1) (x) . v

To simplify the statement of our next result we make a
technical assumption about ;?g and éZ%* Without these assump-
tions we can define p as a function of two variables and

get the same result in a somewhat more complicated form.

.

Theorem: Let g be a monotonically increasing, unbounded
recursive function and let ézg and jz% be such that for all i

and x
Oi(x) > g(x) and Fi(x) > g(x).

Then for every translation ¢ of é?% into é?T we can efiectively
4 L

find a recursive function o such that o is o-optimal.

Proof: By our previous lemma we can assume without loss of

generality that o is an onto mapping. Since all v, and Fi

satisfy the minimal growth criterion (2, (x), Fo00 > g(x)),

we can obtain a monotonically increasing, recursive function H

such that for all i

16

Hod, (x) >F (%) a.e.

o (i)
and

HoF (x) > ¢i(x) a.e.

o (1)

We will show that ¢ is an H = p-optimal translation. That

is, for every monotonically increasing h

S T
O(Ph) E-Ppohop
Let i be in P. and let 3 be such that
£ £,
Since ¢ is an onto mapping, let & be such that o () = j.
Then
he ¢I(x) > ¢i(x) i.o. and H o Qi(x) > Fc(i)(x) a.e.
But then
Hoh o ¢£(x) > Fc(i)(x) i.o.
Since

H o Fc(ﬁ)(x) > ¢£ (x) a.e.
we conclude that

E

Ho ho H o Fc(ﬁ) > G(i)(X) i.o.

and therefore

Ho ho H o Fj > Fo(i)(X) i.0.

17

for all j such that f. = f Thus we have that

b o(i)”
T
HohoH

S

G(Ph) <P

as was to be shown.
Our next result shows for every recursive g(x) > x

. . - .

there exist pairs of languages ;zg and JZE such that no

translation 5 can map éz% into ggr g-optimally. The
surprising thing in this result is not that ;Zg and fz;

exist, but that they can be so chosen that the complexity

classes are equal for all recursive t,

C

fol (@)1, = ¢ ana ¢, (x) < t(x) a.e.} =

[}

ct = (El@his = £ ana Fix) 2 t(x) a.e.)
as well as those classes of functions which have h-best algo-

rithms are equal for all recursive h,

0p = 161 (8i)[5, = ¢ and i in P21} =
T e s Ty,
o = {fl(aj)[fj = f and j in P 1.

That is, ;z% andA;Z; are from a computational complexity point
of view very similar. oOn the other hand, no recursive transla-
tion can map good algorithms of ;Zg onto good algorithms in éZ},
since they cannot be found recursively.

In the following proof for a given(Q% and g we will
construct the desired ;z%. The construction is quite arbitrary

but our following result shows that we can get é?% as an image

18

of jzg under a recursive translation m so that @A cannot
be translated by any (recursive) ¢ g-optimally into ﬂ(é?g).
In both cases, there exist non-recursive translations.

mapping & into éZE e-optimally, e = identity.

Theorem: Let g(n) > n be a monotonically increasing recursive
function. Then for every ﬁ?s there exists an ;Z% such that

for all recursive h
. Sy _ . T
{ejli €} = {fjlj €p}
but no translator of ézg into ;Z% can be g-optimal.

Proof: For the sake of clarity we will use a double index

to enumerate the algorithms of as follows:
- T

f. . = 0o, for all j .
i,3 i

To define the complexity Fi 5 we will use an auxilliary set
14

A. Let A be a hypersimple set and let
A = {xl,xz,x3,...}

with Xy <Xy <Xy <. Since A is hypersimple we Kknow
that A is recursively enumerable and that for every recursive

function t the relation
{3 > X
t(1i) xg

can hold for only finitely many i [9]. We fix a recursive
erumeration of A and consider a recursive function h such

that PS

" contains an. infinite set of algorithms, {il,iz,i3,...}

19

for infinitely many different recursive functions (we know such

an n always exists). Furthermore let G be a recursive func-

tion such that for all k gK(

x) < G{x) a.e.

Define,

F. . {x) = if in the enumeration of A after x steps

ik

at least 1 integers less than k are

not vet found to be in A then @i(x) else

G ohoG o d, (x).

Clearly, fi x with Fi % define a computational complexity
r° [

measure. Furthermore, for any i

Fi,k(x) =G ohoG o @i(x) a.e.

if k < x, , where x, is the .i-th element of A. If k> =x, ,
- S

then

(x) = @i(x).

[Thus, informally speaking, we have moved the good algorithms

for every ¢i noncomputably far down in the second index of

fi " and therefore no recursive ¢ can map all éi's on to the
’

good algorithms inﬁZ&.]

We will now show that if a recursive

o7

translating ¥

into @, is g-optimal, then we can construct a recursive func-

tion t such that

t(i) > X5

for infinitely many i, which contradicts the fact that A is

hypersimple. Thus no translation of ;Zg into ;Z} can be

g-optimal.

20
To see this we observe that either
(i) = (s,k) with s > i

or we can compute

g(s) = (s',k"'") , s' <s

a(s')= (s",k") s" < s'
until we reach s(n) such that

c(s(n)) - (S(n+l),k(n+l)) , S(n+l) > s
If i ¢ Pi then s(n) must be contained in

pgnoh 4.'>gn < PgohoG

or o 1is not g-optimal. Thus we have infinitely man indices
g

s

of total functions 117150000 in P i. i such that

gloh eg?

cliy) = (s,k) with i, <s.

3 -

But then we must have X > xi , sSince
B

otherwise

Fc(i.)(x) =G ohoG ¢i.(X) a.e.

3 J

and for xi =k

j

= £ itk . < bs
fij,k Lc(lj) with Flj,k S gehtog

from which we conclude that ¢ is not g-optimal.

(n)

9.
1.

]

21

But then we can construct from ¢ a recursive function t

which for infinitely many i satisfies

t(i) > Ry .

This is a contradiction since %, is the i-th largest element
of A, where A 1is a hypersimple set. -Thus no G can be g-op-
timal, as was to be shown.

In the previous result the construction of ‘E;r may appear
artificial. On the other hand, it turns out that éZE can be chosen

to be a translation of :ZS into itself for any ;gs.

Corollary: For every ézg and every recursive monotonically in-
creasing g(x) > x we can construct a recursive translation 7

£ i h + > 31 -z 1 o 4
of ¥ into Jz% such that no recursive translation 5 of ¥
into r(gfg) can be g-optimal. Furthermore, for all recursive
h the complexity classes and the classes of functions with h-best

programs are identical for P and ().

Proof: The proof is obtained by replacing ;?} of the previous
proof by ﬁ(iZé) for a properly constructed translation w. The
proof is technically messy and long but the main ideas are already

contained in the previous proof.

It should be observed that ézg can be mapped by non-recur-
. . . : (7 e
sive translations ¢-optimally into éz% or r(oég) , 0f the two
previous results, respectively. Emghasizinz the fact that =+,
r example, does not destro e gcod algorithms, it just hid
for e 1 t dest the gcod alg th t t hides

them so that recursive translations cannot find them.

22

IV. Complexity of Translations

In this section we investigate the complexity of the trans-
lation ¢ of g’s into g,r by considering the step counting f\fnc-
tion of ¢ in Q’T.

To be able to separate the complexity of the translation
due to the complexity the syntax of Q’S and & from the com-
plexity of the actual translation we now permit gs and ‘?T
to be arbitrary recursive subsets of ¥ ana rt , respectively.

First, we will show that in this case there exist pairs
of languages QS and QT for which the complexity of any trans-
lation mapping -?S into QT must exceed an arbitrary recursive.
bound. The reason for this is that ¢ must be able to decide
whether ¥ € QS and thus the complexity of the recognition problem
for gs can be exploited to force the complexity of o to be
arbitrarily high. On the other hand, if QT is fixed and the
complexity of the recognition problem "w in %" is bounded, then
the complexity of the translations ¢ °f% into QT can be bounded,
independently of the semantics of gs. We will refer to the com-

plexity of the recogniticn problem "w & Qs" as syntactic complexity.

Theorem: For every recursive function g(x) > x and every gT'
there exists an ¢ s such that for every translation ¢ of gs
intoo(gr £, =0c implies that

F (x) > g(x) a.e.

o)

Proof: Without loss of generality we can assume that g,,, is
ES

given by one-tape Turing machines and the amount of tape used

is the complexity measure. Then any ¢ translating gs into @n

23

=

can be converted into a recognizing device for seguences in
o s
c{s without increasing the complexity F_. But then, if we
choose D(Z’Q to be harder to recognize than g(x), that is

gs € Cg , then we know that ¢ must have complexity larger than

g, i.e. Fc(x) > g(x) a.e., as was to be shown.
Theorem: For every recursive function g(x) ard '—‘?S we can

choocse an .. such that any translation ¢ of into (4
T S T

f(7 = ¢ implies that

F o(x) > o) a.e.

Proof: By choosing the set Fr to be such that no infinite
subset of 5?’1‘ can be enumerated easily, we can force the comple-

xity of ¢ to be arbitrarily large.

Next we show that for a fixed ,,(?T we can recursively bound
e £ 5 : £ - 3 5 PR £
the complexity of translations from o?s into QT in terms of
the syntactic complexity of ys.)
To do this we utilize an auxilliary language gA such

that for every
-8

there exists a prefix =z such that for w € “?S
P_(W) = zw

is a translation of O{ﬂs into C?A. t can be shown that such
languages exist and they have been studied before {7,107.
Informally, the prefix expresses:"the data string following

me must be interpreted as a program of C([S whose definition is

given here."

24

Theorem: Consider a fixed language &, . Then there exists
0
a recursive function R[,] such that for any&?s in Ct , t
recursive, there exists a translation ¢ of izg into éz& with
0

¢ = £ and F_(v) < RV, £(W)] a.e.

Proof: Let o0 be a translation of 5@% into 52} . To obtain

: 0
R[,] which bounds the complexity of translations, from languages
with syntactic complexity t into ;z% , consider the algorithms

0

o,(w) = If w € gzg then p(zw) else #.

Clearly, for an appropriately chosen z o, translates {f. into

§Z} , since for w &€ ;Zg zw 1s an eguivalent program in é?A and
0

therefore p(zw) is an eguivalent program in §Z; N But then there
Ty X

exists a recursive function r{ , ,] which bounds the complexity
of c7(w) in terms of z, w, and t{w), that is

Fo (w) 2 rlz,w,tn)] a.e.

z

Letting

Rlv,t(w)] = max[z,w,t(w)]

z<w

we see that R satisfies the theorem, as was to be shown.

Thus we see that the complexity of translations into éz;
0

can be bounded in terms of the syntactic complexity of 52%. If

we choose 2 reasonable é?T (say ALGOL) and a specific natural
"0

complexity measure, then R

can easily be computed. For example,

if we use the step counting on multi-tape Turing machines as one

measure then we can choose
Riw,t(w)] = max[w,t(w)].

This shows very clearly how the complexity of the translations

is bounded by the syntactic complexity of g‘;.

Similarly, we can show that for every fixed QT we can
0
recursively bound the length of the translated programs in terms

of the length of the source program for all ZSH] .

Theorem: For every fixed & we can effectively obtain a re-
_— L

o
cursive function P such that for all QS there exists a trans-

i into ¥ a
lation g, of Qs into T, and

p(lw]) > 3cp(w)§ a.e.
Proof: Let p be a translation‘of &, into g’T . Then for
0

every QS there exista a z such that

is a translation of gs into %, . Clearly of(zw) is a trans-

lation of & into %, . Then
0

V. Conclusion

The mathematical formulation of the translation preoblem
in this paper is very general and it does not seem to exclude
any intuitively reasonable concepts of translation. Thus many

other quantitative problems about translations can be investigated

26

in this framework, and we believe should be. On the other

hand, it is also clear that in many regards this formulation

is too general. For example, the syntax, semantics and com-
plexity of ézg and éz& are defined completely independentlf.
Also all translations are admitted. This seems to be too general

a fornulation and that an important task is to couple, in a very

eneral way, the syntax semantics and complexity measures of
g Y

1%

S
lations of §Zé into §ZE. How this should be done is not at all

and ;Z% respvectively and then restrict somewhat the trans-

clear and seems to be related to the difficult problem of defining
"natural" computational complexity measures [8]. At the same
time, we believe that these are important problems and that the
study of formal translations may indicate how an abstract theory
linking syntax, semantics and complexity of languages can and

should be developed.

27

VI References

[1] Aho, A.V. and J.D. Ullman, The Theory of Parsing, Translation,
and Compiling, Prentice-Hall, Englewood Cliffs, N.J., 1972.

[2] Blum, M., "A Machine-independent Theory of the Complexity
of Recursive Functions", JACM Vol. 14, No. 2, (1967), pp. 332-
336.

[3] Constable, R.L. and J. Hartmanis, "Complexity of Formal Trans-
lations and Speed Up Results", Conf. Record of 3rd Annual ACM
Symposium on The Theory of Computing, 1971, pp. 244-250.

[4] Gries, D., Compiler Construction for Digital Computers, Wiley .

& Sons, New York, 1971.

[5] Hamlet, R.G., "Universal Abstract Programming Languages",
Computer Science Center, University of Maryland, Technical
Report.

[6] Hartmanis, J. and J.E. Hopcroft, "An Overview of the Theory
of Computational Complexity", JACM Vol. 18, 3 (July 1971),
pp. 444-475.

[7] Hartmanis, J. and T.P. Baker, "On Simple Goedel Numberings
and Translationg", Dent. of Computer Science, Cornell University,
TR 73-179, July, 1973.

[8] Hartmanis, J., "On the Problem of Finding Natural Computational
Complexity Measures", Dept. of Computer Science, Cornell
University, TR73-175, June, 1973.

[9] Rogers, H. Jr., Theory of Recursive Functions and Effective
Computability, McGraw-Hill Look Co., New York, 1967.

[10] Schnorr, C.P., "Cptimal Enumerations and Optimal Goedel
Numberings", To appear in Math. Syst. Theory.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif

