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Abstract. Input/output logics are abstract structures designed to represent condi-

tional norms. The complexity of input/output logic has been sparsely developed.

In this paper we study the complexity of input/output logics. We show that the

lower bound of the complexity of the fulfillment problem of 4 input/output logics

is coNP, while the upper bound is either coNP or PNP .3
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1 Introduction

In recent years, normative multi-agent system [7, 3] arises as a new interdisciplinary

academic area bringing together researchers from multi-agent system [17, 22, 21], de-

ontic logic [9] and normative system [1, 11, 2]. Norms play an important role in norma-

tive multi-agent systems. They are heavily used in agent cooperation and coordination,

group decision making, multi-agent organizations, electronic institutions, and so on.

In the first volume of the handbook of deontic logic and normative systems [9],

input/output logic [12–15] appears as one of the new achievements in deontic logic

of this century. Input/output logic takes its origin in the study of conditional norms.

Unlike the modal logic framework, which usually uses possible world semantics, in-

put/output logic adopts mainly operational semantics: a normative system is conceived

in input/output logic as a deductive machine, like a black box which produces normative

statements as output, when we feed it descriptive statements as input.

Boella and van der Torre [6] extends input/output logic to reason about constitutive

norms. Tosatto et al. [8] adapts it to represent and reason about abstract normative

systems. For a comprehensive introduction to input/output logic, see Parent and van der

Torre [15]. A technical toolbox to build input/output logic can be found in Sun [19].

While the semantics and application of input/output logic has been well developed

in recent years, the complexity of input/output logic has not been studied yet. In this

paper we fill this gap. We show that the lower bound of the complexity of the fulfillment

problem of 4 input/output logics are coNP, while the upper bound is either coNP or PNP .

The structure of this paper is as follows we present a summary of basic concepts

and results in input/output logic and some notes in complexity theory, in Section 2. In

3 This paper is an extension of a short paper [20] by the same authors.



Section 3 we study the complexity of input/output logic. We point out some directions

for future work and conclude this paper in Section 4.

2 Background

2.1 Input/output logic

Makinson and van der Torre introduce input/output logic as a general framework for

reasoning about the detachment of obligations, permissions and institutional facts from

conditional norms. Strictly speaking input/output logic is not a single logic but a family

of logics, just like modal logic is a family of logics containing systems K, KD, S4, S5,

... We refer to the family as the input/output framework. The proposed framework has

been applied to domains other than normative reasoning, for example causal reasoning,

argumentation, logic programming and non-monotonic logic, see Bochman [5].

Let P = {p0, p1, . . .} be a countable set of propositional letters and LP be the

propositional language built upon P. Let N ⊆ LP × LP be a set of ordered pairs of

formulas of LP. We call N a normative system. A pair (a, x) ∈ N , call it a norm, is

read as “given a, it ought to be x”. N can be viewed as a function from 2LP to 2LP such

that for a set of formulas A ⊆ LP , N(A) = {x ∈ LP : (a, x) ∈ N for some a ∈ A}.

Intuitively, N can be interpreted as a normative code composed of conditional norms

and the set A serves as explicit input.

Makison and van der Torre [12] define the semantics of input/output logics from O1

to O4 as follows:

– O1(N,A) = Cn(N(Cn(A))).
– O2(N,A) =

⋂
{Cn(N(V )) : A ⊆ V, V is complete}.

– O3(N,A) =
⋂
{Cn(N(B)) : A ⊆ B = Cn(B) ⊇ N(B)}.

– O4(N,A) =
⋂
{Cn(N(V ) : A ⊆ V ⊇ N(V )), V is complete}.

Here Cn is the classical consequence operator of propositional logic, and a set

of formulas is complete if it is either maximal consistent or equal to LP. These four

operators are called simple-minded output, basic output, simple-minded reusable output

and basic reusable output respectively. For each of these four operators, a throughput

version that allows inputs to reappear as outputs, defined as O+

i (N,A) = Oi(Nid, A),
where Nid = N ∪ {(a, a) | a ∈ LP}. When A is a singleton, we write Oi(N, a) for

Oi(N, {a}).
Input/output logics are given a proof theoretic characterization. We say that an or-

dered pair of formulas is derivable from a set N iff (a, x) is in the smallest set that

extends N and is closed under a number of derivation rules. The following are the rules

we need to define O1 to O+

4 :

– SI (strengthening the input): from (a, x) to (b, x) whenever b ⊢ a. Here ⊢ is the

classical entailment relation of propositional logic.

– OR (disjunction of input): from (a, x) and (b, x) to (a ∨ b, x).
– WO (weakening the output): from (a, x) to (a, y) whenever x ⊢ y.

– AND (conjunction of output): from (a, x) and (a, y) to (a, x ∧ y).



– CT (cumulative transitivity): from (a, x) and (a ∧ x, y) to (a, y).
– ID (identity): from nothing to (a, a).

The derivation system based on the rules SI, WO and AND is called D1. Adding OR to

D1 gives D2. Adding CT to D1 gives D3. The five rules together give D4. Adding ID

to Di gives D+

i for i ∈ {1, 2, 3, 4}. (a, x) ∈ Di(N) is used to denote the norms (a, x)
is derivable from N using rules of derivation system Di. In Makinson and van der Torre

[12], the following soundness and completeness theorems are given:

Theorem 1 ([12]). Given an arbitrary normative system N and formula a,

– x ∈ Oi(N, a) iff (a, x) ∈ Di(N), for i ∈ {1, 2, 3, 4}.

– x ∈ O+

i (N, a) iff (a, x) ∈ D+

i (N), for i ∈ {1, 2, 3, 4}.

2.2 Complexity theory

Complexity theory is the theory to investigate the time, memory, or other resources

required for solving computational problems. In this subsection we briefly review those

concepts and results from complexity theory which will be used in this paper. More

comprehensive introduction of complexity theory can be found in [18, 4]

We assume the readers are familiar with notions like Turing machine and the com-

plexity class P, NP and coNP. Oracle Turing machine and a complexity class related to

oracle Turing machine will be used in this paper.

Definition 1 (oracle Turing machine). An oracle for a language L is device that is ca-

pable of reporting whether any string w is a member of L. An (resp. non-deterministic)

oracle Turing machine ML is a modified (resp. non-deterministic) Turing machine that

has the additional capability of querying an oracle. Whenever ML writes a string on

a special oracle tape it is informed whether that string is a member of L, in a single

computation step.

Definition 2. PNP is the class of languages decidable with a polynomial time oracle

Turing machine that uses oracle L ∈ NP.

3 Complexity of input/output logic

The complexity of input/output logic has been sparsely studied in the past. Although

the reversibility of derivations rules as a proof re-writing mechanism has been studied

for input/output logic framework [12], the length or complexity of such proofs have

not been developed. We approach the complexity of input/output logic from a semantic

point of view. We focus on the following fulfillment problem:

Given a finite set of norms N , a finite set of formulas A and a formula x, is

x ∈ O(N,A)?

The aim of the fulfillment problem is to check whether the formula x appears among

the obligations detached from the normative system N and facts A.



3.1 Simple-minded O1

Theorem 2. The fulfillment problem of simple-minded input/output logic is coNP-complete.

Proof: Concerning the coNP hardness, we prove by reducing the validity problem

of propositional logic to the fulfillment problem of simple-minded input/output logic:

given an arbitrary x ∈ LP, ⊢ x iff x ∈ Cn(⊤) iff x ∈ Cn(N(Cn(A))) where N = ∅
iff x ∈ O1(N,A) where N = ∅.

Now we prove the coNP membership. We provide the following non-deterministic

Turing machine to solve the complement of our problem. Let N = {(a1, x1), . . . , (an, xn)},

A be a finite set of formulas and x be a formula.

1. Guess a sequence of valuations V1, . . . , Vn and V ′ on the propositional letters ap-

pears in A ∪ {a1, . . . , an} ∪ {x1, . . . , xn} ∪ {x}.

2. Let N ′ ⊆ N be the set of norms which contains all (ai, xi) such that Vi(A) = 1
and Vi(ai) = 0.

3. Let X = {x : (a, x) ∈ N −N ′}.

4. If V ′(X) = 1 and V ′(x) = 0. Then return “accept” on this branch. Otherwise

return “reject” on this branch.

The main intuition of the proof is: N ′ collects all norms which cannot be triggered

by A. 4 On some branches we must have that N ′ contains exactly those norms which

are not triggered by A. In those lucky branches X is the same as N(Cn(A)). If there

is a valuation V ′ such that V ′(X) = 1 and V ′(x) = 0, then we know x 6∈ Cn(X) =
Cn(N(Cn(A))).

It can be verified that x 6∈ Cn(N(Cn(A))) iff the algorithm returns “accept” on

some branches and the time complexity of the non-deterministic Turing machine is

polynomial. ⊣

3.2 Simple-minded throughput O
+
1

Lemma 1. O+

1 (N,A) = Cn(A ∪N(Cn(A))).

Proof: The proof is routine and left to the readers. ⊣

Theorem 3. The fulfillment problem of simple-minded throughput input/output logic is

coNP-complete.

Proof: Concerning the lower bound, we prove by a reduction from the validity problem

of propositional logic: given arbitrary x ∈ LP, ⊢ x iff x ∈ Cn(⊤) iff x ∈ Cn(A ∪
N(Cn(A))) where N = ∅ = A iff x ∈ O+

1 (N,A) where N = ∅ = A.

Concerning the upper bound, we prove by giving a non-deterministic Turing ma-

chine similar to the one in the proof of Theorem 2. The only change is now in step 4 we

test if V ′(A ∪X) = 1 and V ′(x) = 0. It can be verified that x 6∈ Cn(A ∪N(Cn(A)))
iff the non-deterministic Turing machine returns “accept” on some branch. By Lemma

1 we know this Turing machine solves our problem. ⊣

4 We say a norm (a, x) is triggered by A if a ∈ Cn(A)).



3.3 Simple-minded reusable O3

Given a set N of norms and a set A of formulas, we define a function fN
A : 2LP → 2LP

such that fN
A (X) = Cn(A∪N(X)). It can be proved that fN

A is monotonic with respect

to the set theoretical ⊆ relation, and (2LP ,⊆) is a complete lattice. Then by Tarski’s

fixed point theorem there exists a least fixed point of fN
A . The following proposition

shows that the least fixed point can be constructed in an inductive manner.

Proposition 1 ([19]). Let BN
A be the least fixed point of the function fN

A . Then BN
A =⋃∞

i=0
BN

A,i, where BN
A,0 = Cn(A), BN

A,i+1 = Cn(A ∪N(BN
A,i)).

Using the least fixed point, a more constructive semantics of O3 and O+

3 are stated as

follows, such semantics gives us insights to develop algorithms to solve the fulfillment

problem of reusable input/output logic:

Theorem 4 ([19]). For a set of norms N and a formula a,

1. (a, x) ∈ D3(N) iff x ∈ Cn(N(BN
{a})).

2. (a, x) ∈ D+

3 (N) iff x ∈ Cn(Nid(B
Nid

{a} )).

Theorem 5. The fulfillment problem of simple-minded reusable input/output logic is

between coNP and PNP .

Proof: The lower bound is easy, here we omit it.

Concerning the upper bound, we provide the following algorithm on a oracle Turing

machine with oracle SAT .

Let N = {(a1, x1), . . . , (an, xn)}, A be a finite set of formulas and x be a formula.

1. Let X = A, Y = Z = N , U = ∅.

2. for each (ai, xi) ∈ Y , ask the oracle if ¬(
∧
X → ai) is satisfiable.

(a) If “no”, then let X = X ∪ {xi}, Z = Z − {(ai, xi)}.

(b) Otherwise do nothing.

3. If Y == Z, goto 4. Otherwise let Y = Z, goto step 2.

4. for each (ai, xi) ∈ N , ask the oracle if ¬(
∧
X → ai) is satisfiable.

(a) If “no”, then let U = U ∪ {xi}.

(b) Otherwise do nothing

5. Ask the oracle if ¬(
∧
U → x) is satisfiable.

(a) If “no”, then return “accept”.

(b) Otherwise return “reject”.

The correctness of the above algorithm is routine to prove and we leave it to the readers.

Concerning the time complexity, the times of loop in step 2 is at most n. Each loop

can be finished in polynomial time. Therefore all the loops in step 2 can be done in

polynomial time. Step 3 call for step 2 for at most n times. Therefore it can still be done

in polynomial time. The times of loop in step 4 is exactly n. Each loop can be finished

in polynomial time. Therefore all the loops in step 4 can be done in polynomial time.

Step 5 can be done in polynomial time. Therefore the algorithm is polynomial. ⊣



3.4 Simple-minded reusable throughput O
+
3

Theorem 6. The fulfillment problem of simple-minded reusable throughput input/output

logic is between coNP and PNP .

Proof: The lower bound is easy, here we omit it.

Concerning the upper bound, we prove by giving an algorithm similar to the one in

the proof of Theorem 5. We make the following change:

– In step 2 and 4 we ask the oracle if ¬(
∧
A ∧

∧
X → ai) is satisfiable.

– In step 5 we ask the oracle if ¬(
∧

A ∧
∧
U → ai) is satisfiable. ⊣

4 Conclusion and future work

In this paper we develop complexity results of input/output logic. We show that four

input/output logics have lower bound coNP and upper bound either coNP or PNP . There

are several natural directions for future work:

1. What is the tight complexity results of reusable input/output logic, as well as other

input/output logics?

2. What is the complexity of constraint input/output logic? Constraint input/output

logic [13] is developed to deal with the inconsistency of output. The semantics of

constraint input/output logic is more complicated than those input/output loic dis-

cussed in this paper. This might increase the complexity of the fulfillment problem.

Constraint input/output logic based on O+

3 has close relation with Reiter’s default

logic [16]. Gottlob [10] presents some complexity results of Reiter’s default logic,

which will give us insights on the complexity of constraint input/output logic.

3. What is the complexity of different types of permission? Three different of permis-

sions are introduced in Makinson and van der Torre [14]. The semantics of these

three logics are different, which suggests different complexity for the problems re-

lated to permissions.
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