
TECHNICAL MEMORANDUM NO. CIT-CDS 93-005
February 16,1993

"Computational Complexity of p Calculation''
Richard D. Braatz, Peter M. Young, John C. Doyle, and Manfred Morari

Control and Dynamical Systems
California Institute of Technology

Pasadena, CA 91125

Computational Complexity of p Calculation

Richard D. Braatz*! Peter M. Young; John C. ~ o ~ l e t , and Manfred MorariCt

Keywords: NP-hard, structured singular value, computational complexity

accepted to IEEE Transactions on Autom,atic Control: December 3, 1992

Abstract

The structured singular value p measures the robustness of uncertain systems. Numerous

researchers over the last decade have worked on developing efficient methods for computing p.

This paper considers the complexity of calculating p with general mixed real/complex uncer-

tainty in the framework of combinatorial complexity theory. In particular, it is proved that the

11 recognition problem with either pure real or mixed real/complex uncertainty is NP-hard. This

strongly suggests that it is futile to pursue exact methods for calculating p of general systems

with pure real or mixed uncertainty for other than small problems.

1 Introduction

Robust stability and performance analysis with real parametric and dynamic uncertainties can

be naturally formulated as a structured singular value (or p) problem, where the block structured

uncertainty description is allowed to contain both real and complex blocks. I t is assumed that

the reader is familar with this type of robustness analysis, as space constraints preclude covering

*supported by the Fannie and John Hertz Foundation

'Chemical Engineering, 210-41, California Institute of Technology, Pasadena, CA 91125, (818)395-4186

$~lec t r i cd Engineering, 116-81, California Institute of Technology, Pasadena, CA 91125, (818)395-4808

§TO whom correspondence should be addressed: phone (818)395-4186, fax (818)568-8743, e-mail

mm@imc.caltech.edu

this here. For a collection of papers describing the engineering motivation and the computational

approaches, see [3] and the references contained within.

In this paper we determine the computational complexity of p calculation with either pure

real or mixed real/complex uncertainty. To apply computational complexity theory, we for-

mulate p calculation as a recognition problem (a 'yes' or 'no' problem). We show that this

recognition problem is NP-hard, i.e. a t least as hard as the NP-complete problems.

The exact consequences of a problem being NP-complete is still a fundamental open question

in the theory of computational complexity, and we refer the reader to Garey and Johnson [5]

for an in depth treatment of the subject. However, it is generally accepted that a problem

being NP-complete means that it cannot be computed in polynomial time in the worst case.

It is important to note that being NP-complete is a property of the problem itself, not of any

particular algorithm. The fact that the mixed p problem is NP-hard strongly suggests that,

given any algorithm to compute p, there will be problems for which the algorithm cannot find

the answer in polynomial time.

The terminology of computational complexity theory is used extensively in this paper. The

definitions for NP-complete, NP-hard, recognition problems, and other terms agree with those

in the well-known textbooks by Garey and Johnson [5] and Papadimitriou and Steiglitz 181.

The proofs are simple. First we show that indefinite quadratic programming can be cast as

a p problem of "roughly" the same size. Since the recognition problem for indefinite quadratic

programming is NP-complete, the p recognition problem must be NP-hard.

Nomenclature Matrices are upper case; vectors and scalars are lower case. R is the set

of real numbers; C is the set of complex numbers; 2 is the set of integers; and Q is the set of

rationals. z (A) is the maximum singular value of matrix A and I, is the r x r identity matrix.

Define the set A of block diagonal perturbations by

Let M E CnXn. Then pA(M) is defined as

0 if there does not exist A E A such that det(I - MA) = 0,

min { T (A) Idet(I - MA) = 0) otherwise. I - l

(2)

A€A

Without loss of generality we have taken M and each subblock of A to be square.

2 Cornput at ional Complexity of /I Calculation

We first show that indefinite quadratic programming is a special case of a problem. Let

x,p, bl, bu E R n , A E R n X n , and c E R. Define the quadratic programming problem

max l x T ~ x + p T ~ + c I ,
~ I S X S ~ , (3)

where A can be indefinite. In the following theorem, we cast the above problem as a / A problem.

Theorem 2.1 (Quadratic Programming Polynomially Reduces to a /I Problem) Define

A = {diag[S;,...,S~,S~,...,6~,Sc]ISf E 72;Sc E C } , (5)

A = {diag[~;,-.-,S~,Si,--.,SC,,Si+l] 16: E 721, (6)
1

z = - (b , + bl) ,
2 (7)

1
w = - (bu - bl) . (8)

Then pA(M) = pA(M), and

pa(M) 2 k w max ~ Z ~ A Z + p T ~ + C I 2 k.
blSxSb, (9)

This implies that the indefinite quadratic program (3) polynomially reduces to both a real p

problem, and a mixed p problem.

Proof: The proof is trivial for k = 0, so assume k > 0. The idea is to treat the constraints

as uncertainty and the objective function as the performance objective of a robust performance

problem (see Doyle [4] for a description of the robust performance ~roblem). The constraint set

is

{xIbl < x < b , } = { x 1 x = ~ + A ~ w ; A ~ =diag[S;,...,Si];Sf E [-1 , l j) . (10)

For convenience, define an artificial output y E 72 and an artificial input d E R . Then the

quadratic programming problem can be written as the block diagram in Fig. 1. Block diagram

manipulations give us the block diagram in Fig. 2, where we have augmented the block dia-

gram with a performance block 6'. The optimization objective is the input-output relationship

between d and y. Define Av = diag[Ar, AT], N by

and the linear fractional transformation (LFT) F,(N, Au) by

Since det(1- N l l A u) = 1, the inverse in (12) is well defined. We have

T T
I x T ~ x + p T x 4 - c l = rnax l z Ax+* x+c l = rnax IFu(N,Au)l = rnax a (F , (M , A u)) .

bl+Sb, x = Z + A T w IlAullSl I l A ~ l I S l l ~

Since p ~ , (M ~ l) = 0 < k, we can apply the robust performance theorem of Doyle [4] to give (9).

Since F u (M , Au) has no dynamics and is 1 x 1, the complex perturbation dC can be replaced

by a real perturbation.

It can easily be shown that the p problem in (9) is described by less than four times the

number of parameters of the quadratic program. QED.

Remark 2.2 Thm. 2.1 can be generalized to handle general linear constraints instead of the sim-

ple ones i n (3). Any unbounded linear constraints can be converted through a bilinear transform

to bounded linear constraints. All bounded linear constraints can be treated as uncertainty-the

details are left t o the reader. Unfortunately, for general linear constraints the resulting p prob-

lem is impractically large. Thm. 2.1 can also be modified to solve the optimization problem that

does not have the absolute value i n the objective. The idea is simple: the maximizing x does not

depend on c , so choose c > 0 very large. Then solve the resulting "absolute va,lue" p problem.

The maximizing x for this problem will solve the origina,l problem. Minimizations can be handled

just as easily as mazimizations-choose c < 0 very large i71 magnitude and solve the resulting

"absolute value" p problem. W e do not show the details of these generalizations here because

the generality i s not needed to prove the main results of this paper.

Remark 2.3 Any nonlinear programming problem with an L F T of x and zT as an objective

and general linear constraints can be written as a block diagram like that of Fig. 1. The block

diagram can always be rearranged to be i n the form of Fig. 2, where y = & (N , A u) d , but with a

different N and Au. This block diagram has an equivalent p problem. Therefore, any nonlinear

programming problem with an L F T of x and xT as an objective and general linear constraints can

be cast as a p problem. It is not clear how to eficiently write a given nonlinear (e.g. polynomial)

objective as an L F T i n terms of x and zT ezcept for the specific cases of 1inea.r a d quadratic

programming. But we have good methods for solving linear and quadratic (at least i n the definite

and semi-definite cases) programs-what might be interesting in terms of compu.ta,tion would be

to solve optimizations with more difficult objective functions. The well-known lower and upper

bounds (see Young et al. [11] for a summary) commonly used to approximate p are bounds on

the maximum of the "LFT" programming objective. The x that achieves the value of the lower

bound can be calculated fTom the perturbation that achieves the lower bound from (7), (8), and

(10). The error in the objective i n using x from the lou~er bound algon'thm instead of the optimal

x is no greater than the diflerence between the upper and lower bounds.

To apply computational complexity theory, we must write the calculation of p as a recognition

problem (a 'yes or no' problem). Consider p with M 6 Qnxn, Ic E &, and mixed real/complex

uncertainty blocks. Define the recognition problem := "Is p > k?" = "Does there exist a

perturbation of magnitude k-' that 'destabilizes' the system?"

The next lemma is essentially from Murty and Kabadi [GI. This paper is important because

it is the first to use the techniques of discrete combinatorial complexity theory to study the

computational difficulty of continuous optimization problems.

Consider d; E & for i = 0 to n, and k E Q. Define the following nonconvex quadratic

program
2 n

q := max (g diZi -- d o) + l i (1 - xi).
O<.i<l i=l

(14)

Lemma 2.4 (NP-Completeness of Indefinite Quadratic Programming) The recognition

problem "Is q > k ?" is NP-complete.

Proof: Murty and Kabadi [6] show that this problem is NP-hard. Vavasis [lo] shows that the

problem is in NP. QED.

The following theorem states that the p recognition problem is NP-hard.

Theorem 2.5 (NP-Hardness of p Recognition) @ with general perturbation structure and

general M is NP-hard.

Proof: The indefinite program (14) can be written as (3) through multiplications and additions

(- U(n2) operations). This problem is NP-complete by Lemma 2.4, and the quadratic program

(3) polynomially reduces to a p problem by Thm. 2.1. Thus @ is in general a t least as difficult

as indefinite quadratic programming, and is NP-hard. QED.

Though the general p recognition problem is NP-hard, special cases (i.e. with restrictions

on the structure or field of M or A) may be simpler to compute. For example, when the M

matrix is restricted to be rank one, the calcula.tion of p has sublinear growth in problem size,

irrespective of the perturbation structure [I].

The case where p has only real perturbations has received an especially large amount of

attention in the p calculation literature. The next result states that f i recognition is NP-hard

for this case.

Theorem 2.6 (NP-Hardness of Real p Recognition) @ i s NP-hard when M and the per-

turbations are restricted to be real.

Proof: Use the real p problem of Thm 2.1 in the proof of Thm. 2.5. QED.

Models for real systems always have unmodeled dynamics associated with them. Unmodeled

dynamics correspond to having a t least one complex uncertainty which enters nontrivially in the

p problem. The next result states that p recognition is NP-hard for this practically-motivated

class of problems.

T h e o r e m 2.7 (NP-Hardness of Mixed p Recognition) Let A consist of both real and

complex pe~turbations. Arrange the perlurbations i n A = diag{Al, A 2) such that Al consists of

pure real perturbations and A2 consists of pure complez perturbations. Partition M compatibly,

where pa(M), fial(M1l), and / L ~ , (M ~ ~) are well-defined. Consider tibe class of p problems for

which p a , (M l ~) < fia(M). is NP-hard for this class of problems.

Proof: Use the mixed p problem of Thm 2.1 in the proof of Thm. 2.5. QED.

The evaluation problem "What is p?" is a t least as difficult to solve as the recognition

problem "Is p > k?", since the solution of the recognition problem immediately follows from

the solution to the evaluation problem.

3 Comparison with Previous Results

It can be shown from results of Rohn and Poljak and Demmel [9,2] that the recognition problem

for a special case of computing p with only real perturbations is NP-complete. This implies

that the p recognition problems for both the pure real and general cases are NP-hard (Thm. 2.5

and 2.6).

In this paper we use a control approach to studying the computational complexity of p.

The proofs use only simple linear algebra-the approach in [9, 21 involves transformation to

the "max-cut problem". Thm. 2.7, which shows that including complex perturbations (which

appear to be better behaved numerically, see Young et al. [I l l) in the p problem does not

remove the NP-hardness, follows naturally from the approach taken in this paper. This result

is important since practically-motivated p problems are in this class.

Another immediate result (follows from [7]) of this paper is that p recognition remains NP-

hard when the class of problems is restricted to those in which p is a continuous function of

M .

4 Conclusion

The main results strongly suggest that it is futile to pursue exact methods for calculating p

of general systems with pure real or mixed uncertainty for other than small problems. In

particular, one should not expect to find a polynomial time algorithm that calculates either

real or mixed p with general M exactly. These results do not mean, however, that practical

algorithms are not possible. Practical algorithms for other NP-hard problems exist and typically

involve approximation, heuristics, branch-and-bound, or local search 15, 81. The results of Young

et al. [ll] strongly suggest that a combination of these techniques which takes into account the

s tructu~e o f t h e p calculation problem can yield an algorithm which approximates p in polynomial

time for typical problems.

5 Acknowledgements

The authors thank Professor John Tsitsiklis at MIT for his comments.

References

[I] J. Chen, M. I<. H. Fan, and C. N. Nett. The structured singular value and stability of

uncertain polynomials: A missing link. Control of Systems with Inexact dynamic models,

ASME, pages 15-23, 1991.

[2] J. W. Demmel. The component-wise distance to the nearest singular matrix. SIAM. J.

Matrix Anal. Appl., 13:lO-19, 1992.

[3] P. Dorato and R. K. Yedavalli, editors. Recent Advances i n Robust Control. IEEE Press,

New York, 1990.

[4] J . C. Doyle. Analysis of feedback systems with structured uncertainties. IEE Proceedings

Part D, 129:242-250, 1982.

[5] M. R. Garey and D. S. Johnson. Computers and Intractibility: A Guide to NP-

Completeness. W . H. Reeman and Company, New York, 1983.

[6] K. 6. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and nonlinear

programming. Mathematical Programming, 39:117-129, 1987.

[7] A. Packard and P. Pandey. Continuity properties of the real/complex structured singular

value. IEEE Pans . on Auto. Control, 1993. in press.

181 C. H. Papadimitriou and K. Steiglitz. Comhinatorzal Optimization: Algoritl~ms and Corn-

plexity. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

[9] J. Rohn and S. Poljak. Checking robust nonsingularity is NP-hard. Mathematics of Control,

Signals, and Systems, 1992. in press.

[lo] S. A. Vavasis. Quadratic programming is in NP. Information Processing Letters, 36:73-77,

1990.

1111 P. M. Young, M. P. Newlin, and J. C. Doyle. /I analysis with real parametric uncertainty.

In Proceedings of the 30th IEEE Conference or1 Decision and Control, pages 1251-1256,

1991.

Figure 1: Equivalent Block Diagram for Quadratic Programming Problem

Figure 2: Quadratic Programming as a Robustness Problem

