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ABSTRACT. This paper is concerned with the gquantitative
aspects of one-tape Turing machine computations. It is shown,
for instance, that there exists a sharp time bound which must
be reached for the recognition of non-regular sets of seguences.
It is shown that the computation time can be used to character-
ize the complexity of recursive sets of sequences and several
results are obtained about this classification. These results
are then applied to the recognition speed of context~free
languages and it is shown, among other things, that it is
recursively undecidable how much time is required to recognize
a non-regular context-free language on a one-tape Turing machine.

Several unsolved problems are discussed.

This research has been supported in part by National
Science Foundation Grant GP-6426.



| W |

—

| WS |

| Y

[WS—

PRELIMINARIES

all through this paper we are concerned with the gquanti-
tative aspects of one-tape, off-line Turing machine computations.
We assume that the Turing machine is used as a recognizer of
sequences over some finite alphabet I. The set of all finite
sequences over the alphabet I is denoted by I* and the length

of a sequence

is denoted by l(w); in this case
1(w) = k.
'The null sequence is designated by A and thus

1(Aa) = 0.

The tape of a Turing machine M is unbounded on the

right and the input string

*
(in I ) is written on the first k tape squares and the

rermaining tape is blank at the start of the computation.



- -

et - < =" PRI~ - vfuprmsamt 4+ AP * - = YT -

-3

*
A set of finite sequences A over I , Acl , is

accepted or recognized by the Turing machine M if and

only if M stops for all inputs w in I* and accepts the
input if it is in A and rejects it if it is not in A by
entering the accepting or rejecting state, respectively.
Next we define three quantitative measures of the
complexity of one-tape, off-line Turing machine computations.
1. The number of operations performed by a

Turing machine in processing (rejecting

or accepting) an input string is our neasure
of time. ULet T(n) be a computable function
from non-negative integers into non-negative

integers, L

T:Z7+£7.

Ther we say that a set A is T(n)-recognizable

if and only if there exists a Turing machine M
.which accepts A and which processes every input

of length n in T(n) or fewer operations.

2. fThe amount of tape used by the Turing machine is
our measure of memory. Let L(n) be a computable

function,

L: j +j .
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Then the set A is saida to be L(n)-recognizable

or recognized with L(n)-tape if, and only if, there

exists a Turing machine i1 which accepts A
‘and which processes every input of length n wusing

no more than L(n) tape squares.

3. The last complexity measure is based on the number
of times M crosses boundaries between tape sguares.

Let R(n) be a computable function,

Then the set A 1is said to be R(n)-reccenizable

if, and only if, there exists a Turing machine M
which accpts A and which processes every input

of length n without crossing any boundary between
adjacent tape squares more than R(n) times. (For

related work see [1, 2, 3].)

Je say that the Turing machine M defines T(n) if,
and only if, for any input of length n, the machine M
uses no more than T(n) operations ana for some input of

length n uses exactly T(n) operations.
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Similarly, the machine M defines L(n) or_R(n)
if, and only if, M never uses nore- than L(n) tape squares
or R(n) crossings between tape squares for inputs of
length n, and for some input length n use exactly'L(n)
tape squares or makes exactly R(n) crossinags of some
boundary.

We now give a short descripticn of crossing sequences
which form the main analytic tool of this paper and which
have been studied before [4] and recently in [l1}. For a
Turing machine M and tape t we associate with every
boundary between adjacent tape squares of t an ordered

sequence of states

s(l), s(2), «eeus s(n);
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in which the i~-th state, s(i), is the state the machine is in
on the i-th crossing of this boundary during the computation
performed by M when started on tape t ; we refer to this

sequence as a crossing sequence. If

then the crossing sequence generated by 1!l on the boundary

between vy and v, is designated by
C(wl;wz) .

It is seen that the crossing sequence C(wl; w2) completely
describes the information which is carried across the boundary
between Wy and W, by M in its cémputation. Thus we can easily
show the next result which states that any tape segment between
jdentical crossing sequences can be removed without affecting
the computation on the remaiging tape [1].

Lemma 1. If

and for M

C(wl Woi Wy Wy ws) = C(wl W, Wi W, WS)'



then

i

C(wl; w2 W, ws) C(wl; Vg V3 w4 WS)

and C(wl W, Wyi w5) C(wl Vo Wy Vigi ws).

t

Note that the machine M changes its state before

it moves and therefore we see that if 1 accepts (rejects)

it will accept (reject)
t = Wy Wy Wy Weo

RECOGNITION OF NON-REGULAR SETS

It is known [5] that if a set A is recognized by a
one~-tape, off-line Turing machine which does not write on its
tape, then A is a regular set énd can be recogﬁized by a finite
antomaton or, equivalently, by a Turing machine which scans
the input segment only once.

Recently Hennie [1] extenced this result and showed

that if M accepts A and for some constant k

R(n) < k or T(n) < kn

then the set A is xregular.
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e will now show that there exist sharp bounds on how
fast R(n) and T(n) have to grow for the recognition of non-
regular sets on one-tape Turing machines. The first two
theorems were cbtained by Trachtenbrot [4] and independently by
the author.

Theorem 1. If & is R(n)-recognizable and

(
lim _ Rin) _
f*e log n

then A is a regular set.

Proof. e will show that if

Ot gt

Qi
3

o
(W
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then

R(n) < k

for some constant k, and the:efpre by Hennie's result the set
A is regular.
Let M recognize A and let M define R(n). (Thus R(n) is
the longest crossing sequence generated by M on inputs of
length n.) If R(n) is not bounded then there exists an infinite

sequence of integers

0 < n, < nN, <N, < seoe
1 2
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such that
R(ni) > R(n), for ni > n.

Thus M generates a crossing sequence of length R(ni), for the
first time, on an input sequence of length n,.

e now show that on the input segments ti of length n.y
on which R(ni);long crossing sesquences are generated, no cross-
ing sequence can be generated more than twice. To see this,

let

ti =Wy Wy Wa Wy, Vo o Wy # A

and assume that M on

generates
C(wl; v, w3 w4 wb) = C(wl wz;,w3 Wy wb) =
C(wl w2 Wy i Wy wb).

Then by the previous lemma we know that when il is started on

t Ty ..
t'! = w w3 w4 wb or ¢t = wl w2 w4 wb
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it generates a crossing sequence of length R(ni) on the input
segment
Wy W3 W, Or W, W, W,.

But since the segments are shorter than ti we have a contra-
diction with the fact that a crossing sequence of length R(ni)
is reached for the first time on an input segment of length n,.
Thus on the input segmnents ty, tor veay of length

< ..., respectively, no crossing sequence is generated

n, <n

1 2
more than twice. We now use this fact to compute how fast
R(ni) has to grow.

If M has Q states (Q > 2) then the number of different

crossing sequence of length at most r is given by

i &~
'-l
o)
)
—
ia]
+
—t

Now if on a segment of length n, no crossing sequence can be
generated more than twiceé, then we must have
ZQR(ni) +1 >n,.
- i
Taking logarithms to base Q on both sides of the ineguality

we get that

R(ni) + 1 + log 2 > log n,
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whence
R(ni) > log n, - 2,
But then
; R{n)
%33 Iog n # 0.
Thus

lim
fi-¥co.

implies that R(n) < k and therefore A is regular.

Corollary 1. If a Turing machine !l recognizes a non-

regular set A and defines R(n) then

R(n)
Y8 Togn ~ O

Proof. Follows directly from the theorem.

Next we show that there are non-regular sets which are
recognizable with

R(n) = 2 [logzn]-

(The symbol [x] denotes the smallest integer k such that

k > x.)
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Lermma 2. There exists a one-tape Turing machine M

which started on

computes with

R(n) = 2[log2 n]

the binary representation of n (i.e. M stops after writing
the binary expansion of n on its tape).

. Proof. The machine M sweeps from left to right over
the segment of ones and marks off the first, third, fifth, etc.
unmarked squares, then returns and repeats this process

until all squares of this segment are marked off. It is seen

that in the binary expansion

ko Kooy X i

'p-;é')-ﬁ/zl prdia n Z a; 2

DTN YA A AV -

L2 i , - .

9“~{Hﬁﬁ~the coefficient a; is 1 'if the rightmost unmarked sguare is

o} .

marked off on the ith swvieep; a; is 0 otherwise. Thus to

compute Ay @)1 vee g the machine just records the a; according
to the above procedure. ‘Since this process is completed in
llog2 n] sweeps, we see that there exists an il which computes

the desired binary expansion with

R(n) = 2[log2 nj.
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From the above proof it follows (as was already shown

in [1]) that

if and only if the process is finished in k sweeps and the
rightmost one is marked off on the last sweep. Thus the non-

regular set

is
R(n) = 2 [log n] - recognizable.

Next we show that there also existsla sharp time bound
which must be reached or exceeded for non-regular computations.
This result and the following corollary were first obtained

by Trachtenbrot [4] and indepencently by the author.

Theorem 2. If A is T(n)-recognizable and

. T(n) _
%3Q n 1oqg n 0

then A is regular.
Proof. Observe that the computation time is given by the
sum over the length of all crossing sequences generated in the

computation. Furthermore, the proof of Theorem 1 showed that
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if A is not regular then there are infinitely nany input seg-

ments

t t t ... of length n, < n, <Dy < eeey

1’ 2t T3

respectively, on which no crossing sequence is generatec more
than twice. It was furthermore shown in this proof‘that, even
if M generates the shortest possible crossing seguences on
the segments ti' the longest crossing sequence R(ni) muct

be such that

R(ni) > logQ n, - 2.

Thus, for all i , the computation tire T(ni) on ti

qmust be such that

r .
T(ng) 22 I ¢’ , r = llogy n;)-3,

since there are QJ different crossing secguences of length jJ
and no crossing sequence can be used nmore than twice. ilote
that @i does not have to generate all crossing sequences of

length less than log0 ng - 2, but then short sequences have

to be replaced by longer ones and the ineguality is strengthened.

r
Returning tc the inequality we see tnat T(ni) >2¢cr3jn0
3=0

J s

2 r Qr > 2(log0 ng - 3) n; Q‘3, and thercfore

1lim 7' (n)
n+e n log n # 0.
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Thus

lim T(n) _
n+e n log n

implies that A is regular.

Corollary 2. If M recognizes a non-regular set anc

defines T(n), then

m{
Sup _._.._J‘._’:'l.,. > 0
nre n

dg n :
Proof. Follows from the theorem.

Since the set

2k
A=1{1 | k=1, 2, ...}

can be recognized in [log n] sweeps each c¢f length n , we see

that A 1is

T(n) = 2n[log nj

recognizable. Thus there exist non-regulzr sets which are
T(n) = 2n [log n]-recognizable.

The previous results can be extended to obtain a relation
between the amount of time and merory used in computations with

unbounded crossing seguence length.
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Theorem 3. Let II stop for all inputs and define L(n),
R(n) and T(n). Then

lim n =0

n+eo L(n)

implies that there exists C > 0 and N such that
R(n) > C log L(n)
T(n) > C L(n) log L(n) , for n > N.

Proof. First we show that fcr an inpu£ tape

t =w wb

M cannot generate two identical crossing sequenées on the
initially blank tape Wy If
k

wb) ="C(w o bk R

C(wb® ; b p)

then by Lemma 1 we can remove the segment bk ané the computa-
tion will not be changed, except that it will have k fewer
crossing sequences. On the other hand, the removal of bk

from Wy leaves Wy unchanged and therefore
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is unchangeu. Thus i will generate exactly the same nunber

of crossing sequences as before and (since 1 stops) ve concluce

that k = 0.

Since

lim n = 0
n»>«< L(n)

there exists an integer Ny such that for n > o

L(n) > 2n.
Thus for every n, n > Nl" there exists an input of length =

for which

L(n) - n > 1/2L(n),

and we see that for this input M uses 1/2ZL(n) tape squares
of W This implies that @& must generate at least 1/2L(n)
different crossing sequences since no crossing secuence can ke
repeated on Wiy There are

P

X Ql < Qr+l

i=0
different crossing sequences of length r or less (0 > 2).

Thus to generate 1/2L(n) different crossing secquences we
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must have

QR+ 5 1 01(m)

and therefore

R{(n) > 1ogQ L(n) - 1 - loqQ 2.

This implies that there exists positive constants C; and L,

such that

R(n) > Cy log, L(n) , for n > N,.

The computation time T(n), n > ﬂl, is not less than
the sum of the length of the 1/2L(n)" different crossing

sequences generated by il . Thus

X .
T(n) > J io' , r= [logy L(n)1-3,
i=0

and therefore:

T(n) > (log, L(n) - 3) L(mo™> .

This implies that there exists positive constants C2 and _N3

such that

T(n) > CZL(n) logQ L(n) , for n > N3 .
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To obtain the desired inecgualities we let

C = nin (Cl ' C2) and i1 = max (Lz , M3) .

Theoren 4. Let 1 stop for all inputs, define R(n),
L(n), T(n), and let R(n) be unbounued. Then there exist two

positive constants Cl and C2 such that for infinitely many

values ni

1
R(ni) C, log

v

L(ni)

1 0

|v

T(n,) > C, L(n;) log, L(r;) .

Proof. Since R(n) is unvounded, there are irnfinitely

many values

L(nl) < L(nz) <'L(n3) < e
such that

R(n) <.R(ni) if L(n) < L(ng) .

By arguments similar to the ones used iﬁ the proofs of Theoreas
1 én& 2, we can show that no crossing sequence can be generated
more than twice curing the computation when R(ni) is reached
for the first tine (i.e. on the shortest L(n)); Again by

counting the number of crossing sequences we conclude that for
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some Cl > 0 and ”1 > 0 we have

R(ni) > ¢y logQ L(ni) , for n, > v .

Similarly, we can now comnute the nunber of operations
performed in these computations and show that for some C2 > 0

and ké > 0 we have

T(n;) > C, L(n,) logQ L(n;) o for n; > Ny .

By picking the

ni'l max (Nl ' N2)

we have the desired infinite set of integers for which the
inequalities hold.

The previous results showed that there exists a sharp
break in the computation time when we go from regular to
non-regular computations. .Cexf we turn to the classification
of the complexity of non-regular sets by their computation
time on one-tape Turing rachines. For related results for

multi-tape Turing machines see [2] and [6].

HIERARCHIZES OF TIMNE-LIMITED COIPUTATIONS

In this section we investijate the classification of ron-

regular sets by the time required for their recognition.
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Fcr a conputable functiorn I(n)  (R(n)) we refer to
the set of T(n)-recognizable (R(n)-recogrizable) sets of

sequences as a couplexity class and designate it wy CT (CR)'

The next result shows that there are infinitely many coninlexity
classes.

Lemna 3. If T(n) 1is computable, then there exists a

.recursive set of sequences A ot in CT .

Proof. Iy a sinple diagonal process [Z].

“ext we show that every computation can be spea up by &
linear factor, if we permit a trivial condensing of the input
string. That is, we pérmit to write séveral innut symbols per
tape square.

Theocem 5., XIf A 1is T(r) ‘recoqnizable, then 4 iz

[1/2 T(n)])-recognizable.

Proof. Let the input string be cundensed to twe input

synbols per tape square anu let & be recognized by i in

time T(n). Then, by techniques similar to those used in tne

procf of Theorer. 2 in [2], we can show that there exists a

machine "' which recognizes A anu performs one operation
for every two operations of ii. Thus .'' recognizes & in
time

T (n) = [1/2 T(n)].



The next result shows that for slowly growing time
functions a slight (non-linear) increase in the colaputation
time is sufficicnt to recognize more complicated sets. To
prove this result we define sweep fuuctions which are very
easy to compute and are used to count the number of sweeps
over the input segment performed by a machine M and to
terminate this computation if the nunber of sweeps grows too
large. The sweep functions play a role similar to the real-
time functions used in the study of the computation time of

multi-tape machines (2] and the realizable functions uséd in

_the study of memory limited computations [3].

Definition. Let F be a monotone, increasing function

from integers into integers,
F‘j "'..7 )
such that for some ¢ > ] and for large n

3n < F(n) < Q" .

Then F is a sweep function if and only if there exists a

computable, monotone, increasing function g ,

g: 7 ~ 7.
such that the set
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can be recogrized by a Turing machine 1i which makes no more
than
-1
F " (n)

sweeps over the input segment of length n.
(Note that F(n) cannot grow more rapidély than the

exponential function, since otherwise

sup F T(n) -0
n+= log n

4

and by Corollary 1 only regular sets can be accepted in F_l(n)
sweeps. The lower limit for F(n) is used explicitly in the
proof of Theorem 6; see also the discussion after Corollary 4.)

The sweep functions form an interesting and rich class

‘of functions (which should be investigated further). For the

present application it is sufficient to note that this class
contains very many of the commonly used functions. For example,

the following are sweep functions:

F(k) =k %, p>aq

F(k) = 28
(p/,)
Fik) =2 9% p/ <
q
F(k) = k [log, k1P, p=1,2, ...
F(k) = k [log log k]

etc.
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To gain a better understanding of sweep functions consider

F(k) = 2%,

Choose g(k) = k. Then using Lemma 2 we see that the set
k

t1¥F 0¥ R k=12, ...

is recognizable in k sweeps with

F—l(n).

k < log2 n

Thus

[}
[ 9]

F (k)

is a sweep function.

To see the use of the auxiliary function g(k) consider

r/
F(k) =k 9.

" (See also [1) for the use cf rélated techniques.) Let

g(k) = 2qk. Then to recognize the set

| k=1,2, ...}

we construct a machine M which checks (by the process des-
cribed in the proof of Lemma 2) whether the length of the input

sequence and the length of the segment of ones are powers of



two, and checks whether the umber of sweeps to verify this

for the two segments is in the ratio p/q . This can be done

in
kp-sweeps
over the input sequence. Since

n = 2Pk
we see that
Ffl(n) = 2°° > kp (for large n)

and therefore

| p/
F(k) =k ¢
is a sweep function.
By similar techniques we can show that many other

functions are sweep functions. It is the author's conviction

. that sweep functions should ke investigated in more cdetail

énd their properties compared to those of real-time functions
and constructable functions. So far this has not been done
systematically.

We now utilize sweep functions to generalize Hennie's
results (Theorem 4 and Corollary 4 in [1]) and show that sweep
functions can be used to define sets of sequences with sharp

requircnents for their reccognition time.
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Theorem 6. If F 1is a sweep function, thesn there

exists a set of seguences which is

R(n) = F-Y(n) and T(n) =n F S(n)

recognizable and is not Rl(n) or Tl(n) recognizable if

Rl(n) Tl(n) .
lim —=17 = 0 or 1i - = .
n+» P “(n) n-ﬂ-}1 nF l(n)

Proof. We show that the set

’ *
A= {w ww | w, e (041) , 1(wy) = g(k), w =

JFlg(] - 2g(k)

satisfies the theorem. For the sake of brevity let
g(k) = k.

Since F(k) is a sweep function we can in k = l(wi) sweeps
check whether the length conditions are satisfied for the
three segments and at the same time check whether the first

and third segments are identical. In this computation
n = F(K)
and therefore

F ) = k.
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Thus A is
R(n) = F-l(n)—recoqnizable.

Furthermore, since every sweep is no longer than n we see

that A 1is recognizable with no more than

T(n) = 2 n F ¥(n) operations.

)

Thus (by Theorem 5) A is
T(n) = n F"l(n)4recognizable.

Hext we show that if

1im Tl(n) - o
=1, . - 4
n+» nF “(n)

then A is not Tl(n)-recognizable. To see this, note that

for a fixed k there are 2k different Wi such that

aF(k)-Zk ‘

wi Vi is in A and l(wi) =k .

Let

A, ={w a w, | Lwy) =k }ca.

Then all the crossing sequences generated by M in the middle

segnents,

aF(k)-2k

w = )
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of sequences in Ak must be different. Since, if

p, .49 = C(s r, a8 | . .
C(wi a‘; a wi) C(ﬂj a“; a wj) , P#r or Wy # wJ ‘

then M will accept (by Theorem 1 of [1l]) the sequence
w, aP a° w. not in A .
1 J

Thus in the recognition of the strings in A,

M must use 2k[ F(k)-2k ] different crossing sequences on
the middle-segments w. Since F(k) > 3k there isa C > 0
such that |

k k

2° [ F(kK) - 2k ] > C 2° F(k) .

There are

different crossing sequences of length r or less for a

machine with Q states, 0 > 2. In order to have

k

c 2°F (k)

different crossing sequenrces we must have

r+1>1logcC* 2"rK ]
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and therefore for some Cl > 0,
r + 1> Clk + log F(K).

Since

n=rk and k=F Y(n)

we conclude that (for large n)

r > Cl . F—l(n)

and therefore

R, (n)
sup a4 7! 0.
n+ew F-l(n)

Thus A 1is not Rl(n)—recognizahlc if

il 0.

n+e  F T (n)

lim

Next we compute a lover bound for tihe computation time. If
all crossing seaquences of length r or less are used in the
computation then the average computation time for strirgs in

AL is given by

r . . : .
Piol/ 2%5s 100 tc2X Py o c2Xr) /2
0

Iv

C3 F(k) - Xk



-29~

for C3 > 0. Again, since n = F(k) ard k = F—l(n), we
have that for some sequence in Ay the computation time nust

exceed

Thus

Tl(n)
1

lia

n+e n F

(n)

implies that A 1is not Tl(n)—recognizable.
Corollary 4. Let F be a sweep-function. Ther there

exists a set A such that

T

implies that

Proof. An irmediate consequence of the theoremn.

The above results establish for a wide class of functions
(the set of sweep functions) sets of sequences with well-dcfined
computation times. Unfortunately, the reasoning holuds only for

slowly growing time functions, nanely, for

T(n) < n2.
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It is easily seen that this limitation, as in nany other similar
argunents, exists because wc constructed sets in wvinich two seg-
ments of length n or less had to be checked for identity.

This can be done within n2 operations and thus these results
cannot be extended past n2 by these techniques.

To obtain related results for more complex computations,
that is for larger time functions, we are forced to use diagoral
arguments. Unfortunately, the diagonal arguments for one-tape
machines are quite cumbersome and the results obtained in this
paper for large time functions are much weaker than the previous
result. On the other hand, tihe author conjectures that for

arbitrarily large time functions T(n) the condition

1im Ty (0 .

n+e T(n)
implies that

CT1 f CT'.

The next yeruyl+, obtained in collaboration with John E.
Hoocroft, gives the best result obtained until now.

Theorem 7. Let T(n), T(n) > n2, be defined by a Turing
machine and be computed on L(n) = [log T(n)] - tape. Then

there exists a set which is T(n) [log T(n)] acceptable and

not Tl(n) acceptable for Tl(n) such that

-

[N SR,
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T, (n)
lim 1 = 0,
n-ae 7T(n)

Proof. We give a short outline of the proof by construct-
ing a Turing machine ¢ which recognizes in time T(n) [log T(n)]

a set A which is not Tl(n) - recognizable for any Tl(n) with

Tl(n)
lim
n+e T(n)

i

Let M be a Turing machine which-carries out two different
computational processes (on different tracks of the tape).

a) First computaiion:' 4 attempts to interpret some
initial part of the input tape w W, as a description of a Turing
machine, Mi , and then proceeds to simulate what this machine
Mi would have done when presente¢ with the input tape w Wy e If
M completes the simulation and Mi accepts w then M rejects it
and vice versa. If w does not describe a Turing machine and
the sinulation cannot be'carriéd out then the computation is
stopped and w is rejected. It can be shown that for every w
(whosz prefix describes a machine Mi) there is a constant ki ’
such that every operation of Mi can be simulated in ki operations
by M.

») Second ccrputation: In this computation M counts

the number of operations which M has performed for the first
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computation and stops and rejects the input if the first compu-
tation exceeds T(n) operations for an input w of length n.
Since T(n) is defined by a Turing machine, M can count up to
T(n) in T(n) operations. (For the sake of simplicity we assune
that T(n) is defined by a machine which stops for every input of
length n in T(n) operations.)

The two computations are independent and to carry them out
simultaneously M alternates the operations: after performing
one operation in the first computation (simulation) M  marks
the tape square the head is on and “remembers" the staﬁe of
this computation and then returns to perform one operation of
the second computation (counting), again after performing this
operation M marks the tape square the head is on and
"remembers" the state of this computation; iﬁ order to keep
the two "current head positions" 1lined up M now proceeds
to move the whole lower tape pattern (counting) so that the
two head positions line up. After this the cycle is repeated
and the machine alternates between the computations. Since T(n)

is defined by a Turing machine and is computed on L(n) =

‘flog T(n)] - tape, we see that one cycle in this computation can

be performed in 3[log T(n)] or fewer operations. Thus T(n)
cycles (or T(n) operations) in the simulation of M, can be

performed by M using no more than

3T(n) [log T(n)]
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operations. This implies (Theorem 5) that the set A accepted
by M is T(n) [log T(n)] - recognizable.

We now show that if a Turing machine Mj operates in
time Tl(n) and

Tl(n)

lim —
n-o>« T{n)

= )

then M. cannot accept the set A accepted by the previously
described machine M. To see this recall that, for some kj '
in kj opérations M can simulate an operation of Mj when the
description of Mj is the prefix of an input wj presented to
M. Because of the iimit condition there is an N such that

for n » N
kj Tl(n) < T{n)

anG therefore for some sufficiently long input w (whose prefix
describes Mj) the maching M has enough time to simulate what
Mj would have done with the input w and do the opposite. Thus
the set accepted by Mj differs from the set accepted by M.

This completes the proof since we have shown that in time
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T(n) [log T(n)]

we can accept a set not acceptable in time Tl(n).

From the previous proof it is seen that the factor [log T(n)]
entered the result of the previous theorem becauce of the
necessity of performing two independent computations: the
simulation of Mi and the counting. The simulation was used

to get a set which differs from all sets of ssquances in CT
1
and the counting operation was used to terminate those simu-
lations which required more than T(n) {log T(n)) operations.
It seems vary likely that with deeper insight into the nature
of one-tape computations, we should be able to eliminate the

big sweeps between the two independent computations and decrease

. the time lost in shuttling back and forth between the two

processes.

In this connection it is interesting to recall that a
corresponding result for multi-tape machines was first derived
in [2] and that this result coﬁtained a "square." Only after
the simulation of multi-tape machines on two-tape machines was
understood better [6] was the result improved and now it also
contains the factor [log T(n)]. In both cases it does not

seem that the best possible result has been obtained.
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RECOGNITION OF COWTEXT-FREE LANGUAGES

In this section we study the recognition speed of context-
free languages on one-tape Turing machines.
Lemma 5. There are non-regular context-free languages

which are recognizable in time

T(n) n{log n]

and with

]

R(n) [log n].

Proof. The context-free language

is recognizable with
R(n) = (log‘n] and T(n) = n [log n}.

To see this we just racall that with no more than [log n] sweeps
a Turing machine can compute the binary expansion of the length
of the segment of ones and the segment of zeroes and see if they

are identical (using Lemua 2). Thus the non-regular set A is
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R(n) = [log n] and T(n) = n(log n]

recognizable.

o= s T _ .
For P Al X2 v ee Xk let ‘q - ({k LR Y ) X2 xlo

Lemma 6. The context-free language
A={W4&W | Win (0+1) )
is
T{n) = n2 -~ recognizable

and not T,(n) - recognizabe for any T, (n) such that

T, (n)
inf —f— = 0.
n+eo n°

Proof. By a simple counting argument on crossing seguences
(see [1]).

By using sweep functions anu constructions similar to those
used in the proof of Theorem 3 in [7] we can show that there
exist infinitely many different computational complexity

classes of context-free languages between the time functions
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T(n) = nf{log n}] and T(n) = nz.

The most interesting problem which is still open is to
determine a least upper time bound in which every context-free
language can be recognized on a one-tape Turing machine. Ue

know that this time bound has to be at least

T(n) = nz.

It is the author's conjecture that there are context-free
languages which cannot be recognized on a one-tape machine in
time

T(n) = n2.

The next result establishes an upper bound for the reccgnition
of context-free languages. It is not known whether it is a good
bound and it is the author's conjecture that it can be improved
considerably. |

Corollary 3 [Younger]. Every context-free language is

T(n) = n >~ recognizable.

Proof. In [8) it is shown that every context-free languzage

is T(n) = n3 -~ recognizable on a multi-tape Turing nachine. A



JP—

-38~

straight forward implementation of this algorithm on a one-tape

Turing machine shows that every context-free language is

T(n) = n® - recognizable.

Next we show that it is recursively undecidable how much

.time is required for the recognition of non-regular context-

free languages.
Theorem 8. There is no algorithm to decide whether a
non-regular context-free language generated by grammar G can

be recognized in time

T(n) = n [log n).

Proof. Let A and B be k-tuples of non-null binary strings,

A = (wl, w W

2' e 0 k)

*
B = (Vl' V2, ¢ ey Vk) ’ Vi, “Ji € (0+l) -‘A-

Let A' and B' be the same k-tuples over a primed alphabet and

indexed from k+1 to 2k;
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4
A= (W 0 Wyep oo 1 Yo

i ]
B' = (Vi + Va2 ¢ *o0 ¢ VoK) ¢
and for all i, if

p aj e {0+1} ,

then

Let i be the binary representation of the integer 1i.

. the deterministic, context-free languages [10]

wW w
L(a) = {i, # i & ... # i & #& a., ... a, a.
RE i T i, "4 I
Y vy
L(B) = (i, # i, # ... #i_# 4 D, ... b, b P
102 2 ip 1, 14
Then

L(A) (y L(B) = 8

if, and only if, there exists a sequence of indices

' vtk
Vi1 Wy o€ (0 +1 ) - A,

Consicer

1,2,...1}

l'2"l‘}.
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i, i2 ' ' ik
such that
a; a} al =bl b] ... b}
1 2 k 1 2 k

But the problem whether such a sequence of indices exists for

a pair of binary k-tuples
A, B

is an unsolvablas problem [9,10]. Thus it is recursively un-

decidable whether
L{A) 0 L(B) = 4.

Recall that L(A) and L(B) are deterministic context-free

languages and thercfore
L{AY and LB}

are context-free languages [10]. Thus
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L& Y L(8) = L(A) [y L(B)

is a context-free language. Consider now the context-free

language

1,2,...} (L& A7) Y L(BB")),

L={a"b" | n

where A 2' is the 2 k-tuple
(wl, Wo eoe o wk', LA w£+2. cee w2k).
Then
L(aa) Ny a =8

implies that

L(AA" , L@EDH = 2

is the set of all sequences over 0, 1, 0', 1', # and L is

recognizable in (Lemma 5)

T(n) = n{log n}.
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If

L(AAR') (y L(BB') #F .,

then there is a sequence of indices

il r i2 ’ s 00 ’

such that
/if a cee a? = oz
/ "1 2 r 1
and
|T IT )T b'T
a, a’. ces &, = b,
J.l + k 12+ k 1r+ k. 11

If we designate

i
r

+ k

b

'T

i2+ k

> e 0

b

!T
i+ k°
r
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and

by A

a. eee &, a,
1r+ k 12+ k 1l+ k 2

then the set L contains sequences of the form

with ij in {1,2)} arnd no sequence in
* *
(B +E,)  # # (A +2,)

which is not of this form. Dut then using Lemma 6 we conclude

that 1L reqguires

T(n) = n

for its recognition. Thus
L is T(n) = n[log n)-recognizabhle
if, and only if

L(AA') ¢y L(BB') =@



-4 4-

and thereforc we cannot Jecidz whether

in

T(n) = n [log n].

L

can be recognized
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