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Abstract

Determinism plays an important role in grammatical inference. However, in practice, ambiguous
grammars (and non determinism grammars in particular) are more used than determinism grammars.
Computing the probabilityof parsing a given string or its most probable parse withStochastic Regular
Grammarscan be performed in linear time. However, the problem of finding the most probable string
has yet not given any satisfactory answer. In this paper we prove that the problem isNP-hard and
does not allow for a Polynomial Time Approximation Scheme. The result extends toStochastic
Regular Syntax-Directed Translation Schemes.
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1 Introduction

As the problem of not having negative evidence arises in practice when wishing to learn grammars,
different options as how to deal with the issue have been proposed. Restricted classes of deterministic
finite-state automata can be identified [?, ?] heuristics have been proposed [?] and used for practical
problems in speech recognition or pattern recognition [15], and stochastic inference has been proposed
as a mean to deal with the problem [?, 18, 19].

Stochastic grammars and automatahave been used for some time in the context of speech recognition
[17, 16]. Algorithms that (heuristically) learn a context-free grammar have been proposed (for a recent
survey see [?], and other algorithms (namely the forward-backward algorithm for hidden Markov models,
close to stochastic finite automata or the inside-outside algorithm for stochastic context-free grammars)
that compute probabilities for the rules have been realised[17, ?]. But in the general framework of
grammatical inference it is important to search for algorithms that not only perform well in practice, but
that provably converge to the optimal solution, using only apolynomial amount of time. For the case of
stochastic finite automata the problem has been dealt with bydifferent authors: in [18] stochastic deter-
ministic finite automata are learnt through Bayes minimisation, in [?], through state merging techniques
common to classical algorithms for the deterministic finite-state automaton inference problem. Along
the same line in [19] acyclic stochastic deterministic finite automata are learnt, proving furthermore that
under certain restrictions the inferred automaton is probably approximately correct. Work in the direc-
tion of learning this sort of object has been followed these last years, with new algorithms proposed
in [20, 22]. In a general sense the models that have been inferred are always deterministic. It is not
obvious why this should be so as non-deterministic stochastic automata are strictly more powerful than
their deterministic counter parts. They can also be of a smaller size and thus be more understandable.
One reason may be that in the normal (non-stochastic) paradigm, it can be proved that non deterministic
machines can not be identified in polynomial time [21]. In this work we point out that the difference
between deterministic and non-deterministic stochastic automata (or regular grammars) is also that some
reasonably easy problems in the deterministic case become intractable in the non deterministic case.

An appealing feature of Stochastic Regular Grammars is the existence of efficient algorithms for
parsing. The probability of generating a given string by a Stochastic Regular Grammar can be computed
in linear time with the length of the string. The same holds for the search of the derivation with the
highest probability.

In spite of the existence of polynomial algorithms for dealing with some problems that involve
Stochastic Regular Grammars, there is another important problem which does not have an efficient solu-
tion. This isto find the most probable stringthat can be generated by a Stochastic Regular Grammar.

Other useful models which are closely related to StochasticRegular Grammars are theStochastic
Regular Syntax-Directed Translation Schemes[6, 9, 12]. Stochastic Grammars are adequate models
for classification tasks; however, there are many practicalsituations which do not fit well within the
classification framework but can be properly tackled through formal translation [10]. For translation,
efficient (linear) algorithms are only known for the computation of the highest probability translation
form [1]. In this framework, given an input string, the goal is to find its most probable translation.
However, there is no efficient solution for this problem.

Under the Complexity Theory framework [7], we report some results about the difficulty of different
computations regarding probabilistic finite state machines.

2 The Most Probable String Problem

The following definition is classical [9].

Definition 1: A Stochastic Regular Grammar(SRG)
�

is a tuple� � � � � � � � � � � , where
� is a finite set of non-terminal symbols;� is a finite set of terminal symbols;� is a set of
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rules of the form� � � � or � � � for � � � � � and � � � (for simplicity, empty rules
are not allowed);� is the starting symbol and� � � � � � (the set of the positive rational
numbers) is a function such that

�
	 
 � �  
 � � � � � 	  � 
 � � � � � � � � � �

	 
 � � � � � 	 � 
 � � � � � � � � � � � � �

Stochastic Grammars are probabilistic generators of languages; therefore, the concept of probability
that a string is generated by aSRGcan be defined.

Definition 2: Given � � � � (the set of finite-length strings over� ), theprobability that a
SRG

�
generates� is defined as:

� � � � � � � �
 ! � " �

� � � � # � � � �

where# � � � is a completederivationof � in
�

of the form:

� � � $ � $ � � $ � % � % � & & & � � $ � % & & & � ' " ' ( $ � ' " ' ( $ � � $ � % & & & � ' " ' ( $ � ' " ' � �
and � � � � # � � � � � � � � � � $ � $ � � � � $ � � % � % � & & & � � � ' " ' ( $ � � ' " ' �

Some important problems arise with these definitions. Namely the computation for a given string
of its probability (PS) or of its most probable derivation (MPDS), the computation of the most probable
derivation (MPD) and the computation of the most probable string (MPS). The PS, MPDS and MPD
problems have been widely addressed. The PS and MPDS are classical parsing problems, and can be
solved in time) � * � * *� * % � [14]. The MPD problem can also be dealt with using Dijkstra’salgorithm
[3] to compute the shortest path in a weighted path and requires no more than) � *� * % � time. The MPS
problem, although straightforward, has not been dealt with. Let us define the associated decision problem
as follows:

Problem Most Probable String(MPS).
InstanceA SRG

�
, and� � � � .

Question Is there a string+ � � � with * + * , *� *, such that� � � � + � - � ?

A more restricted problem is the following :

Problem Restricted Most Probable String(RMPS).
InstanceA SRG

�
, # � . (the set of natural numbers),# , *� *, and� � / � .

Question Is there a string+ � �
!

such that� � � � + � - � ?

RMPSis not just a special case ofMPS. We will prove that bothMPSandRMPSareNP-hard. As
the probability of any string can be computed in polynomial time

�

, bothMPSandRMPSare inNP. We
prove thatMPSandRMPSareNP-hard by reduction from the “Satisfiability” problem (SAT) [7]. The
proof relies on a technical encoding of a set of clauses:

Given an instance of SAT: 1) a collection0 $ � & & & � 0 1 of 2 boolean variables and 2) a collection3 $ � & & & � 3 4
of 5 clauses over the2 variables, consider the followingSRG

� � � � � � � � � � � � � :
6 � � 7 8 � 9 � : ; <
6 For � , = , 5 ,

�

This can be done in> ? @ A @ @ B @ C D
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– � �� � �
– the rule� � : � �� is in � with probability � � 5 and rules� �1 � : and� �1 � ; are in� with

an associated probability 1.

– for � , � , 2 with an associated probability 1/2:
� � �� � � �� � �
� the rules� �� ( $ � 9 � �� and� �� ( $ � 8 � �� are in� .
� if 0 � appears as a positive literal in3 � then the rules� �� ( $ � 8 � �� and� �� ( $ � 9 � �� are

in � .
� if 0 � appears as a negative literal in3 � then the rules� �� ( $ � 9 � �� and� �� ( $ � 8 � �� are

in � .
� if 0 � does not appear in3 � then the rules� �� ( $ � 9 � �� and� �� ( $ � 8 � �� are in� .

Each of these rules have an associated probability of 1/2.

6 ForRMPSfix # � 2 � � .

To illustrate this construction, consider an example whereone of the clauses is3 � � + % � �+ 	 � + 
 with
2 � � . Then the corresponding part of the automaton� for this clause is shown in the Figure 1
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Figure 1: Part of theSRGcorresponding to clause � � � C � �� � � � � with � � � .

This SRG must verify that if a clause is evaluated totrueby the assignment of values to the boolean
variables, then a complete derivation has to exist and vice-versa. On the other hand, if a clause is
evaluated tofalse, no such derivation associated to the clause has to exist in the SRG nor vice-versa.

Theorem 1: RMPSandMPSareNP-complete.
Proof of Theorem 1:
From the above construction, if the clause is satisfied for some solution� + $ � & & & � + 1 � the corresponding

string : � $ & & &� 1 : (� � is 9 if + � is 9 � � � , and � � is 8 if + � is 8 � � � � ) will have probability � � � 5 � 1 �
for each derivation linked to the clause. Note that the construction is in ) � 5 2 � . The string length is
2 � � , * � * � 5 � � � 2 � � � .

Fix � � to � � � 1 . Let � be a solution ofSAT; it can be considered as a string in7 8 � 9 < 1 , hence
the corresponding: � : is a string generated by

�
with 5 derivations all of probability� � � 5 � 1 � ; so

the probability of: � : by
�

is � � � 1 . On the other hand, if the instance ofSATdoes not admit any
�
A SRGcan be interpreted by its associated graph. Notice that somestates ( �! and " �# ) are useless). The fact that the

grammar is not in proper normal form is irrelevant.$
Encoding of% only requires� bits
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solution, then as the only strings that have non null probability for the associated grammar are of length
2 � � � � # � , and at least one clause is not satisfied (for example if the clause= is not satisfied, the
corresponding derivation ends in� �1 ), then no string has probability� � � 1 � .

Consequently the corresponding optimization problems (finding the most probable string) areNP-
hard. More can be said about theNP-optimization problem:

Problem Maximum Probability of a String(MaxPS).
InstanceA SRG

�
, and� � � � .

Solution A string + � � �
Measure� � � � + � .

By reduction fromMaximum Satisfiability(Max-SAT) [8, 11],
Theorem 2: MaxPSis APX-hard.
Maximum Satisfiability is theNP-optimization problem corresponding toSAT. It concerns finding a

subset of clauses such that there is a truth assignment satisfying each clause in the subset. The associated
measure is just the number of clauses.

The problem isAPX-complete, i.e. it is complete for the classAPX. BeingAPX-complete implies
that you can not do better than a constant approximation (a bound of the constant approximation is
proposed by Goemans and Williamson [8]) and that noPTAS(polynomial time approximation scheme)
is feasible.

Proof of Theorem 2:
The proof is straight forward and involves the same construction as for theNP-hardness ofMPS:
Given an instance� of Max-SAT, and a rational� , construct an instance8 � � � � � of MaxPSas in

the proof of theorem 1. Now given a string+ on the input alphabet of the associatedSRG8 � � � � � , the
following holds:

� � � � � � � � � + � � �4 % � � 3 � 	 � � � + � � � clauses of� can be satisfied.

Finally we have, for any instance� of Max-SAT, any rational� and any string+ solution to8 � � � � � :

 � 9 � 8 � � � � � �

� � 8 � � � � � � + � �

 � 9 � � �

� � + � 	 � � � + � � � �
whereopt denotes the optimal result (maximum number of satisfied clauses or maximum probability)
and� is the measure function (number of actual satisfied clauses for a given assignment and probability
of a given string). It follows that with� playing a dummy part the reduction inequation can be obtained
[4]:


 � 9 � 8 � � � � � �
� � 8 � � � � � � + � , � �


 � 9 � � �
� � + � 	 � � � + � � � � , �

All these constructions are polynomial. �

3 Stochastic Regular Syntax-Directed Translation Scheme

The last problem deals with the search of an optimal translation of a given input string according to a
translation scheme [9].

Definition 3: A Stochastic Regular Syntax-Directed Translation Scheme(SRT) � is a tuple
� � � � � � � � � � � � � , where� and � are defined as inSRGs, � is a finite set ofinput
terminal symbols, � is a finite set ofoutput terminal symbols(�  � � � ); � is a set of
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rules of the form� � � � � � � or � � � � � for � � � � � , � � � , � � � � and and
� � � � � � is a function such that

�
 	 
 � � � 
 � � �  
 � � � � 	  � �  
 � � � � � � � � � � � � �

 	 
 � � � 
 � � � � � 	  � �  � � � � � � � � � � � �

For simplicity, empty input rules (� � � � � � � or � � � � � where
�

is the empty string)
are not allowed.

SRGs andSRTs are closely related and given aSRT� , the probability of a translation pair� + � � � �
� � � � � , � � � � + � � � is defined in a way similar to that forSRGs:

Definition 4: Theprobabilityof a translationpair� + � � � � � � � � � according to the scheme
� is defined as:

� � � � + � � � � �
 � � 	 � 
 �

� � � � 9 � + � � � �

where9 � + � � � is atranslation formof � + � � � in � :

� � � � � � � + $ � $ � � $ � $ � � � + $ + % � % � � $ � % � % � � & & & � � + � � �
and the corresponding probability of the translation form is:

� � � 9 � + � � � � � � � � � + $ � $ � � $ � $ � � � � $ � + % � % � � % � % � & & & & � � � ' 	 ' ( $ � + ' 	 ' � � ' 	 ' �
The following example is presented to illustrate the above definitions.

Example 1. � � 7 � � � � � < , � � 7 � � � < , � � 7 � � � < and the rules of the Table 1. The

Table 1: Set of rules and probabilities corresponding toSRTof Example 2.

Rules (R) Probabilities (P)

� � � � � � � 3/10
� � � � � � � � 7/10
� � � � � � � � 2/7

� � � � � � � � � 4/7
� � � � � 1/7

� � � � � � � � � 2/5
� � � � � � 3/5

input string � � � has two possible translations:� � � � � � and � � � � � . The first one can be
obtained as� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � with probability 1/25, and the
second one with probability 6/245 as� � � � � � � � � � � � � � � � � � � � � � � � � � � or with
probability 9/175 as� � � � � � � � � � � � � � � � � � � � � � � � � � . Therefore,� � � can be
translated into� � � � � � � with probability 1/25, or into� � � � � with probability 6/245 + 9/175
=93/1225.

An interesting question is thus the one of computing the mostprobable translation of some input
string. Formally:

Problem Most Probable Translation(MPT).
InstanceA SRT� , + � � � and� � � � .
Question Is there an output string� � � � , * � * , * � * � �  	 	 (�  	 	 is the
maximum length of the output string in a rule) such that� � � � + � � � - � ?
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In Example 1, the second translation (� � � � � ) has the highest probability, therefore it is the most
probable translation of� � � .

If the translation defined by� from � � to � � is not ambiguous (� defines a function from� � to � � ),
there is an efficient algorithm that computes an answer to theMPTproblem in linear time. Basically, this
algorithm performs a parsing of the input with the input grammar.

TheMPT problem can be reduced fromRMPSas follows: given aSRG
� � � � � � � � � � � � � , an

integer2 and a rational� , construct: aSRT� � � � � � � � � � � � � � � � � � � � with

6 � � � � ,

6 � � � ,

6 � � � 7 : < ,

6 for every rule� � � � � � , a rule� � : � � � � is in � � with � � � � � : � � � � � � � � � � � � �
6 for every rule� � � � � , a rule� � : � � is in � � with � � � � � : � � � � � � � � � �
6 an input string: 1 (2 , *� *)
6 a rational�

Theorem 3: MPT is NP-complete.

Proof of the Theorem 3: From the above reduction, it follows that: 1) the construction is
polynomial; and 2): 1 has an output string� � � � such that� � � � � � - � if and only if� � � � : 1 � � � - � . The length of�

�

And the associated optimization problem of computing the most probable translation isNP-hard.
Without proof, (it follows from the previous different results and proofs) for the associatedNP optimiza-
tion problem (MaxPT) we give a final result:

Theorem 4: MaxPTis APX-hard.

4 Conclusions

In this paper we have presented computational complexity results regarding parsing problems for Stochas-
tic Regular Grammars and Stochastic Regular Syntax-Directed Translation Schemes. In particular, the
problems of searching for the most probable string in aSRGand of searching for the most probable trans-
lation of an input string given aSRTareNP-hard problems and the associated optimization problems do
not admit polynomial approximation schemes. Future work can be conducted in the following direction:
we have proved that bothNP-optimization problems areAPX-hard. Do they belong toAPX? Such a
result would require a polynomial time algorithm that always meets a given bound.
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