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Computational complexity of stochastic programming problems ∗

Martin Dyer† Leen Stougie‡

November 11, 2005

Abstract

Stochastic programming is the subfield of mathematical programming that considers
optimization in the presence of uncertainty. During the last four decades a vast quantity
of literature on the subject has appeared. Developments in the theory of computational
complexity allow us to establish the theoretical complexity of a variety of stochastic pro-
gramming problems studied in this literature. Under the assumption that the stochastic
parameters are independently distributed, we show that two-stage stochastic program-
ming problems are ]P-hard. Under the same assumption we show that certain multi-
stage stochastic programming problems are PSPACE-hard. The problems we consider
are non-standard in that distributions of stochastic parameters in later stages depend on
decisions made in earlier stages.

1 Introduction

Stochastic programming is the subfield of mathematical programming that considers op-
timization problems under uncertainty. During the last four decades a vast amount of
literature on the subject has appeared. The two most comprehensive textbooks that have
appeared on the subject are [1] and [12]. An easily accessible introduction is given in [8].
In this paper we will give theoretical evidence that stochastic programming problems are
in general hard to solve, even harder than most well known combinatorial optimization
problems. This confirms the feelings that researchers in stochastic programming have
always had. We determine the complexity of what is known in stochastic programming
literature as two-stage decision problems. The general formulation is given by

max{cT x + Q(x) | Ax ≤ b, x ∈ X},

with

Q(x) = E[max{qT y | Wy ≤ h−Tx, y ∈ Y }],

and X ⊂ IRn
≥0 specifying non-negativity and possibly integrality restrictions on the deci-

sion variables x. Similarly Y ⊂ IRn1
≥0 is defined for the decision variables y. All variables,

matrices and vectors have consistent dimensions. Boldface characters are used to indicate
randomness. Realisations of random variables are written in normal font.
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In the stochastic programming literature this model originates from a linear or mixed
integer linear programming model with uncertain parameter values:

max{cT x | Ax ≤ b, Tx ≤ h, x ∈ X}.

It is assumed that the imprecise information about T and h can be represented by random
objects with known probability distributions. Possible infeasibilities due to a choice of
x together with a realization T of T and h of h are compensated in a second-stage
recourse action by choosing second-stage decisions y as optimal decisions of the second-
stage problems

max
y
{qT y | Wy ≤ h− Tx, y ∈ Y },

where q is a realization of the random cost vector q, and the recourse matrix W specifies
the available technology. Though in the most general stochastic programming model W is
also a random matrix, we comply with the majority of stochastic programming literature
in assuming it to be fixed (fixed recourse).

In the two-stage decision model, Q(x) is the expected optimal recourse cost associated
with a first-stage decision x, often called the expected value function of the two-stage
stochastic programming problem, as we will call it here.

Two-stage stochastic programming models need not reflect a decision situation with
recourse actions. They may also appear as a result of a decision situation with different
levels. At an aggregate level a decision has to be taken while precise detailed information
is not available. At the detailed level decisions then have to be made given the aggregate
decision and given the precise information. For example, think of a situation in project
planning, in which at an aggregate level resources, like machines and man power, have
to be acquired or hired, whereas the precise data about what will eventually be required
of the resources are not available. Just before the project is to be executed, detailed
information becomes available and an optimal plan has to made, given the resources
acquired. Problems of this type appear in the literature under the name of hierarchical
planning problems (see e.g. [2], [17]).

The two-stage decision problem models a situation in which all information that was
imprecise at the first stage is dissolved at the same moment, so one has complete informa-
tion in the second stage. The situation in which information becomes available in more
than one stage can be described by a multi-stage decision problem. We come back to
this problem in Section 4. Before that section we concentrate on the two-stage decision
problem.

Structural properties of the objective functions of two-stage stochastic programming
problems are known. Under some mild conditions on the distribution of the random
parameters, the objective function is a convex function of x, if the second-stage decision
variables y are real valued and the set Y is convex. The convexity of the objective
function is lost if integrality conditions are imposed on y, in which case we speak of
stochastic integer or stochastic mixed integer programming. For an overview of properties
of objective functions of stochastic linear programming problems and stochastic (mixed)
integer programming problems, like continuity, convexity, differentiability, we refer to e.g.
[1], [13], [21].

The complexity of a problem, in terms of time or space to solve it, is related to
input size. For each instance, a bound on the number of elementary computer operations
or on the number of computer storage units required to solve the problem instance as
a function of the size of its input indicates, respectively, the time or space complexity
of the problem. We will see that the way in which the random parameters in stochastic
programming problems are described has an important impact on the problem complexity.
To illustrate this crucial item we start by studying in Section 2 a problem which in
stochastic programming literature is called the deterministic equivalent problem. This
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study shows that, under a specific random model on the parameters, two-stage stochastic
programming problems are either easy or NP-hard, depending only on the absence or
presence, respectively, of integer decision variables.

Different random models lead to considerably different complexities. For example,
we notice that the evaluation of the function Q at a single point of its domain requires
the computation of a multiple integral, when the random parameters are continuously
distributed. Most of the stochastic programming literature on this subclass of problems is
concerned with ways to get around this obstacle. Indeed, it will appear in this paper that
it is this feature that dominates the complexity of the problems. For two-stage problems
the evaluation of Q is ]P-hard.

The class ]P consists of counting problems, for which membership in the set of items
to be counted can be decided in polynomial time. We notice that strictly following this
definition of ]P, none of the stochastic programming problems we study can belong to this
complexity class. We use the term ]P-hard for an optimization problem in the same way
as NP-hard is used for optimization problems whose recognition version is NP-complete.
For an exposition of the definitions and structures of the various complexity classes we
refer to [6] and [11].

The complexity of two-stage decision problems under various random models on the
parameters is presented in Section 3. In Section 4 some first steps in the study of the com-
plexity of multi-stage decision problems are discussed. In particular, we show that under
a specific random model on the stage by stage uncertain parameters, where the distribu-
tion in later stages may depend on decisions taken earlier, multi-stage decision problems
are PSPACE-hard. Through personal communication with people in the stochastic pro-
gramming community we have learnt that our model is a very reasonable and practically
relevant one. Yet it is not the standard model in stochastic programming literature, in
which the distributions are independent of decisions taken in earlier stages. The com-
plexity of this standard model remains open. We conjecture that it is PSPACE-hard as
well.

2 Complexity of the deterministic equivalent problem

Many solution methods for stochastic programming problems begin by formulating the
so-called deterministic equivalent problem (see e.g. [1],[22]). The basic assumption for for-
mulating this problem is that the realisations of the random parameters are specified in the
form of scenarios. Each scenario contains a complete description of (q,T,h) values in one
realization. Thus, the scenarios are enumerated (q1, T 1, h1), (q2, T 2, h2), . . . , (qK , TK , hK),
with K denoting the total number of possible realisations of (q,T,h). Each realization
(qk, T k, hk) has a probability pk of occurrence. The problem can now be formulated as

max cT x +
K∑

k=1

pk(qk)T yk

s.t.
Ax ≤ b,
T kx + Wyk ≤ hk, k = 1, . . . ,K.

If, as input of the problem, each scenario and its corresponding probability has to
be specified completely, then the input size of the problem is just the size of the binary
encoding of all the parameters in this deterministic equivalent problem and hence the
problem is polynomially solvable in case the decision variables have a convex feasible
region and NP-complete if there are integrality constraints on the decision variables.

However, consider another extreme in which all parameters are independent identically
distributed random variables, each having a value α1 with probability p and α2 with
probability 1 − p. In that case, using m1 for the number of rows of the T -matrices,
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there are K = 2n1+m1n+m1 possible scenarios, but they can be encoded with a relatively
small number of bits. The size of the deterministic equivalent problem is exponential
in the size of the input, and the complexity changes correspondingly, as we will show
below. Indeed, most of stochastic programming research focusses on methods to overcome
this curse of problem size, which is usually caused by specification of the scenarios as
combinations of realisations of independent random parameters. For example, the sample
average approximation method does not require a full listing of all scenarios. For a survey
of models and methods we refer to [14]. Thus, from now on we will consider models
wherein the random parameters are independently distributed.

3 Complexity of two-stage decision problems

We will treat models with discretely distributed random parameters and with continuously
distributed ones separately.

3.1 Discrete distributions

We will establish ]P-hardness of the evaluation of the second-stage expected value function
Q(x) for fixed x of a two-stage stochastic programming problem with discretely distributed
parameters using a reduction from the problem graph reliability, ]P-completeness of
which has been proved in [20].

Definition 3.1 Graph reliability. Given a directed graph with m edges and n ver-
tices, determine the reliability of the graph, defined as the probability that two given vertices
u and v are connected, if each edge fails independently with probability 1/2.

This is equivalent to the problem of counting the number of subgraphs, from among all
2m possible subgraphs, that contain a path from u to v.

Theorem 3.1 Two-stage stochastic programming with discrete distributions on the pa-
rameters is ]P-hard.

Proof. Take any instance of graph reliability, i.e. a network G = (V,A) with two
fixed vertices u and v in V . Introduce an extra edge from v to u, and introduce for
each edge (i, j) ∈ A a variable yij . Give each edge a random weight qij except for the
edge (v, u) that gets a deterministic weight of 1. Let the weights be independent and
identically distributed (i.i.d.) with distribution Pr{qij = −2} = Pr{qij = 0} = 1/2. The
event {qij = −2} corresponds to failure of the edge (i, j) in the Graph reliability
instance. If, for a realization of the failures of the edges, the network has a path from u to
v, then there is a path from u to v consisting of edges with weight 0 only and vice versa.

Denote A′ = A ∪ (v, u). Now define the two-stage stochastic programming problem:

max{−cx + Q(x) | 0 ≤ x ≤ 1}

with

Q(x) = E[max{
∑

(i,j)∈A

qijyij + yvu |
∑

i:(i,j)∈A′

yij −
∑

k:(j,k)∈A′

yjk = 0 ∀j ∈ V,

yij ≤ x ∀(i, j) ∈ A}],

where c is a parameter.
Suppose that for a realization of the failures of the edges there is a path from u to v

in the network. As we argued the costs qij = 0 for edges (i, j) on the path. For such a
realization, the optimal solution of the second-stage problem, is obtained by setting all
yij ’s corresponding to edges (i, j) on this path and yvu equal to x, their maximum feasible
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value, and setting yij = 0 for all (i, j) not on the path. This yields solution value x for
this realization.

Suppose that for a realization the graph does not have a path from u to v, implying
in the reduced instance that on each path there is an edge with weight −2 and vice versa,
then the optimal solution of the realized second-stage problem is obtained by setting all
yij ’s equal to 0, and also yvu = 0, yielding solution value 0.

Therefore, the network has reliability R if and only if Q(x) = Rx. This implies
immediately that evaluation of Q in a single point x > 0 is ]P-hard. We continue to prove
that the two-stage stage problem is ]P-hard (it is not excluded that finding the optimal
solution to a two-stage problem does not require any evaluation of the objective function).

Notice that Q(x) = Rx implies that the objective function value of the two-stage
problem is (R− c)x. Thus, if c ≤ R then the optimal solution is x = 1 with value (R− c),
and if c ≥ R then the optimal solution is x = 0 with value 0. Since R can take only 2m

possible values, by performing a bisection search we can compute the exact value of R by
solving only m two-stage stochastic programming problems to know the exact value of R.
Thus, if one could solve the two-stage stochastic programming problem then one could
solve the ]P-hard Graph reliability problem. �

The second stage of the two-stage stochastic programming problem used in the proof
is not a recourse problem. A similar reduction shows that also the more special class of
two-stage stochastic recourse problems are ]P-hard.

By total unimodularity of the restriction coefficients matrix [15] in the proof, the
same reduction shows that the two-stage stochastic integer programming problem with
discretely distributed parameters, i.e. the problem in which second-stage decision vari-
ables are restricted to have integer values, is ]P-hard. We notice that imposing restrictions
yij ∈ {0, 1} on all second-stage variables will give Q(x) = Rbxc. Thus, evaluating Q(x) is
only ]P-hard when x = 1, but finding the optimal value for x is still ]P-hard.

In the two-stage linear programming problem evaluation of Q at any point x is ]P-
easy, since for any realization of the second-stage random parameters a linear program
remains to be solved. Given a ]P-oracle for evaluating Q at any point x, solving two-stage
stochastic linear programming problems (with discretely distributed random variables)
will require a polynomial number of consultations of the oracle, since Q is a concave
function in x, and maximizing a concave function over a convex set is known to be easy
[7]. Thus, two-stage stochastic linear programming is in the class P ]P , which is essentially
equivalent to ]P [11].

Given a ]P-oracle for evaluating Q at any point x, a two-stage stochastic integer
programming problem lies in NP. In this case the expected value function is in general
not convex but discontinuous piecewise linear with a finite number of points x that are
candidate for optimality (see [17]). Thus, two-stage stochastic integer programming is in
the class NP ]P = P ]P [19].

3.2 Continuous distributions

For two-stage stochastic programming problems with continuously distributed parameters,
]P-hardness of an evaluation of the expected value function Q can be established under
even the mildest conditions on the distributions. For the proof we use a reduction from
the problem of computing the volume of the knapsack polytope, ]P-completeness of which
has been proved in [3].

Definition 3.2 Volume of knapsack polytope. Given the polytope P = {x ∈ [0, 1]n |
αT x ≤ β}, for given α ∈ IRn

+ and β ∈ IR+, compute its volume Vol(P ).
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Theorem 3.2 Evaluation of Q(x) of a two-stage stochastic programming problem with
continuously distributed parameters is ]P-hard, even if all stochastic parameters have the
uniform [0, 1] distribution.

Proof. Given an instance of a knapsack polytope, define i.i.d. random variables q1, . . . ,qn

with distribution uniform on [0, 1]. Now, consider the following two-stage stochastic pro-
gramming problem with continuously distributed parameters:

max{−cx + Q(x) | 0 ≤ x ≤ 1},

Q(x) = E[max{
n∑

j=1

qjyj − βy | 0 ≤ y ≤ x, 0 ≤ yj ≤ αjy, j = 1, . . . , n}].

For any realization q1, . . . , qn of q1, . . . ,qn, the optimal solution of the second-stage prob-
lem in the formulation above is either y = yj = 0, j = 1, . . . , n, in case

∑n
j=1 qjαj ≤ β,

or y = x, yj = αjx, j = 1, . . . , n, otherwise. Thus, using the notation (s)+ = max{0, s},

Q(x) = E[(
n∑

j=1

αjqj − β)+x] = (1−Vol(P ))x.

Hence, the objective function of the two-stage problem is (1 − Vol(P ) − c)x, which has
solution x = 0 with value 0 if c ≥ 1 − Vol(P ) and x = 1 with value 1 − Vol(P ) − c if
c ≤ 1− Vol(P ). Again, by performing a bisection search, we can approximate Vol(P ) to
within any accuracy ε by solving O(log 1

ε ) two-stage stochastic programming problems,
thus solving a ]P hard problem [4]. �

Membership of this problem in ]P would require additional conditions on the input
distributions. We note that a result of Lawrence[9] shows that exact computation may
not even be in PSPACE.

4 Complexity of multi-stage stochastic programming
problems

We will treat the complexity of the multi-stage stochastic programming problem under
discrete distributions only. For easy reference we write out the S+1-stage decision problem

max{cT x + Q1(x) | Ax ≤ b, x ∈ X},

with

Qs(ys−1) = E[max{qsys + Qs+1(ys) | W sys ≤ Tsys−1 − hs, ys ∈ Y s}],

for s = 1, 2, . . . , S − 1, interpreting y0 = x, and

QS(yS−1) = E[max{qSyS | WSyS ≤ TSyS−1 − hS , yS ∈ Y S}].

If K = S + 1, the number of stages, is part of the input, we argue that the K-stage
decision problem with discrete decision-dependent random parameters is in PSPACE.
Consider the last stage, stage S + 1. Take any fixed point yS−1 for the decision variables
of the last but one stage. Then, for any realization qS

k , TS
k and hS

k , of the random
parameters, where k ranges over all possible joint realisations, and for each k its probability
is denoted by pS

k , a linear or integer linear programming problem is to be solved, which
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can be done in polynomial space. Denote its optimal solution value by ZS
k (yS−1). Now,

QS(yS−1) =
∑

k pS
k ZS

k (yS−1), so that QS can be evaluated in polynomial space. If yS−1

is bounded integral valued then it is clear that the solution of the S + 1-th stage can be
done in polynomial space. In the case of continuous problems the function QS is convex,
so that the ellipsoid method guarantees that the number of points in which it is to be
evaluated is polynomially bounded.

We show that a version of the problem, in which distributions in later stages depend on
decisions made in earlier stages is PSPACE-hard. We call this the multi-stage stochastic
programming problem with decision-dependent distributions. This is not the standard
definition of the multi-stage decision problem that appears in the stochastic programming
literature. The complexity of the standard problem remains open, though we expect it
to be PSPACE-hard as well. We include the complexity of the non-standard formulation
of the problem, since it gives some idea about the difficulty of multi-stage problems, and
since stochastic programming researchers have indicated in personal communication that
this model is actually of interest for practical applications.

The complexity result follows rather directly from the PSPACE-hardness of problems
that are called decision-making under uncertainty by Papadimitriou [10]. These problems
are roughly characterized by dynamic decision making, in which decisions are based on
the current state, and the next state is a random variable or object with distribution
depending on the current decision, much in the same way as classical Markov Decision
problems. We selected the problem called Dynamic graph reliability [10] for our
reduction here.

Definition 4.1 Dynamic graph reliability. We are given a directed acyclic graph
with n vertices and m edges, which is to be traversed from some specific vertex to some
other specific vertex while edges may fail. At any moment, the probability that edge e fails
before the next move is p(e, w), where w is the vertex that is currently being visited. Find
the strategy that maximizes the probability of successful traversal.

Theorem 4.1 Multi-stage stochastic programming with discretely decision-dependent dis-
tributed parameters is PSPACE-hard.

Proof. Take any instance of Dynamic graph reliability, i.e. a network G = (V,A)
with two fixed vertices u0 and v0. We introduce an extra vertex u∗ and an extra edge
(u∗, u0). Define the number of stages S + 1 as the length of the longest u∗, v0-path in
G. It is well known that this path can be found in polynomial time since the graph is
a directed acyclic graph. Suppose this path is (u∗, u0, v1, . . . , vS−1, v0). The vertices are
partitioned into subsets V0, V1, V2, . . . , VS+1 with V0 = {u∗}, V1 = {u0}, VS+1 = {v0},
vs ∈ Vs+1 (s = 1, . . . , S − 1), and all other vertices in subsets in such a way that for any
edge (i, j) ∈ A we have i ∈ Vs and j ∈ Vt with s < t. If in such a case t > s+1 we introduce
an auxiliary chain, with vertices i1, . . . , it−s−1, adding ik to Vs+k, k = 1, . . . , t − s − 1,
and edges (i, i1), . . . , (it−s−1, j), adding them to A and deleting the edge (i, j) from A. In
this way we obtain a layered network G′ = (V ′, A′), i.e., a network with S + 2 layers of
vertices, the sets V0, V1, . . . , VS+1, in which for each edge (i, j) ∈ A′, i ∈ Vs and j ∈ Vs+1

for some 0 ≤ s ≤ S. G′ is obviously directed acyclic also. Thus, a partial order (<) can
be defined on the edges in A′, indicating for any two edges if, and in which order, they
appear on a path from u∗ to v0. On any auxiliary chain we allow only the first edge to fail
in order to maintain the reliability of the original graph. Thus, for any v ∈ V , we define
failure probabilities p̃((i, i1), v) = p((i, j), v), p̃((ik, ik+1), v) = 0 (k = 1, . . . , t− s− 2) and
p̃((it−s−1, j), v) = 0. For any edge e ∈ A ∩A′ and v ∈ V probabilities remain unchanged:
p̃(e, v) = p(e, v). For any auxiliary vertex ik and (u, v) ∈ A′, we define p̃((u, v), ik) = 0.

Let A′
s = {(u, v) ∈ A′ : u ∈ Vs, v ∈ Vs+1}. Note that A′

0 = {(u∗, u0)}. For any edge
(u, v) ∈ A′

s, we introduce a variable ys
uv indicating the amount of flow through (u, v). The

superscript s is clearly redundant here, but we use it for clarity. Now we can formulate
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the multi-stage programming problem as follows.

max
{
−cx + Q1(x) | 0 ≤ x ≤ 1, y0

u∗u0
= x

}
,

and, for s = 1, 2, . . . , S − 1,

Qs(ys−1) = E
[
max

{
Qs+1(ys) |

∑
v∈Vs

ys
uv =

∑
t∈Vs−2

ys−1
tu (∀u ∈ Vs−1),

ys
uv ≤ hij,uv(∀(u, v) ∈ A′

s, (i, j) < (u, v))
} ]

,

and

QS(yS−1) = E
[
max

{ ∑
u∈VS

yS
uv0

| yS
uv0

=
∑

t∈VS−1
yS−1

tu (∀u ∈ VS),

yS
uv0

≤ hij,uv0 (∀(u, v0) ∈ A′
S , (i, j) < (u, v0))

} ]
.

For any two edges (i, j) ∈ A′
s, (u, v) ∈ A′

t, we define the random variable hij,uv as follows.
If (i, j) < (u, v) and ys

ij > 0, then Pr{hij,uv = 0} = p̃((u, v), j). In all other cases,
hij,uv = 1.

As in the proof of Theorem 4.1, the graph has dynamic reliability R if and only if
Q1(x) = Rx. Hence the optimal objective function is (R − c)x, and at most m (S + 1)-
stage stochastic programs need to be solved to determine the exact value of R. �

5 Postlude

The complexity of two-stage stochastic programming is settled in this paper, and we
provide an indication that m-stage problems are even harder. These results support
the claim of many stochastic programming researchers that their problems are harder
than most discrete optimization problems. The complexity of the standard multi-stage
stochastic programming problem remains open. We conjecture that this is also PSPACE-
hard.

In [5] and [16] randomized approximation schemes have been designed for two-stage
stochastic programming problems. In [5] problems are considered with continuously dis-
tributed parameters and continuous decision variables, when the input distributions are
restricted to be log-concave. Their scheme is fully polynomial under the strong condi-
tion that there is a polynomial bound on the maximum value of the second-stage value
function. They give an approximate solution and a corresponding approximate solution
value.

The paper [16] considers problems with both discrete and continuous distributions.
The distributions are given implicitly and can be accessed only through a sampling oracle.
Therefore they are not considered as part of the input. Recourse problems are considered
in which first and second-stage actions are equal, but there are different costs in the two
stages. The scheme proposed is fully polynomial if there is a polynomial bound on the
ratio between first and second-stage cost coefficients. Moreover it is shown that such a
fully polynomial scheme cannot exist if this ratio is part of the problem input. The scheme
gives just an approximate solution, not an approximate value.

Both schemes rely heavily on the convexity of Q, and therefore do not apply to two-
stage stochastic integer programming problems.

The latter paper is one in a sequence culminating from a very recent growth in interest
in stochastic programming of the theoretical computer science community. An overview
of approximation algorithms in stochastic programming and their performance analysis is
given in [18].
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