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COMPUTATIONAL COMPLEXITY OF THE GAME 
THEORY APPROACH TO COST ALLOCATION FOR A 

TREE* 

NIMROD MEGIDDO 

Tel Aoio Unioersity 

In the game theory approach to the problem of allocating cost, the users of a facility are 
viewed as players in a cooperative n-person game. It is the nature of cooperative games that 
the power of each one of the 2"-' possible coalitions is taken into account. Thus, practical 
problems of allocating cost may be intractable in the game theory approach because of the 
computational complexity involved. However, it is shown that good algorithms do exist for 
the nucleolus and the Shapley value allocations for a tree. The nucleolus can be computed 
within 0 ( n 4  operations and the Shapley allocation in O(n) operations. 

Introduction. One application of the theory of cooperative games in characteristic 
function form (see [12]) is to cost allocation problems. An abstract cost allocation 
problem could be described as follows. Let N = {I, . . . , n) (n 2 2) be the set of users. 
The users wish to establish a facility that will provide them various services; in an 
equivalent version of the problem they might wish to cooperatively utilize an existing 
facility. Usually, not every user needs all the different types of service. Hence, for 
every S c N we denote by v(S) the minimum cost required for establishing a facility 
which provides all the types of service that the members of S might need. Alterna- 
tively, the value u(S) could represent the cost of maintenance of that portion of an 
existing facility which is utilized by some member of S. If all the users act coopera- 
tively then the total cost is represented by the numbe~v(N), and the question is how 
should this total cost be allocated to the users. 

Naturally, the solution concepts suggested in the theory of cooperative games can 
be employed here, even though these solutions are usually formulated in terms of 
payoffs rather than costs. Littlechild and Thompson [9], Suzuki and Nakayama [15], 
Bird [I], and Claus and Granot [2] discussed cost allocation problems of our type and 
treated than in a game-theoretic approach. The main interest is in the nucleolus [13] 
and the Shapley value [14], since each of these solution concepts specifies a unique 
cost allocation. Formal definitions will be provided later. 

There may, however, be one difficulty when the game-theoretic approach is put into 
practice. In general, for the computation of game-theoretic solutions we need to know 
the values of the characteristic function v.  Thus, the time required for the preparation 
of the input for a standard computer program which calculates the nucleolus (see [6]), 
say, grows exponentially with the number of users. Furthermore, during the computa- 
tion of the nucleolus, at least one linear programming problem of size not less than 
2" X n has to be solved. There is no available algorithm for the general linear 
programming problem which runs in polynomial-time (see [4], [5]), and it is not even 
known whether such an algorithm exists at all. Thus, the state-of-art is that the 
computation time of the nucleolus cannot be upper-bounded by less than 0(2~'). 
Suppose that in some class of cost allocation problems the number of parameters that 
define the problem grows polynomially with the number of users. For such a class of 
problems the game-theoretic approach would be definitely dissatisfactory-unless a 
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procedure is found which brings to the solutions without first calculating all the values 
of the characteristic function. It seems reasonable to demand that, for such a class of 
problems, a solution should be found within time which grows not faster than 
polynomially in the number of users. Such polynomial-time procedures are often 
called "good" algorithm (following J. Edmonds). For the particular class of problems 
considered in this paper good algorithms are shown to exist. 

We consider the following class of games. A directed tree graph T is given, whose 
set of nodes is N U {0}, where N is our set of players (previously called users) and 
node 0 is the root. The length of an arc (i, j )  of T is denoted by d(i, j )  and is assumed 
to be positive. For every S c N let u(S)  denote the total length of arcs that belong to 
some path from the root to a node i E S. The resulting cooperative game (N;  c) 
corresponds to a class of cost allocation problems described as follows. Suppose that 
T is a tree of shortest paths from all intersections to a central station in a transporta- 
tion network. Suppose further that the cost of maintenance of each road is known and 
the users which are located at the intersections wish to share the total cost of 
maintenance for the entire tree of roads. 

In this paper we investigate the nucleolus and the Shapley value of games in the 
class defined above. We present properties of the nucleolus-allocation and the 
Shapley-allocation and develop good algorithms for computing them. We show that 
the nucleolus can be found in 0(n3)  time and the Shapley value in O(n) time. Our 
results here generalize those of [7] and [8] since these papers deal, as a matter of fact, 
with the case of a tree which consists of a single path. 

Preliminaries. For every i E N let j(i)  denote the "father" of i, i.e., that node 
which precedes i on the unique path from the root to i. A node j is said to be an 
ancestor of a node i if j belongs to that path from the root to i. A set S c N is said to 
be closed if for every i E S, j E S if j is an ancestor of i an8 j Z 0. For an S c N let 
Sf denote the least closed set which contains S .  

A set B c S is said to be a branch of T if there exists a j E B such that i E B if and 
only if j is an ancestor of i. For every node j E N let B(j)  denote the branch of all the 
nodes of which j is an ancestor. Denote 4 = d(j(i) ,  i) and d(B) =C,., d,. 

A node i E N is said to be a neighbor of a nonempty S c N if i $ S  and 
j(i)  E S U (0).  A nonempty C c N is said to be basic if it is closed and has exactly 
one neighbor. Thus, a basic set is characterized by its unique neighbor, i.e.. if j is the 
unique neighbor of a basic set C then C = N\B( j ) .  For example, in the tree 
((0, I ) ,  (0, 2), (1, 3), (2, 4), (2, 5), (2, 6)) S = { I ,  4, 5) is not closed, Sf = (1, 2, 4, 5)  is 
the "closure" of S, S' has two neighbors, namely, node 6 and node 3. S' is not basic 
but C, = (1 ,  2, 3, 4, 6) and C,  = (1, 3) are basic. B = (2, 4, 5, 6) is a branch. 

For every vector y = (y, ,  . . . , y,) and S c N denote y ( S )  = CiEs yl (y(Qj) = 0) 
and e(S, y )  = u(S) - y(S).  The core (see [12]) is defined to be the set of ali  vectors I? 
such that y (N)  = c(N)  and e(S, y )  > 0 for all S c N. Note that if y belongs to the 
core theny, = y ( N )  - y(N\{ i})  > c(N)  - c(N\{ i})  2 0 for every i E N. The core in 
our class of games is never empty since, obviously, the allocation (dl ,  . . . , d,) belongs 
to the core. More general cases in which the core is not empty are discussed in [ l ]  and 
[3]. A related case in which the core might be empty is presented in [ l  I ] .  

The nucleolus. For the definition of the nucleolus, if x E R "  then let 8(x) be the 
(2" - 2)-tuple of the numbers e(S, x) ( S  E 2N = { S  c N : Qj # S # N)),  arranged 
in order of increasing magnitude. Then the nucleolus i = (z,. . . . , z,) is defined to be 
the unique vector (see [13]) which lexicographically maximizes the function B(.r) in the 
set' { x  E R n  : xi > ~ ( { i ) ) ,  i E N, x(N)  = o(N)).  Since the core of our game is not 

' Obviously, in our class of games t ; ( N )  < x,,, I!((;)). 
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empty, it follows that the nucleolus z  also belongs to the core ([13, theorem 41). Thus, 
( 1 )  for every S  c N ,  e ( S ,  z )  > 0. 
In other words, if cost is allocated according to the nucleolus then every set of users 

does not have to pay more than what it should have paid if the other users did not 
cooperate. Moreover, the minimum gain, u ( S )  - z ( S ) ,  of a set S  is maximized by the 
nucleolus, and then the second smallest gain is maximized and so forth. 

In this section we present several properties of the nucleolus in our class of games 
and the goal is developing an efficient algorithm for the nucleolus. Let us assume, 
without loss of generality, that the sons of the root are precisely the nodes 1, . . . , k 
(1 < k  < n). We shall show that it could further be assumed that k = 1, i.e., the root 
has a unique son. Since xf=, u(B( i ) )  = u ( N )  and N  = U f = ,  B ( i )  is a partition, it 
follows from (1)  that z (B( i ) )  = c(B( i ) ) .  Consider the subgame induced on the branch 
B(i) ,  i.e.. the restriction v' of v  to sets S  c B(i) ,  and let z' denote the nucleolus of 0'. 

It can be easily verified that for every j  E B(i) ,  zj = 2,'. In other words, if the root 0  
has more than one son then the tree decomposes to subtrees rooted in 0, and the 
degree of the root in each one of these subtrees is one. The nucleolus of the original 
tree could be calculated by taking the Cartesian product of the nucleoli of the 
subtrees. Also, we could henceforth assume that each such subtree contains at least 
two nodes besides the root, since the remaining case is trivial. In view of this, we 
assume without loss of generality that 

(2)  j ( i ) = O i f a n d o n l y i f i =  l ; a l s o n > 2 .  
The algorithm which is developed below is based upon the following results which 

will later be stated and proved in detail. Suppose that S*  c N  is a set which minimizes 
the ratio of v ( S )  to the total number of members and neighbors of S  ( S  c N ) .  We 
shall prove that cost which the nucleolus allocates to each member of S* is equal to 
the above ratio evaluated at S*.  The costs allocated t a  users which are not members 
of S* are then calculated iteratively by considering games over the branches which 
correspond to the neighbors of S*. The propositions stated below are also hoped to 
provide some insight into the "philosophy" of the nucleolus. 

(3 )  For every S  E 2N,  e ( S ,  z )  > e ( S 1 ,  z) .  
This follows from the fact that v ( S 1 )  = c ( S )  and z, > 0 ,  i  E N .  

(4) If j  is an ancestor of i then zj < z,. 
This is a consequence of [13, theorem 31 and [lo, theorem 9.31. 

(5 )  e ( S ,  z )  > 0 for every S  E 2 N ;  inparticzdar z, < ~ ( { i ) ) ,  i E N .  
This follows from (2). It suffices to show that for some x  = ( x , ,  . . . , x,), e ( S ,  x )  > 0 
for every S  E 2N. Such an x  could be defined by x ,  = 0 and x, = d, + d , / ( n  - 1) for 
i # 1 .  

( 6 )  For every branch B ,  z ( B )  > d ( B ) .  
Since B  # N ,  it follows by (5) that 

d ( B )  = c ( N )  - c ( N \ B )  < z ( N )  - z ( N \ B )  = z ( B ) .  

Let D denote the class of all basic sets of T. 
(7)  For every S  E 2N there is an R  E D U { N \ { l ) }  such that e ( R ,  I) < e ( S ,  z) .  
A proof of (7 )  follows. Firstly, if S' = N ,  let i  E N  be such that i @ S .  Then, 

e ( S ,  z )  > e ( N \ ( i ) ,  z ) =  z, > Z ,  = e ( N \ { l ) ,  z). Secondly, if S '  # N  and i , ,  . . . , i, 
( k  > 1) are the neighbors of S ' ,  let R = S '  U B ( i , )  U , . . U B(i,- ,). If k > 1 then (3 )  
and (6) imply e ( R ,  z )  < e ( S ,  z )  and also clearly R  E D. The remaining case, k = 1, is 
trivial. 

(8 )  z ,  = e ( N \ ( l ) ,  z )  = min(e(C, z )  : C E D ) .  
We prove (8 )  as follows. If z ,  < min{e(C, z )  : C E D }  then let y = ( y , ,  . . . .y ,)  be 
defined by y,  = z ,  + E ,  y, = z, - c / ( n  - I ) ,  i  = 2. . . . , n, where E > 0 is sufficiently 
small. By (7), m i n { e ( S ,  z )  : S  E 2 N )  < m i n { e ( S ,  y )  : S  E 2 N } ,  in contradiction to the 
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assumption that z is the nucleolus. If z ,  > min{e(C, z) : C E D )  let y ,  = z ,  - E, 
y, = z, + r/(n - 1). i = 2, . . . , n, and for a sufficiently small E > 0 a contradiction 
follows analogously. 

Recall that D = { N \ B ( j )  : j = 2, 3, . . . , n) .  Let J be defined by j E J w z ,  
= e(N \B(j), z). Let J* c J be the set of all j E J such that there is no ancestor k of j 
in J. Thus, U ,, , B(j) = U ,EJ. B(j)  and B(j)  fl B(k) = 0 for every pair j ,  k E J *  
( j  # k). Denote W = N \  U ,,, B(j). 

(9) For eoery i E W z, = z,.  
By (4) z, a z,. Suppose, per absurdum, that z, > z,  for some i E W. Define y 
= ( y I , .  . . ,yn)  by y ,  = z, +e .  y, = z i -  E and yj=zj ,  j E  N\{1, i ) ,  where E > O  is 
sufficiently small. If S E 2N is such that e(S, y )  < e(S, z) then 1 E S and i $! S .  If S is 
such that e(S, z) = Z ,  then St # N (otherwise, if S' = N, then e(S, z) > zi > z,). In 
that case S f =  N\B( j )  for some j (since by (6 )  St cannot have more than one 
neighbor). Since Sf E 2N it follows by (3) and (8) that e(S, z) = e(S',  z). Hence 
S = S' and we reach the contradiction that i E B(j). Thus necessarily, e(S, z) > z, 
for every S E 2N such that e(S, y )  < e(S, z). This implies that 8(y) is lexicographi- 
cally greater than 8(z) and hence, a contradiction. 

(10) For every i E  W z , =  v(W)/(IWI + IJ*I). 
This follows from (9). Suppose that J* = { j , ,  . . . , j k ) .  Then 

These imply kz, + z(  W) = v( W). Since z( W) = z I  . I WI it follows that z, = 

c( W)/(I WI + k) for every i E W. Let K(S) denote the set of neighbors of a set S and 
let k (S)  = I K(S)I. 

(1 1) For every S E 2N, Z ,  < v(S)/(ISI + k(S)). 
Let S E 2N be any set and, without loss of generality, assume that S is closed. Notice 
that z (N)  = v(N) and r, < v({i)), i E N. For every i, e (N\{ i ) ,  z) < zi and for every 
j E K(S), t/ r e(N \ B(j), z) = z(B(j)) - d(B(j)). Thus, by (7) and (8), 

z ,  < min[min{z, : i E S) ,  min{t, : j E K ( S ) ) ]  

(12) If S* minimizes u(S)/(ISI + k(S)) over 2N then for every i E S* and j 
E K(S*), z, = t, = v(S*)/(ISI + k(S*)). 

By (lo), z, = o(S*)/(ISI + k(S*)). On :he other hand, z, < z, for every i E S* and 
z ,  < t, for every j E K(S*). Thus, 

However, since the latter must be an equality (see (10)) i t  follows that z ,  = z, = r, for 
every i E S* and j E K(S*). 

Let S* be any set which minimizes o(S)/(ISI + k(S)) over 2N. For every branch 
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B(i), where i is a neighbor of S*, let T' denote the tree obtained by deleting from T 
all nodes j$ B(i) and adjoining a unique arc (O,, i) with d(O,, i) = d, + i, ( 0 ,  is the 
root of T'). Let z' denote the nucleolus with respect to T' (z '  = (z , ' ) ,~~(~) ) .  

(13) For every i E K(S*) and j E B(i), zJ = z;. 
Let c '  denote the characteristic function with respect to tree Ti, namel). r l ( S )  
= c ( S  U N\B(i)) - o(N\B(i)) + 2,. Suppose, per absurdum, that the claim is not 
true for some i E K(S*). Let i denote the restriction of z to the coordinates j E B(i). 
Thus, 2 # t i .  Obviously i, 9 c i ({ j ) )  (otherwise, if i, > ol ( ( j ) ) ,  we reach the con- 

I tradication e ( ( j )  U N \B(i), z) < 0) and i(B(i)) = cf(B(i)). It follows that' B'(2) is 
lexicographically smaller than Bi(z'). Suppose that 

\ 

Bi(z') = (e t (T , ,  z'), . . . , ei(Tm, z')) 

where ei(S, ,  2) < . . . < el(Sm, i ) ,  e f (T , ,  2') < . . . < el(Tm, z ')  and j, is such that 
e'(S,o, 2) < e i (qo ,  z i )  and for j < j,, el(%, i )  = ef(T,, z'). Define y = (y, ,  . . . .j,,) by 
y, = z, for j$ B(i) and yJ = z,' for j E B(i). It follows from (3) and (6) that for every 
R c N \B(i) and S c B(i), e (S  U N \ B(i), z) < e (S  U R, z) and e (S  U N \  B(i), -v)  
< e (S  U R,  y). Also, for j < j, and every R c N \ B(i), e(S- U R ,  z) = e(T, U R, 11) 
and e(S,o u N \ B(i), z) < e ( q 0  U N \B(i), y). It thus follows that B(y) is lexicographi- 
cally greater than B(z). Since y ( N )  = o(N) and y, :, c({ j ) )  for j E N, this implies a 
contradiction. 

Propositions (12) and (13) imply that the following algorithm computes the nucleo- 
lus z. The algorithm operates on a list L of subtrees (of the type Ti  mentioned above) 
of T. For a tree r in L let N(r) denote the "set of users" of 7. 

Algorithm i 

0. Initiate with L = (T)  and d, = d(j(i), i) (i E N). 
1. Let 7 be the next tree in L. Find a closed set S* E 2N(') which minimizes 

{(S) 2 d(S)/(lSl + k(S)). Notice that {(S) is the total length (with respect to 7) of 
the subtree corresponding to S, divided by the number of nodes and neighbors of this 
subtree. 

2. Delete 7 from L. 
3. Assign z, = [(S*) for every i E S*. 
4. For every neighbor i of S*, if i is a leaf of T then assign z, = [(S*) + d,; 

otherwise, set dl = 4 + {(S*) and adjoin the subtree Ti  to the list L. 
5. If L = @ terminate; otherwise, go to 1. 
The validity of this algorithm follows from (12) and (13). Notice that the search for 

S*  in step 1 is carried out in a domain whose size may grow exponentially with n. 
However, this search can always be completed within polynomial-time bound. as we 
show in the Appendix. To apply the algorithm of the Appendix, delete the leaves of r 
(obviously no leaf belongs to S*) and define a, = dl, 6, = k({i)) for the remaining 
nodes. The algorithm of the Appendix terminates within 0(n2)  operations, and there 
are n subtrees of the type Ti.  Hence, the nucleolus is computed within 0(n3) 
operations. 

f The Shapley value. The Shapley allocation could be defined as s = (s,, . . . , s,) 
where 

! 
ISI! (n - IS1 - I)! 

sf= C n! [C(S u { i ) )  - V(S) ]  
S C N  

(see [I41 for the properties characterizing s). 

We denote e' ,  6'. etc., for the operators e,  6, etc., respectively, when these relate to the game a' 
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Unlike the case of nucleolus, the analysis of the Shapley allocation is much simpler. 
It is based on the additive nature of s  as an operator over the class of games, i.e., 
S , [ C  + U ]  = s i [v ]  + s , [u]  (see [14]). It turns out that our function c can be expressed as 
a sum of functions v' for which the Shapley allocation has a simple form. These are 
defined as follows. For i E'N and S E 2N let o i ( S )  = 4 if S fl B(i)  # @ and 
u i ( S )  = 0 otherwise. It can be easily verified that o ( S )  = X i , ,  o l ( S ) .  The value for 
the game v' is simply s,[vi]  = d , / lB( i ) )  if j E B(i),  and s,[vi] = 0  otherwise. It follows 
that the Shapley cost allocation is characterized by the property that the cost of each 
arc is allocated equally to the users of the arc. The allocation s  can be computed 
efficiently by the following algorithm. Let b( i )  = IB(i)l, i  E N .  The numbers b ( i )  can 
be calculated by a "depth-first-search" over T ,  beginning at node 1 (see [16]). This is 
done in O(n)  operations. Then s  is defined recursively by s, = s,(,) + d , /b , ,  starting 
from so = 0.  Thus, the whole computation requires only O(n)  operations. 

Appendix. Minimizing ( C j E S  a , ) / ( x r E s  b,) over concentric subtrees S of a 
directed tree. 

A subtree S of a directed tree T is called concentric if both have the same root. Let 
T be a directed tree whose set of nodes is (1, . . . , m ) ,  where 1 is the root. We shall 
use the symbol S,  without confusion, both for a subtree and for its set of nodes. Thus, 
a set S c (1, . . . , m )  corresponds to a concentric subtree if and only if 1 E S and for 
every 1 # i  E S all the ancestors of i belong to S.  For any vector y = ( y , ,  . . . , y,) 
and S c T denote y ( S )  = C i E s  y ,  ( ~ ( 0 )  = 0).  We shall consider the following prob- 
lem. 

PROBLEM. Given a nonnegative vector a  = ( a , ,  . . . , a,) and a positive vector 
b  = ( b , ,  . . . , b,), find a concentric subtree S of T which minimizes the ratio y ( S )  
E a ( S ) / b ( S ) .  b 

We shall develop a polynomial-time algorithm for this problem. For every i  E T let 
Ti denote the maximal subtree of T which is rooted in i .  Notice that T I  = T .  Let K, 
denote the set of "sons" of i .  Given a nonnegative number r, we say that node i is 
r-active if there is a subtree S of T ,  which is rooted in i ,  such that y ( S )  < r. Notice 
that by our terminology S is a concentric subtree of T,. The set of all r-active nodes of 
T will be denoted by T r  and we also denote K: = T r  fl K,. 

For any given r > 0 we now define subtrees S: ( i  = 1, . . . , n), such that Str is 
rooted in i. The definition is recursive: (i) If i  a leaf let S: = { i ) .  (ii) Assuming S/' has 
been defined for all j E K,, let S: = ( i }  U U { SJ' : j E K:) . Thus, S: consists of i  itself 
and the subtrees of which correspond to r-active sons of i .  

LEMMA. For every i  E T and r > 0, i is r-active if and only if y(S:) < r. 

PROOF. The "if" part is definitional. We shall prove the "only if" part by 
induction. The claim is trivial if i is a leaf. Assume that the claim is true for every 
j E T, \ { i ) ,  and suppose that i  is r-active. Thus, there is a subtree S* of T ,  rooted in i ,  
such that y(S*)  < r. If j E S* is a son of i and is not r-active then, by definition, 
y(S* n T,) > r and it follows that y(S*\T,) < r. Similarly, if j @  S* is an r-active son 
of i  then, by the induction hypothesis, y ( y )  < r and it follows that y(S* U S,') < r. 
These two observations imply (by deleting T, for non-r-active sons and adjoining S,' 
for r-active sons which do not belong to S*, and applying this successively to every 
node) that in fact y(S,') < r. This completes the proof. 

Let q = min(y(S)  : S is a concentric subtree of T ) .  r 

THEOREM. r = q if and on!v if y ( S 9  = r. 

PROOF. For the "only i f "  part, suppose that r = q. Thus, 1 is r-active and by the 
lemma y ( S 9  < r. However, y ( S 3  > q and hence y ( S 9  = r. 
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For the "if" part, suppose first that r < q. In this case, by the definition of q, 1 is 
not r-active and hence, by the lemma, y(SD > r. For the remaining case, suppose that 
r > q. We already know by the "only if" part that y(Sf)  = q. Thus, y(SP) < r. If 
every i E S;\{ 1 } is q-active then S; = Sf and hence y (S9  = y(SP) = q < r; other- 
wise, there is an i E s; \{  1) which is not q-active (but is r-active of course). Notice 
that Sf is a concentric proper subtree of S;. Let V denote the set of all nodes 
i E S;\Sf such that i is a son of a node in Sf .  Thus, S; = S f  U U {Sfr : i E V )  and 
also Sfr n S,' =@ if i .  j E V and i # j. Since for every i E  V y ( S 0  = q < y(SIr) < r, 
it follows by the implication A/ B < C/ D * ( A  + C ) / ( B  + D )  < C / D  (A, C > 0, 
B, D > 0) that 

and this completes the proof. m 
Our algorithm is based upon the theorem and could be roughly described as 

follows. If r > q is an approximation for q (we initiate with r = a , / b , )  then we 
construct the subtrees Sfr. By the lemma, these could be constructed according to the 
formula 

Sfr= { i }  U u {y : j E  K,, ~ ( 5 ' ' )  < r ) .  

Since node 1 is r-active (r  > q), i t  follows by the lemma that y (S9  < r. Moreover, i f  
y(SD = r then by the theorem r = q ;  otherwise, y ( S 9  is a better approximation for q, 
i.e., q < y(S;) < r. A detailed description follows. 

A lgorithm 
0. Initiate with r = a , / b , ,  and S = N. 
1. For every leaf i E S, define labels a,  = a,, P, = b, and delete i from S i f  

a i l p i  > r. 
2. If i is unlabeled and every son j E S of i is labeled. then define labels 

ai = a, + a ( S  f? K,), /?, = b, + p ( S  f' K,). If a,/P, > r then delete all j E S n T, from 
S. Repeat this step until node 1 is labeled. 

3. If a , / P ,  = r then terminate; otherwise (necessarily a,//3, = y(SD < r) define 
r = a , / P , ,  erase all labels and go to 1. 

When the algorithm terminates, S is a concentric subtree such that y(S)  = q. The 
algorithm must terminate within m iterations since at least one node is deleted during 
an iteration which ends with a , / @ ,  < r (except, perhaps. the first iteration). The 
number of operations per deletion is not greater than O(m). Thus, the algorithm 
terminates within 0 (m2)  operations. 
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