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Preface

Nonlinear continuum mechanics is one of the fundamental subjects that form the

foundation of modern computational mechanics. The study of the motion and be-

havior of materials under different loading conditions requires understanding of

basic, general, and nonlinear, kinematic and dynamic relationships that are covered

in continuum mechanics courses. The finite element method, on the other hand, has

emerged as a powerful tool for solving many problems in engineering and physics.

The finite element method became a popular and widely used computational ap-

proach because of its versatility and generality in solving large-scale and complex

physics and engineering problems. Nonetheless, the success of using the continuum-

mechanics-based finite element method in the analysis of the motion of bodies that

experience general displacements, including arbitrary large rotations, has been lim-

ited. The solution to this problem requires resorting to some of the basic concepts in

continuum mechanics and putting the emphasis on developing sound formulations

that satisfy the principles of mechanics. Some researchers, however, have tried to

solve fundamental formulation problems using numerical techniques that lead to

approximations. Although numerical methods are an integral part of modern com-

putational algorithms and can be effectively used in some applications to obtain

efficient and accurate solutions, it is the opinion of many researchers that numerical

methods should only be used as a last resort to fix formulation problems. Sound

formulations must be first developed and tested to make sure that these formula-

tions satisfy the basic principles of mechanics. The equations that result from the use

of the analytically correct formulations can then be solved using numerical methods.

This book is focused on presenting the nonlinear theory of continuum mechan-

ics and demonstrating its use in developing nonlinear computer formulations that

can be used in the large displacement dynamic analysis. To this end, the basic

concepts used in continuum mechanics are first presented and then used to develop

nonlinear general finite element formulations that can be effectively used in the

large displacement analysis. Two nonlinear finite element dynamic formulations will

be considered in this book. The first is a general large-deformation finite element

formulation, whereas the second is a formulation that can be used efficiently to solve

small-deformation problems that characterize very and moderately stiff structures.

ix
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In this latter case, an elaborate method for eliminating the unnecessary degrees of

freedom must be used in order to be able to efficiently obtain a numerical solution.

An attempt has been made to present the materials in a clear and systematic manner

with the assumption that the reader has only basic knowledge in matrix and vector

algebra as well as basic knowledge of dynamics. The book is designed for a course at

the senior undergraduate and first-year graduate level. It can also be used as a ref-

erence for researchers and practicing engineers and scientists who are working in the

areas of computational mechanics, biomechanics, computational biology, multibody

system dynamics, and other fields of science and engineering that are based on the

general continuum mechanics theory.

In Chapter 1 of this book, matrix, vector, and tensor notations are introduced.

These notations will be repeatedly used in all chapters of the book, and, therefore, it is

necessary that the reader reviews this chapter in order to be able to follow the pre-

sentation in subsequent chapters. The polar decomposition theorem, which is funda-

mental in continuum and computational mechanics, is also presented in this chapter.

D’Alembert’s principle and the principle of virtual work can be used to systematically

derive the equations of motion of physical systems. These two important principles

are discussed, and the relationship between them is explained. The use of a finite

dimensional model to describe the continuum motion is also discussed in Section 8;

whereas in Section 9, the procedure for developing the discrete equations of motion

is outlined. In Section 10, the principles of momentum and principle of work and

energy are presented. In this section, the problems associated with some of the finite

element formulations that violate these analytical mechanics principles are discussed.

Section 11 of Chapter 1 is devoted to a discussion on the definitions of the gradient

vectors that are used in continuum mechanics to define the strain components.

In Chapter 2, the general kinematic displacement equations of a continuum are

developed. These equations are used to define the strain components. The Green–

Lagrange strains and the Almansi or Eulerian strains are introduced. The Green–

Lagrange strains are defined in the reference configuration, whereas the Almansi or

Eulerian strains are defined in the current deformed configuration. The relation-

ships between these strain components are established and used to shed light on the

physical meaning of the strain components. Other deformation measures as well as

the velocity and acceleration equations are also defined in this chapter. The impor-

tant issue of objectivity that must be considered when large deformations and in-

elastic formulations are used is discussed. The equations that govern the change of

volume and area, the conservation of mass, and examples of deformation modes are

also presented in this chapter.

Forces and stresses are discussed in Chapter 3. Equilibrium of forces acting on

an infinitesimal material element is used to define the Cauchy stresses, which are

used to develop the partial differential equations of equilibrium. The transformation

of the stress components and the symmetry of the Cauchy stress tensor are among

the topics discussed in this chapter. The virtual work of the forces due to the change

of the shape of the continuum is defined. The deviatoric stresses, stress objectivity,

and energy balance equations are also discussed in Chapter 3.

x Preface
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The definition of the strain and stress components is not sufficient to describe

the motion of a continuum. One must define the relationship between the stresses

and strains using the constitutive equations that are discussed in Chapter 4. In

Chapter 4, the generalized Hooke’s law is introduced, and the assumptions used

in the definition of homogeneous isotropic materials are outlined. The principal

strain invariants and special large-deformation material models are discussed. The

linear and nonlinear viscoelastic material behavior is also discussed in Chapter 4.

In many engineering applications, plastic deformations occur due to excessive

forces and impact as well as thermal loads. Several plasticity formulations are pre-

sented in Chapter 5. First, a one-dimensional theory is used in order to discuss the

main concepts and solution procedures used in the plasticity analysis. The theory is

then generalized to the three-dimensional analysis for the case of small strains.

Large strain nonlinear plasticity formulations as well as the J2 flow theory are among

the topics discussed in Chapter 5. This chapter can be skipped in its entirety because

it has no effect on the continuity of the presentation, and the developments in

subsequent chapters do not depend on the theory of plasticity in particular.

Nonlinear finite element formulations are discussed in Chapter 6 and 7. Two

formulations are discussed in these two chapters. The first is a large-deformation

finite element formulation, which is discussed in Chapter 6. This formulation,

called the absolute nodal coordinate formulation, is based on a continuum

mechanics theory and employs displacement gradients as coordinates. It leads to

a unique displacement and rotation fields and imposes no restrictions on the

amount of rotation or deformation within the finite element. The absolute nodal

coordinate formulation has some unique features that distinguish it from other

existing large-deformation finite element formulations: it leads to a constant mass

matrix; it leads to zero centrifugal and Coriolis forces; it automatically satisfies

the principles of mechanics; it correctly describes an arbitrary rigid-body

motion including finite rotations; and it can be used to develop several beams,

plate, and shell elements that relax many of the assumptions used in classical

theorems because this formulation allows for the use of more general constitutive

relationships.

Clearly, large-deformation finite element formulations can also be used to solve

small deformation problems. However, it is not recommended to use a large-

deformation finite element formulation to solve a small-deformation problem.

Large-deformation formulations do not exploit some particular features of small-

deformation problems, and, therefore, such formulations can be very inefficient in

the solution of stiff and moderately stiff systems. It turns out that the development

of an efficient small-deformation finite element formulation that correctly describes

an arbitrary rigid-body motion requires the use of more elaborate techniques in

order to define a local linear problem without compromising the ability of the

method to describe large-displacement small-deformation behavior. The finite ele-

ment floating frame of reference formulation, which is widely used in the analysis

of small deformations, is discussed in Chapter 7 of this book. This formulation

allows eliminating high-frequency modes that do not have a significant effect on
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the solution, thereby leading to a lower-dimension dynamic model that can be

efficiently solved using numerical and computer methods.
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the production of this book. I would also like to thank my family for their help,

patience, and understanding during the time of preparing this book.
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