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ABSTRACT 
 
 Complementing recent advances made in the field of structural health monitoring and 
damage detection, the concept of a wireless sensing network with distributed computational 
power is proposed.  The fundamental building block of the proposed sensing network is a 
wireless sensing unit capable of acquiring measurement data, interrogating the data and 
transmitting the data in real-time to the network.  To perform the computationally intensive task 
of damage detection, an advanced PowerPC computational core is chosen.  First, a layer of 
software comprised of various device driver modules is developed to operate the various 
hardware subsystems of the wireless sensing unit.  Additional software is then designed for 
embedment that can locally execute a time-series based damage detection algorithm.    
 
INTRODUCTION 
 
 The concept of structural monitoring is not new to the field of structural engineering.  For 
example, to monitor the response of bridges during seismic responses, the California Department 
of Transportation since 1977 has instrumented 61 long span bridges with over 900 permanent 
sensors (Hipley 2001).  Other applications have included permanent installation in structures 
controlled by structural control systems as well as in temporary installation for identification of 
modal properties.  Current monitoring systems are characterized by hub-spoke architecture with 
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sensors connected directly to a centralized data server via wires.  The cost of wired-based 
monitoring systems is high due to the high cost associated with the installation and maintenance 
of the wires.   
 Using available technologies from the marketplace, a low-cost wireless monitoring system is 
presented as an alternative to the expensive wire-based systems.  Coupled with each sensor will 
be a means of wireless communications for the relay of real-time measurement data to a network 
of sensor nodes.  Furthermore, computational power will be coupled with each wireless sensing 
unit to allow for the local processing of measurement data.  Through the coupling of these two 
technological innovations, a low-cost yet tremendously powerful wireless modular monitoring 
system (WiMMS) can be delivered.  The computational core of the wireless sensing units will 
facilitate parallel data processing, rendering automated damage detection procedures feasible in 
real-time.  The data communication architecture of the system is no longer confined to the 
traditional centralized style, with wireless peer-to-peer (P2P) communication between sensing 
units now attainable. 
 The hardware design of the wireless sensing unit will be briefly discussed with the design of 
embedded software presented in detail.  The software design can be divided into two layers: the 
device driver layer and the application layer as shown in Figure 1.  Device driver modules are 
written to independently operate the various hardware subsystems of the wireless sensing unit.  
An application layer is presented that implements an automated damage detection method using 
time-series analysis.  With wireless sensing units acting as local damage detectors, a WiMMS 
system intended for structural health monitoring is realized.         
 
WIRELESS SENSING UNIT PROTOTYPE DESIGN 
 
 The hardware design of the wireless sensing unit proposed by Lynch et al. (2001) can be 
divided into three broad categories: the sensing interface, the computational core, and wireless 
communications.  The sensing interface is responsible for the acquisition of measurement data 
from sensors connected to the unit.  The interface is sensor transparent allowing any analog 
sensor to interface to the unit.  While accelerometers are a popular choice among structural 
engineers, other sensors such as strain gages, linear displacement transducers and thermometers 
can easily be used.  Within the sensing interface is a Texas Instruments ADS7821 single channel 
16-bit analog-to-digital (A/D) converter.  The converter is responsible for the conversion of 
analog sensor readings to a digital form.  The sample rate of the A/D converter is variable and 
can be easily adjusted by the computational core.     

Figure 1.  Hardware, device-driver modules, and application software layers 
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 The computational core’s microcontroller is an important part of the sensing unit’s design.  
Its role is to operate the entire sensing unit including the control of the A/D converter and the 
wireless modem.  In addition, the computational core is responsible for the implementation of 
algorithms intended for damage detection, modal analysis and structural control.  In particular, a 
32-bit PowerPC microcontroller is selected to serve as the computational core.  Supporting fast 
floating-point operations in hardware and having plenty of ROM and RAM memory, the 
Motorola MPC555 PowerPC serves as a suitable core choice balancing computational power 
with moderate power consumption characteristics. 
 Responsible for communications between each wireless sensing unit and the sensing 
network, Proxim RangeLAN2 wireless modems are chosen.  Communicating in the 2.4 GHz, 
unlicensed FCC radio band, the RangeLAN2 modems can communicate at ranges as high as 
1000 feet in open space.  Depending on the building construction, this range can be reduced to 
distances as low as 500 feet when used indoors.  Using direct sequence spread-spectrum 
modulation, a reliable communication link can be established that is immune to narrow band 
interference and multi-path fading.   
 The completed prototype wireless sensing unit is illustrated in Figure 2.  The size of the 
current prototype is about 16 cubic inches and components cost only a few hundred dollars.  
Further improvement on both the form factor and cost is possible.     
 
THE HARDWARE-SOFTWARE INTERFACE 
 
 Software that is interfacing with hardware is the lowest layer of software abstraction.  Its role 
is to operate and control the unit’s hardware to assist upper software layers in accomplishing 
their computational goals.  The functionality envisioned indicates that the layered software 
structure could be complex and lengthy.  To ensure an efficient development process that will 
yield portable code of high quality, a modular software design approach is emphasized.  The 
system software is decomposed into modules.  The modules, also known as device drivers, are 
typically written in a high level programming language such as C.  
 Four software modules are designed for control of the unit’s hardware.  The first module is to 
control the microcontroller’s serial port for sending data in a serial fashion (one bit at a time).  
Control of the serial port is done by controlling the computational core’s universal asynchronous 

Figure 2. Completed wireless sensing unit prototype 
 



receiver/transmitter (UART).  Functions are provided in the module for initialization of the 
UART at a specified transmission speed (baud rate), and for transmission and reception of bytes 
through the serial port. 
 By operating the RangeLAN2 in packetized mode, the computational core has full control 
over the configuration and operation of the modem through the serial port.  Two other modules 
are designed implementing two unique protocols used for the transfer of operational and 
configuration data as required by the wireless modems.  Whether data is being sent or received 
or configuration commands are being issued to the modem, the Proxim packet exchange protocol 
(PPX-1 Layer 2 Protocol) is used for all communication between the modem and the wireless 
sensing unit’s core.  A packet is a list of bytes that encode information understandable by the 
wireless modem.  Within the packet exchange protocol, a modem command protocol (MCP) is 
encoded that specifies a command to the modem such as transmit data or specific configuration 
settings.      
 The forth module is responsible for the control of the wireless sensing unit’s A/D converter.  
Various functions are specified in the module’s implementation that can initialize the converter, 
set the converter to a desired sampling rate, as well as provide a means to read the converter’s 
digital data and to store the data in memory.       
      
APPLICATION SOFTWARE LAYER 
 
 The application software layer of the wireless sensing unit is written in a modular fashion, 
similar to that of the device drivers.  Various application modules can be written that are 
intended for applications ranging from modal analysis to structural control.  This study will 
primarily focus on an application module written to automate the process of damage detection 
using a statistical pattern recognition paradigm.    
 
Damage Diagnosis using the Pattern Recognition Paradigm 
 Structural health monitoring entails the use of damage detection algorithms for the 
identification of damage, as well as provides insight to location and severity.  Particularly for 
civil structures, information on the integrity of a structure in near real-time can be instrumental in 
assessing its safety over its operational lifespan.   
 A rational approach to structural health monitoring is to develop a low-cost technology 
infrastructure for installation in a civil structure that can automate the process of detecting 
damage.  The wireless sensing unit can serve as the fundamental building block of the automated 
system proposed.  Using the computational power of the units, automated damage detection 
algorithms can be embedded that will interrogate the measurement data for the purpose of 
identifying and quantifying structural damage. 
 A large body of literature exists focusing on the detection of damage in a variety of 
structures.  Various methods have been proposed examining the measurement response of a 
structure in both the time and frequency domains.  For example, a large number of the proposed 
methods depend on changes in the modal properties of a structure to identify the existence of 
damage.  Unfortunately, the environmental and operational variability of civil structures is a 
contributor to natural frequency and mode changes, rendering their change as the basis for 
damage identification difficult for civil structures except in cases where extreme damage is 
sustained (Sohn et al. 1999). 
 



Statistical Pattern Recognition Paradigm – Sohn and Farrar (2001) proposed using time series 
analysis for the identification of damage in civil structures.  It is part of a damage detection 
framework which consists of four-parts: evaluation of a structure’s operational environment, the 
acquisition of structural response measurements, the extraction of measurement features that are 
sensitive to damage and the use of statistical models for feature discrimination (Sohn et al. 
2001).  The time series approach has shown great promise in the identification of damage in the 
hull of a high-speed patrol boat as well as in several laboratory test structures.  In addition, the 
approach is a good candidate for embedment within the wireless sensing units. 
 The time history analysis begins with a measurement of the structural response at a particular 
sensor location.  Assuming the response to be stationary, an autoregressive (AR) process model, 
also known as an infinite impulse response (IIR) filter, is used to fit the discrete measurement 
data sampled at a period of ∆t: 
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The response of the structure at time t=k∆t, denoted by xk, is a function of p previous 
observations of the response of the system, plus, a white noise error term, rk

x.  Weights on the 
previous observations of xk-i are denoted by the bi coefficients.   
 A database of AR(p) models of the same order, p, calculated from a wide assortment of time-
history responses of the structure in a known structural state (undamaged) are collected.  While 
the database is populated with models derived from one structural state, the models should be 
representative of the structure in a wide spectrum of operational conditions.   
 An AR(p) model is fit to a new measurement time-history, yk, taken from a structure whose 
structural state (damage or undamaged) is unknown. This AR model is compared to each model 
of the structure’s database to find a model that closely resembles it as determined by a minimum 
sum of the difference of the newly derived and the database models’ coefficients, bi

y and bi
x 

respectively.  If no structural damage is experienced and the operational conditions of the two 
models are close to one another, the selected AR database model should closely approximate the 
measured response.  If damage has been sustained by the structure, even the closest AR model of 
the database will not approximate the measured structural response well.  As a result, a second 
stage autoregressive model with exogenous inputs (ARX) is used to model the relationship 
between the database AR model’s original time history measurement, x(k∆t), and the model’s 
residual error, rk

x:   
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The residual of the ARX model is the last term of equation (2), εk

y.  The measurement data 
corresponding to the unknown structural state is used in the same ARX(a,b) model obtained 
from the database:  
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 The residual of the ARX(a,b) model is the damage sensitive feature in the analysis.  If the 
structure is in a state of damage, the statistics of the ARX model residual, εk

y, will vary from that 
of the ARX model corresponding to the undamaged structure.  In particular, it has been shown 
that damage can be identified when the ratio of the standard deviation of the model residuals 
exceeds a threshold value established from good engineering judgment (Sohn et. al. 2001):  
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Implementation of an Automated Damage Detection System  - Using the prototype wireless 
sensing units, the time-series damage detection method is to be implemented.  A centralized data 
server will be used in the system to store the database of AR(p) and ARX(a,b) models 
corresponding to various operational conditions of the undamaged structure.  The centralized 
server is necessary since the memory associated with each sensing unit is not sufficient to hold 
the vast database.   
 With wireless sensing units installed throughout the system, the system response at various 
degrees-of-freedom is recorded.  Prior to model fitting, the measurement data is normalized to 
have zero mean and a standard deviation of unity.  A software module is written for the units’ 
embedded application layer that determines the coefficients of an AR(p) model based on a 
segment of the recorded data.  Multiplying both sides of equation (1) by the current measurement 
sample, xk, and taking the expected value of both sides, the autocorrelation function of the 
autoregressive process is derived:  
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The autocorrelation function of the discrete time history obeys the initial difference equation of 
the AR process.  This yields a means of determining the coefficients of the AR process based on 
calculations of the autocorrelation of the measurement data.  Resulting are the Yule-Walker 
equations (Gelb 1974):   
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The autocorrelation values of equation (6) can simply be estimated from the measurement data 
consisting on N samples, by:  
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 Coefficients of the autoregressive process are extremely sensitive to the way the 
autocorrelation of the process is determined.  As a result, a method has been proposed by Press et 
al. (1992) for determining the coefficients of the autoregressive model directly from the 



measurement data.  The method is recursive with its order increasing during each recursive call 
by estimating a new coefficient bi and re-estimating the previously calculated coefficients so as 
to minimize the residual error of the process.      
 
Application Strategy  - Once the autoregressive model has been locally determined by the 
wireless sensing unit using the measurement data, communication is established with the 
centralized data server.  The p coefficients of the AR(p) process are sent to the centralized server 
for comparison to the database.  Prior to the installation of the system, the number of 
autoregressive process coefficients is to be determined.  The number can vary from 10 to 50 
coefficients with the residual error of the autoregressive process decreasing with an increase in 
the number of coefficients.  Determination of the closest AR model in the database is performed 
in the centralized server.   
 Once a match has been made, the coefficients of the ARX model corresponding to the AR 
model are returned to the sensing unit.  The measurements stored in the wireless sensing unit are 
then used with the ARX model to determine the time history of the ARX residuals.  The ratio of 
the standard deviation of the ARX residual corresponding to the measurement data, σ(εk

y), and 
that from the database, σ(εk

x), are compared to check if they exceed the damage threshold, h.  The 
process is illustrated in Figure 3.         
 
CONCLUSION 
 
 This study has focused upon the design of embedded software for the operation of the 
proposed wireless sensing units.  Embedded software is necessary to harness the full potential 
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Figure 3.  Implementation strategy of a time-series based structural health monitoring system 



provided by the state-of-art hardware selected for the unit’s design.  The software design is 
divided into two software layers: the lower layer operates the various hardware subsystems while 
the upper layer implements application algorithms.  A modular software approach is employed to 
write device driver software resulting in four C modules.  With respect to the application 
software layer, the use of a statistical pattern recognition paradigm for detection of damage is 
considered for implementation.       
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