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Abstract

In order to account for the observable Universe, any comprehensive
theory or model of cosmology must draw from many disciplines of physics,
including gauge theories of strong and weak interactions, the hydrody-
namics and microphysics of baryonic matter, electromagnetic fields, and
spacetime curvature, for example. Although it is difficult to incorporate
all these physical elements into a single complete model of our Universe,
advances in computing methods and technologies have contributed signif-
icantly towards our understanding of cosmological models, the Universe,
and astrophysical processes within them. A sample of numerical calcula-
tions (and numerical methods) applied to specific issues in cosmology are
reviewed in this article: from the Big Bang singularity dynamics to the
fundamental interactions of gravitational waves; from the quark-hadron
phase transition to the large scale structure of the Universe. The em-
phasis, although not exclusively, is on those calculations designed to test
different models of cosmology against the observed Universe.
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5 Computational Cosmology: Early Universe to Large Scale Structure

1 Introduction

Numerical investigations of cosmological spacetimes can be categorized into
two broad classes of calculations, distinguished by their computational (or even
philosophical) goals: 1) geometrical and mathematical principles of cosmolog-
ical models, and 2) physical and astrophysical cosmology. In the former, the
emphasis is on the geometric framework in which astrophysical processes occur,
namely the cosmological expansion, shear, and singularities of the many models
allowed by the theory of general relativity. In the latter, the emphasis is on the
cosmological and astrophysical processes in the real or observable Universe, and
the quest to determine the model which best describes our Universe. The former
is pure in the sense that it concerns the fundamental nonlinear behavior of the
Einstein equations and the gravitational field. The latter is more complex as
it addresses the composition, organization, and dynamics of the Universe from
the small scales (fundamental particles and elements) to the large (galaxies and
clusters of galaxies). However the distinction is not always so clear, and geo-
metric effects in the spacetime curvature can have significant consequences for
the evolution and observation of matter distributions.

Any comprehensive model of cosmology must therefore include nonlinear
interactions between different matter sources and spacetime curvature. A real-
istic model of the Universe must also cover large dynamical spatial and tempo-
ral scales, extreme temperature and density distributions, and highly dynamic
atomic and molecular matter compositions. In addition, due to all the var-
ied physical processes of cosmological significance, one must draw from many
disciplines of physics to model curvature anisotropies, gravitational waves, elec-
tromagnetic fields, nucleosynthesis, particle physics, hydrodynamic fluids, etc.
These phenomena are described in terms of coupled nonlinear partial differen-
tial equations and must be solved numerically for general inhomogeneous space-
times. The situation appears extremely complex, even with current technologi-
cal and computational advances. As a result, the codes and numerical methods
that have been developed to date are designed to investigate very specific prob-
lems with either idealized symmetries or simplifying assumptions regarding the
metric behavior, the matter distribution/composition or the interactions among
the matter types and spacetime curvature.

It is the purpose of this article to review published numerical cosmological
calculations addressing problems from the very early Universe to the present;
from the purely geometrical dynamics of the initial singularity to the large
scale structure of the Universe. There are three major sections: § 2 where a
brief overview is presented of various defining events occurring throughout the
history of our Universe and in the context of the standard model; § 3 where
summaries of early Universe and relativistic cosmological calculations are pre-
sented; and § 4 which focuses on structure formation in the post-recombination
epoch and on testing cosmological models against observations. Following a
few conclusion statements in § 5, an appendix § 6 discusses the basic Einstein
equations, kinematic considerations, matter source equations with curvature,
and the equations of perturbative physical cosmology on background isotropic
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models. References to numerical methods are also supplied and reviewed for
each case.
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7 Computational Cosmology: Early Universe to Large Scale Structure

2 Background

2.1 A brief chronology

With current observational constraints, the physical state of our Universe, as
understood in the context of the standard or Friedmann-Lemâıtre-Robertson-
Walker (FLRW) model, can be crudely extrapolated back to ∼ 10−34 seconds
after the Big Bang, before which the classical description of general relativity
is expected to give way to a quantum theory of gravity. At the earliest times,
the Universe was a plasma of relativistic particles consisting of quarks, leptons,
gauge bosons, and Higgs bosons represented by scalar fields with interaction
and symmetry regulating potentials. It is believed that several spontaneous
symmetry breaking (SSB) phase transitions occured in the early Universe as
it expanded and cooled, including the grand unification transition (GUT) at
∼ 10−34 seconds after the Big Bang in which the strong nuclear force split off
from the weak and electromagnetic forces (this also marks an era of inflation-
ary expansion and the origin of matter-antimatter asymmetry through baryon,
charge conjugation, and charge + parity violating interactions and nonequi-
librium effects); the electroweak (EW) SSB transition at ∼ 10−11 s when the
weak nuclear force split from the electromagnetic force; and the chiral or quan-
tum chromodynamic (QCD) symmetry breaking transition at ∼ 10−5 s during
which quarks condensed into hadrons. The most stable hadrons (baryons, or
protons and neutrons comprised of three quarks) survived the subsequent period
of baryon-antibaryon annihilations, which continued until the Universe cooled
to the point at which new baryon-antibaryon pairs could no longer be produced.
This resulted in a large number of photons and relatively few surviving baryons.
A period of primordial nucleosynthesis followed from ∼ 10−2 to ∼ 102 s during
which light element abundances were synthesized to form 24% helium with trace
amounts of deuterium, tritium, helium-3, and lithium.

By ∼ 1011 s, the matter density became equal to the radiation density as
the Universe continued to expand, identifying the start of the current matter-
dominated era and the beginning of structure formation. Later, at ∼ 1013 s
(3 × 105 years), the free ions and electrons combined to form atoms, effectively
decoupling the matter from the radiation field as the Universe cooled. This de-
coupling or post-recombination epoch marks the surface of last scattering and
the boundary of the observable (via photons) Universe. Assuming a hierar-
chical Cold Dark Matter (CDM) structure formation scenario, the subsequent
development of our Universe is characterized by the growth of structures with
increasing size. For example, the first stars are likely to have formed at t ∼ 108

years from molecular gas clouds when the Jeans mass of the background bary-
onic fluid was approximately 104 M⊙, as indicated in Figure 1. This epoch of
pop III star generation is followed by the formation of galaxies at t ∼ 109 years
and subsequently galaxy clusters. Though somewhat controversial, estimates of
the current age of our Universe range from 10 to 20 Gyrs, with a present-day
linear structure scale radius of about 8h−1 Megaparsecs, where h is the Hubble
parameter (compared to 2–3 Megaparsecs typical for the virial radius of rich
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galaxy clusters).

2.2 Successes of the standard model

The isotropic and homogeneous FLRW cosmological model has been so suc-
cessful in describing the observable Universe that it is commonly referred to as
the “standard model”. Furthermore, and to its credit, the model is relatively
simple so that it allows for calculations and predictions to be made of the very
early Universe, including primordial nucleosynthesis at 10−2 seconds after the
Big Bang, and even particle interactions approaching the Planck scale at 10−43

seconds. At present, observational support for the standard model includes:

• the expansion of the Universe as verified by the redshifts in galaxy spectra
and quantified by measurements of the Hubble constantH0 = 100h km s−1

Mpc−1 ;

• the deceleration parameter observed in distant galaxy spectra (although
uncertainties about galactic evolution, intrinsic luminosities, and standard
candles prevent an accurate estimate);

• the large scale isotropy and homogeneity of the Universe based on temper-
ature anisotropy measurements of the microwave background radiation
and peculiar velocity fields of galaxies (although the light distribution
from bright galaxies is somewhat contradictory);

• the age of the Universe which yields roughly consistent estimates between
the look-back time to the Big Bang in the FLRW model and observed
data such as the oldest stars, radioactive elements, and cooling of white
dwarf stars;

• the cosmic microwave background radiation suggests that the Universe
began from a hot Big Bang and the data is consistent with a mostly
isotropic model and a black body at temperature 2.7 K;

• the abundance of light elements such as 2H, 3He, 4He and 7Li, as predicted
from the FLRW model, is consistent with observations and provides a
bound on the baryon density and baryon-to-photon ratio;

• the present mass density, as determined from measurements of luminous
matter and galactic rotation curves, can be accounted for by the FLRW
model with a single density parameter (Ω0) to specify the metric topology;

• the distribution of galaxies and larger scale structures can be reproduced
by numerical simulations in the context of inhomogeneous perturbations
of the FLRW models.

Because of these successes, most work in the field of physical cosmology (see
§ 4) has utilized the standard model as the background spacetime in which the
large scale structure evolves, with the ambition to further constrain parameters
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Figure 1: Schematic depicting the general sequence of events in the post-
recombination Universe. The solid and dotted lines potentially track the Jeans
mass of the average baryonic gas component from the recombination epoch at
z ∼ 103 to the current time. A residual ionization fraction of nH+/nH ∼ 10−4

following recombination allows for Compton interactions with photons to z ∼
200, during which the Jeans mass remains constant at 105M⊙. The Jeans mass
then decreases as the Universe expands adiabatically until the first collapsed
structures form sufficient amounts of hydrogen molecules to trigger a cooling
instability and produce pop III stars at z ∼ 20. Star formation activity can
then reheat the Universe and raise the mean Jeans mass to above 108M⊙. This
reheating could affect the subsequent development of structures such as galaxies
and the observed Lyman-alpha clouds.
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and structure formation scenarios through numerical simulations. The reader is
referred to [84] for a more in-depth review of the standard model, and to [102,
119] for a summary of observed cosmological parameter constraints and best fit
“concordance” models.
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11 Computational Cosmology: Early Universe to Large Scale Structure

3 Relativistic Cosmology

This section is organized to track the chronological events in the history of the
early or relativistic Universe, focusing mainly on four defining moments: 1) the
Big Bang singularity and the dynamics of the very early Universe; 2) inflation
and its generic nature; 3) QCD phase transitions; and 4) primordial nucleosyn-
thesis and the freeze-out of the light elements. The late or post-recombination
epoch is reserved to a separate section § 4.

3.1 Singularities

3.1.1 Mixmaster dynamics

Belinsky, Lifshitz and Khalatnikov (BLK) [29, 30] and Misner [95] discovered
that the Einstein equations in the vacuum homogeneous Bianchi type IX (or
Mixmaster) cosmology exhibit complex behavior and are sensitive to initial con-
ditions as the Big Bang singularity is approached. In particular, the solutions
near the singularity are described qualitatively by a discrete map [27, 29] rep-
resenting different sequences of Kasner spacetimes

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2, (1)

with time changing exponents pi, but otherwise constrained by p1 + p2 + p3 =
p2
1 + p2

2 + p2
3 = 1. Because this discrete mapping of Kasner epochs is chaotic,

the Mixmaster dynamics is presumed to be chaotic as well.
Mixmaster behavior can be studied in the context of Hamiltonian dynamics,

with a Hamiltonian [96]

2H = −p2
Ω + p2

+ + p2
− + e4α(V − 1), (2)

and a semi-bounded potential arising from the spatial scalar curvature (whose
level curves are plotted in Figure 2)

V = 1 +
1

3
e−8β+ +

2

3
e4β+

[

cosh(4
√

3β−) − 1
]

− 4

3
e−2β+ cosh(2

√
3β−), (3)

where eα and β± are the scale factor and anisotropies, and pα and p± are the
corresponding conjugate variables. A solution of this Hamiltonian system is
an infinite sequence of Kasner epochs with parameters that change when the
phase space trajectories bounce off the potential walls, which become exponen-
tially steep as the system evolves towards the singularity. Several numerical
calculations of the dynamical equations arising from (2) and (3) have indicated
that the Liapunov exponents of the system vanish, in apparent contradiction
with the discrete maps [48, 77], and putting into question the characterization
of Mixmaster dynamics as chaotic. However, it has since been shown that the
usual definition of the Liapunov exponents is ambiguous in this case as it is not
invariant under time reparametrizations, and that with a different time variable
one obtains positive exponents [33, 65]. Also, coordinate independent methods
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Figure 2: Contour plot of the Bianchi type IX potential V , where β± are the
anisotropy canonical coordinates. Seven level surfaces are shown at equally
spaced decades ranging from 10−1 to 105. For large isocontours (V > 1), the
potential is open and exhibits a strong triangular symmetry with three narrow
channels extending to spatial infinity. For V < 1, the potential closes and is
approximately circular for β± ≪ 1.

using fractal basin boundaries to map basins of attraction in the space of initial
conditions indicates Mixmaster spacetimes to be chaotic [58].

Although BLK conjectured that local Mixmaster oscillations might be the
generic behavior for singularities in more general classes of spacetimes [30], it
is only recently that this conjecture has begun to be supported by numerical
evidence (see Section 3.1.2 and [31]).

3.1.2 AVTD vs. BLK oscillatory behavior

As noted in § 3.1.1, an interesting and important issue in classical cosmology
is whether or not the generic Big Bang singularity is locally of a Mixmaster or
BLK type, with complex oscillatory behavior as the singularity is approached.
Most of the Bianchi models, including the Kasner solutions (1), are charac-
terized by either open or no potentials in the Hamiltonian framework [109],
and exhibit essentially monotonic or Asymptotically Velocity Term Dominated
(AVTD) behavior.

Considering inhomogeneous spacetimes, Isenberg and Moncrief [81] proved
that the singularity in the polarized Gowdy model is AVTD type, as are more
general polarized T 2 symmetric cosmologies [34]. Early numerical studies using
symplectic methods have confirmed these conjectures and found no evidence of
BLK oscillations, even in T 3×R spacetimes with U(1) symmetry [32] (although
there were concerns about the solutions due to difficulties in resolving steep
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spatial gradients near the singularity [32]), which were addressed later by Hern
and Stewart [75] for the Gowdy T 3 models). However, Weaver et al. [124] have
established the first evidence through numerical simulations that Mixmaster dy-
namics can occur in (at least a restricted class of) inhomogeneous spacetimes
which generalize the Bianchi type VI0 with a magnetic field and two-torus sym-
metry. More recently, Berger and Moncrief [36, 37] have shown U(1) symmet-
ric vacuum cosmologies to exhibit local Mixmaster dynamics, which tends to
support the BLK conjecture. Despite numerical difficulties in resolving steep
gradients (which they managed by enforcing the Hamiltonian constraint and
spatially averaging the solutions), Berger and Moncrief have confirmed their
findings under increased spatial resolution and changes in initial data.

3.2 Inflation

The inflation paradigm is frequently invoked to explain the flatness (Ω0 ≈ 1 in
the context of the FLRW model) and nearly isotropic nature of the Universe
at large scales, attributing them to an era of exponential expansion at about
10−34 s after the Big Bang. This expansion acts as a strong dampening mecha-
nism to random curvature or density fluctuations, and may be a generic attractor
in the space of initial conditions. An essential component needed to trigger this
inflationary phase is a scalar or inflaton field φ representing spin zero particles.
The vacuum energy of the field acts as an effective cosmological constant that
regulates GUT symmetry breaking, particle creation, and the reheating of the
Universe through an interaction potential V (φ) derived from the form of sym-
metry breaking that occurs as the temperature of the Universe decreases. Early
analytic studies focused on simplified models, treating the interaction potential
as flat near its local maximum where the field does not evolve significantly and
where the formal analogy to an effective cosmological constant approximation
is more precise. However, to properly account for the complexity of inflaton
fields, the full dynamical equations (see § 6.3.2) must be considered together
with consistent curvature, matter and other scalar field couplings. Also, many
different theories of inflation and vacuum potentials have been proposed (see,
for example, a recent review by Lyth and Riotto [91] and an introductory arti-
cle by Liddle [90]), and it is not likely that simplified models can elucidate the
full nonlinear complexity of scalar fields (see § 3.3) nor the generic nature of
inflation.

In order to study whether inflation can occur for arbitrary anisotropic and
inhomogeneous data, many numerical simulations have been carried out with
different symmetries, matter types and perturbations. A sample of such calcu-
lations is described in the following paragraphs.

3.2.1 Plane symmetry

Kurki-Suonio et al. [85] extended the planar cosmology code of Centrella and
Wilson [54, 55] (see § 3.6) to include a scalar field and simulate the onset of
inflation in the early Universe with an inhomogeneous Higgs field and a perfect
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fluid with a radiation equation of state p = ρ/3, where p is the pressure and ρ
is the energy density. Their results suggest that whether inflation occurs or not
can be sensitive to the shape of the potential φ. In particular, if the shape is flat
enough and satisfies the slow-roll conditions (essentially upper bounds on ∂V/∂φ
and ∂2V/∂φ2 [84] near the false vacuum φ ∼ 0), even large initial fluctuations
of the Higgs field do not prevent inflation. They considered two different forms
of the potential: a Coleman-Weinberg type with interaction strength λ

V (φ) = λφ4

[

ln

(

φ2

σ2

)

− 1

2

]

+
λσ4

2
(4)

which is very flat close to the false vacuum and does inflate; and a rounder “φ4”
type

V (φ) = λ(φ2 − σ2)2 (5)

which, for their parameter combinations, does not.

3.2.2 Spherical symmetry

Goldwirth and Piran [71] studied the onset of inflation with inhomogeneous ini-
tial conditions for closed, spherically symmetric spacetimes containing a massive
scalar field and radiation field sources (described by a massless scalar field). In
all the cases they considered, the radiation field damps quickly and only an
inhomogeneous massive scalar field remains to inflate the Universe. They find
that small inhomogeneities tend to reduce the amount of inflation and large ini-
tial inhomogeneities can even suppress the onset of inflation. Their calculations
indicate that the scalar field must have “suitable” initial values over a domain
of several horizon lengths in order for inflation to begin.

3.2.3 Bianchi V

Anninos et al. [12] investigated the simplest Bianchi model (type V) background
that admits velocities or tilt in order to address the question of how the Universe
can choose a uniform reference frame at the exit from inflation, since the de
Sitter metric does not have a preferred frame. They find that inflation does
not isotropize the Universe in the short wavelength limit. However, if inflation
persists, the wave behavior eventually freezes in and all velocities go to zero
at least as rapidly as tanhβ ∼ R−1, where β is the relativistic tilt angle (a
measure of velocity), and R is a typical scale associated with the radius of the
Universe. Their results indicate that the velocities eventually go to zero as
inflation carries all spatial variations outside the horizon, and that the answer
to the posed question is that memory is retained and the Universe is never really
de Sitter.

3.2.4 Gravity waves + cosmological constant

In addition to the inflaton field, one can consider other sources of inhomogene-
ity, such as gravitational waves. Although linear waves in de Sitter space will
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decay exponentially and disappear, it is unclear what will happen if strong
waves exist. Shinkai & Maeda [116] investigated the cosmic no-hair conjecture
with gravitational waves and a cosmological constant (Λ) in 1D plane sym-
metric vacuum spacetimes, setting up Gaussian pulse wave data with ampli-
tudes 0.02Λ ≤ max(

√
I) ≤ 80Λ and widths 0.08 lH ≤ l ≤ 2.5 lH, where I

is the invariant constructed from the 3-Riemann tensor and lH =
√

3/Λ is
the horizon scale. They also considered colliding plane waves with amplitudes
40Λ ≤ max(

√
I) ≤ 125Λ and widths 0.08 lH ≤ l ≤ 0.1 lH. They find that for

any large amplitude or small width inhomogeneity in their parameter sets, the
nonlinearity of gravity has little effect and the spacetime always evolves towards
de Sitter.

3.2.5 3D inhomogeneous spacetimes

The previous paragraphs discussed results from highly symmetric spacetimes,
but the possibility of inflation remains to be established for more general inho-
mogeneous and nonperturbative data. In an effort to address this issue, Kurki-
Suonio et al. [86] investigated fully three-dimensional inhomogeneous spacetimes
with a chaotic inflationary potential V (φ) = λφ4/4. They considered basically
two types of runs: small and large scale. In the small scale run, the grid length
was initially set equal to the Hubble length so the inhomogeneities are well in-
side the horizon and the dynamical time scale is shorter than the expansion or
Hubble time. As a result, the perturbations oscillate and damp, while the field
evolves and the spacetime inflates. In the large scale run, the inhomogeneities
are outside the horizon and they do not oscillate. They maintain their shape
without damping and, because larger values of φ lead to faster expansion, the
inhomogeneity in the expansion becomes steeper in time since the regions of
large φ and high inflation stay correlated. Both runs have sufficient inflation to
solve the flatness problem.

3.3 Chaotic scalar field dynamics

Many studies of cosmological models generally reduce complex physical systems
to simplified or even analytically integrable systems. In sufficiently simple mod-
els the dynamical behavior (or fate) of the Universe can be predicted from a
given set of initial conditions. However, the Universe is composed of many dif-
ferent nonlinear interacting fields including the inflaton field which can exhibit
complex chaotic behavior. For example, Cornish and Levin [57] consider a ho-
mogenous isotropic closed FLRW model with various conformal and minimally
coupled scalar fields (see § 6.3.2). They find that even these relatively simple
models exhibit chaotic transients in their early pre-inflationary evolution. This
behavior in exiting the Planck era is characterized by fractal basins of attraction,
with attractor states being to (1) inflate forever, (2) inflate over a short period
of time then collapse, or (3) collapse without inflating. Monerat et al. [98] inves-
tigated the dynamics of the pre-inflationary phase of the Universe and its exit to
inflation in a closed FLRW model with radiation and a minimally coupled scalar
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field. They observe complex behavior associated with saddle-type critical points
in phase space that give rise to deSitter attractors with multiple chaotic exits
to inflation that depend on the structure of the scalar field potential. These
results suggest that distinctions between exits to inflation may be manifested in
the process of reheating and as a selected spectrum of inhomogeneous perturba-
tions influenced by resonance mechanisms in curvature oscillations. This could
possibly lead to fractal patterns in the density spectrum, gravitational waves,
CMBR field, or galaxy distribution that depend on specific details including the
number of fields, the nature of the fields, and their interaction potentials.

Chaotic behavior can also be found in more general applications of scalar
field dynamics. Anninos et al. [18] investigated the nonlinear behavior of collid-
ing kink-antikink solitons or domain walls described by a single real scalar field
with self-interaction potential λ(φ2−1)2. Domain walls can form as topological
defects during the spontaneous symmetry breaking period associated with phase
transitions, and can seed density fluctuations in the large scale structure. For
collisional time scales much smaller than the cosmological expansion, they find
that whether a kink-antikink collision results in a bound state or a two-soliton
solution depends on a fractal structure observed in the impact velocity param-
eter space. The fractal structure arises from a resonance condition associated
with energy exchanges between translational modes and internal shape-mode
oscillations. The impact parameter space is a complex self-similar fractal com-
posed of sequences of different n-bounce (the number of bounces or oscillations
in the transient semi-coherent state) reflection windows separated by regions of
oscillating bion states (see Figure 3). They compute the Lyapunov exponents
for parameters in which a bound state forms to demonstrate the chaotic nature
of the bion oscillations.

3.4 Quark-hadron phase transition

The standard picture of cosmology assumes that a phase transition (associ-
ated with chiral symmetry breaking after the electroweak transition) occurred
at approximately 10−5 seconds after the Big Bang to convert a plasma of free
quarks and gluons into hadrons. Although this transition can be of significant
cosmological importance, it is not known with certainty whether it is of first
order or higher, and what the astrophysical consequences might be on the sub-
sequent state of the Universe. For example, the transition may give rise to
significant baryon number inhomogeneities which can influence the outcome of
primordial nucleosynthesis as evidenced in the distribution and averaged light
element abundances. The QCD transition and baryon inhomogeneities may also
play a significant and potentially observable role in the generation of primordial
magnetic fields.

Rezolla et al. [106] considered a first order phase transition and the nucle-
ation of hadronic bubbles in a supercooled quark-gluon plasma, solving the rel-
ativistic Lagrangian equations for disconnected and evaporating quark regions
during the final stages of the phase transition. They numerically investigated
a single isolated quark drop with an initial radius large enough so that surface
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(c)

(b)

(a)

Figure 3: Fractal structure of the transition between reflected and captured states
for colliding kink-antikink solitons in the parameter space of impact velocity
for a λ(φ2 − 1)2 scalar field potential. The top image (a) shows the 2-bounce
windows in dark with the rightmost region (v/c > 0.25) representing the single-
bounce regime above which no captured state exists, and the leftmost white region
(v/c < 0.19) representing the captured state below which no reflection windows
exist. Between these two marker velocities, there are 2-bounce reflection states
of decreasing widths separated by regions of bion formation. Zooming in on the
domain outlined by the dashed box, a self-similar structure is apparent in the
middle image (b), where now the dark regions represent 3-bounce windows of
decreasing widths. Zooming in once again on the boundaries of these 3-bounce
windows, a similar structure is found as shown in the bottom image (c) but
with 4-bounce reflection windows. This pattern of self-similarity with n-bounce
windows is observed at all scales investigated numerically.
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effects can be neglected. The droplet evolves as a self-similar solution until it
evaporates to a sufficiently small radius that surface effects break the similarity
solution and increase the evaporation rate. Their simulations indicate that, in
neglecting long-range energy and momentum transfer (by electromagnetically
interacting particles) and assuming that the baryon number is transported with
the hydrodynamical flux, the baryon number concentration is similar to what
is predicted by chemical equilibrium calculations.

Kurki-Suonio and Laine [87] studied the growth of bubbles and the decay of
droplets using a spherically symmetric code that accounts for a phenomenolog-
ical model of the microscopic entropy generated at the phase transition surface.
Incorporating the small scale effects of the finite wall width and surface tension,
but neglecting entropy and baryon flow through the droplet wall, they demon-
strate the dynamics of nucleated bubble growth and quark droplet decay. They
also find that evaporating droplets do not leave behind a global rarefaction wave
to dissipate any previously generated baryon number inhomogeneity.

3.5 Nucleosynthesis

Observations of the light elements produced during Big Bang nucleosynthesis
following the quark/hadron phase transition (roughly 10−2–102 seconds after
the Big Bang) are in good agreement with the standard model of our Universe
(see § 2.2). However, it is interesting to investigate other more general models
to assert the role of shear and curvature on the nucleosynthesis process.

Rothman and Matzner [108] considered primordial nucleosynthesis in aniso-
tropic cosmologies, solving the strong reaction equations leading to 4He. They
find that the concentration of 4He increases with increasing shear due to time
scale effects and the competition between dissipation and enhanced reaction
rates from photon heating and neutrino blue shifts. Their results have been
used to place a limit on anisotropy at the epoch of nucleosynthesis. Kurki-
Suonio and Matzner [88] extended this work to include 30 strong 2-particle
reactions involving nuclei with mass numbers A ≤ 7, and to demonstrate the
effects of anisotropy on the cosmologically significant isotopes 2H, 3He, 4He and
7Li as a function of the baryon to photon ratio. They conclude that the effect
of anisotropy on 2H and 3He is not significant, and the abundances of 4He and
7Li increase with anisotropy in accord with [108].

Furthermore, it is possible that neutron diffusion, the process whereby neu-
trons diffuse out from regions of very high baryon density just before nucle-
osynthesis, can affect the neutron to proton ratio in such a way as to enhance
deuterium and reduce 4He compared to a homogeneous model. However, plane
symmetric, general relativistic simulations with neutron diffusion [89] show that
the neutrons diffuse back into the high density regions once nucleosynthesis be-
gins there – thereby wiping out the effect. As a result, although inhomogeneities
influence the element abundances, they do so at a much smaller degree then pre-
viously speculated. The numerical simulations also demonstrate that, because of
the back diffusion, a cosmological model with a critical baryon density cannot be
made consistent with helium and deuterium observations, even with substantial
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baryon inhomogeneities and the anticipated neutron diffusion effect.

3.6 Plane symmetric gravitational waves

Gravitational waves are an inevitable product of the Einstein equations, and
one can expect a wide spectrum of wave signals propagating throughout our
Universe due to shear anisotropies, primordial metric and matter fluctuations,
collapsing matter structures, ringing black holes, and colliding neutron stars, for
example. The discussion here is restricted to the pure vacuum field dynamics
and the fundamental nonlinear behavior of gravitational waves in numerically
generated cosmological spacetimes.

Centrella and Matzner [52, 53] studied a class of plane symmetric cosmologies
representing gravitational inhomogeneities in the form of shocks or discontinu-
ities separating two vacuum expanding Kasner cosmologies (1). By a suitable
choice of parameters, the constraint equations can be satisfied at the initial time
with an Euclidean 3-surface and an algebraic matching of parameters across the
different Kasner regions that gives rise to a discontinuous extrinsic curvature
tensor. They performed both numerical calculations and analytical estimates
using a Green’s function analysis to establish and verify (despite the numeri-
cal difficulties in evolving discontinuous data) certain aspects of the solutions,
including gravitational wave interactions, the formation of tails, and the singu-
larity behavior of colliding waves in expanding vacuum cosmologies.

Shortly thereafter, Centrella and Wilson [54, 55] developed a polarized plane
symmetric code for cosmology, adding also hydrodynamic sources with artificial
viscosity methods for shock capturing and Barton’s method for monotonic trans-
port [126]. The evolutions are fully constrained (solving both the momentum
and Hamiltonian constraints at each time step) and use the mean curvature slic-
ing condition. This work was subsequently extended by Anninos et al. [8, 10, 6],
implementing more robust numerical methods, an improved parametric treat-
ment of the initial value problem, and generic unpolarized metrics.

In applications of these codes, Centrella [51] investigated nonlinear gravity
waves in Minkowski space and compared the full numerical solutions against
a first order perturbation solution to benchmark certain numerical issues such
as numerical damping and dispersion. A second order perturbation analysis
was used to model the transition into the nonlinear regime. Anninos et al. [9]
considered small and large perturbations in the two degenerate Kasner models:
p1 = p3 = 0 or 2/3, and p2 = 1 or −1/3 respectively, where pi are parameters
in the Kasner metric (1). Carrying out a second order perturbation expansion
and computing the Newman-Penrose (NP) scalars, Riemann invariants and Bel-
Robinson vector, they demonstrated, for their particular class of spacetimes,
that the nonlinear behavior is in the Coulomb (or background) part represented
by the leading order term in the NP scalar Ψ2, and not in the gravitational
wave component. For standing-wave perturbations, the dominant second order
effects in their variables are an enhanced monotonic increase in the background
expansion rate, and the generation of oscillatory behavior in the background
spacetime with frequencies equal to the harmonics of the first order standing-
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wave solution. Expanding their investigations of the Coulomb nonlinearity,
Anninos and McKinney [14] used a gauge invariant perturbation formalism to
construct constrained initial data for general relativistic cosmological sheets
formed from the gravitational collapse of an ideal gas in a critically closed FLRW
“background” model. Results are compared to the Newtonian Zel’dovich [128]
solution over a range of field strengths and flows. Also, the growth rates of
nonlinear modes (in both the gas density and Riemann curvature invariants),
their effect in the back-reaction to modify the cosmological scale factor, and
their role in generating CMB anisotropies are discussed.

3.7 Regge calculus model

A unique approach to numerical cosmology (and numerical relativity in general)
is the method of Regge Calculus in which spacetime is represented as a complex
of 4-dimensional, geometrically flat simplices. The principles of Einstein’s theory
are applied directly to the simplicial geometry to form the curvature, action, and
field equations, in contrast to the finite difference approach where the continuum
field equations are differenced on a discrete mesh.

A 3-dimensional code implementing Regge Calculus techniques was devel-
oped recently by Gentle and Miller [69] and applied to the Kasner cosmological
model. They also describe a procedure to solve the constraint equations for time
asymmetric initial data on two spacelike hypersurfaces constructed from tetra-
hedra, since full 4-dimensional regions or lattices are used. The new method
is analogous to York’s procedure (see [127] and § 6.4) where the conformal
metric, trace of the extrinsic curvature, and momentum variables are all freely
specifiable. These early results are promising in that they have reproduced the
continuum Kasner solution, achieved second order convergence, and sustained
numerical stability. Also, Barnett et al. [26] discuss an implicit evolution scheme
that allows local (vertex) calculations for efficient parallelism. However, the
Regge Calculus approach remains to be developed and applied to more general
spacetimes with complex topologies, extended degrees of freedom, and general
source terms.
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4 Physical Cosmology

The phrase “physical cosmology” is generally associated with the large (galaxy
and cluster) scale structure of the post-recombination epoch where gravitational
effects are modeled approximately by Newtonian physics on a uniformly ex-
panding, matter dominated FLRW background. A discussion of the large scale
structure is included in this review since any viable model of our Universe which
allows a regime where strongly general relativistic effects are important must
match onto the weakly relativistic (or Newtonian) regime. Also, since certain
aspects of this regime are directly observable, one can hope to constrain or rule
out various cosmological models and/or parameters, including the density (Ω0),
Hubble (H0 = 100h km s−1 Mpc−1), and cosmological (Λ) constants.

Due to the vast body of literature on numerical simulations of the post-
recombination epoch, it is possible to mention only a very small fraction of all
the published papers. Hence, the following summary is limited to cover just a
few aspects of computational physical cosmology, and in particular those that
can potentially be used to discriminate between cosmological model parameters,
even within the realm of the standard model.

4.1 Cosmic microwave background

The Cosmic Microwave Background Radiation (CMBR), which is a direct relic
of the early Universe, currently provides the deepest probe of cosmological struc-
tures and imposes severe constraints on the various proposed matter evolution
scenarios and cosmological parameters. Although the CMBR is a unique and
deep probe of both the thermal history of the early Universe and the primor-
dial perturbations in the matter distribution, the associated anisotropies are
not exclusively primordial in nature. Important modifications to the CMBR
spectrum can arise from large scale coherent structures, even well after the pho-
tons decouple from the matter at redshift z ∼ 103, due to the gravitational
redshifting of the photons through the Sachs-Wolfe effect arising from potential
gradients [111, 13]

∆T

T
= Φe − Φr −

∫ e

r

2~l · ∇Φ

a
dt, (6)

where the integral is evaluated from the emission (e) to reception (r) points along

the spatial photon paths ~l, Φ is the gravitational potential, ∆T/T defines the
temperature fluctuations, and a(t) is the cosmological scale factor in the stan-
dard FLRW metric. Also, if the intergalactic medium (IGM) reionizes sometime
after the decoupling, say from an early generation of stars, the increased rate of
Thomson scattering off the free electrons will erase sub-horizon scale tempera-
ture anisotropies, while creating secondary Doppler shift anisotropies. To make
meaningful comparisons between numerical models and observed data, these
effects (and others, see for example § 4.1.3 and references [79, 82]) must be in-
corporated self-consistently into the numerical models and to high accuracy in
order to resolve the weak signals.
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4.1.1 Ray-tracing

Many computational analyses based on linear perturbation theory have been
carried out to estimate the temperature anisotropies in the sky (for example
see [92] and the references cited in [79]). Although such linearized approaches
yield reasonable results, they are not well-suited to discussing the expected
imaging of the developing nonlinear structures in the microwave background.
An alternative ray-tracing approach has been developed by Anninos et al. [13]
to introduce and propagate individual photons through the evolving nonlinear
matter structures. They solve the geodesic equations of motion and subject the
photons to Thomson scattering in a probabilistic way and at a rate determined
by the local density of free electrons in the model. Since the temperature fluc-
tuations remain small, the equations of motion for the photons are treated as
in the linearized limit, and the anisotropies are computed according to

∆T

T
=

δz

1 + z
, (7)

where

1 + z =
(kµuµ)e
(kµuµ)r

, (8)

and the photon wave vector kµ and matter rest frame four-velocity uµ are eval-
uated at the emission (e) and reception (r) points. Applying their procedure
to a Hot Dark Matter (HDM) model of structure formation, Anninos et al. [13]
find the parameters for this model are severely constrained by COBE data such
that Ω0h

2 ≈ 1, where Ω0 and h are the density and Hubble parameters.

4.1.2 Effects of reionization

In models where the IGM does not reionize, the probability of scattering after
the photon-matter decoupling epoch is low, and the Sachs-Wolfe effect domi-
nates the anisotropies at angular scales larger than a few degrees. However, if
reionization occurs, the scattering probability increases substantially and the
matter structures, which develop large bulk motions relative to the comoving
background, induce Doppler shifts on the scattered CMBR photons and leave an
imprint of the surface of last scattering. The induced fluctuations on subhori-
zon scales in reionization scenarios can be a significant fraction of the primordial
anisotropies, as observed by Tuluie et al. [122]. They considered two possible
scenarios of reionization: A model that suffers early and gradual (EG) reion-
ization of the IGM as caused by the photoionizing UV radiation emitted by
decaying neutrinos, and the late and sudden (LS) scenario as might be applica-
ble to the case of an early generation of star formation activity at high redshifts.
Considering the HDM model with Ω0 = 1 and h = 0.55, which produces CMBR
anisotropies above current COBE limits when no reionization is included (see
§ 4.1.1), they find that the EG scenario effectively reduces the anisotropies to
the levels observed by COBE and generates smaller Doppler shift anisotropies
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than the LS model, as demonstrated in Figure 4. The LS scenario of reioniza-
tion is not able to reduce the anisotropy levels below the COBE limits, and can
even give rise to greater Doppler shifts than expected at decoupling.

4.1.3 Secondary anisotropies

Additional sources of CMBR anisotropy can arise from the interactions of pho-
tons with dynamically evolving matter structures and nonstatic gravitational
potentials. Tuluie et al. [121] considered the impact of nonlinear matter con-
densations on the CMBR in Ω0 ≤ 1 Cold Dark Matter (CDM) models, focusing
on the relative importance of secondary temperature anisotropies due to three
different effects: 1) time-dependent variations in the gravitational potential of
nonlinear structures as a result of collapse or expansion (the Rees-Sciama ef-
fect); 2) proper motion of nonlinear structures such as clusters and superclusters
across the sky; and 3) the decaying gravitational potential effect from the evo-
lution of perturbations in open models. They applied the ray-tracing procedure
of [13] to explore the relative importance of these secondary anisotropies as
a function of the density parameter Ω0 and the scale of matter distributions.
They find that secondary temperature anisotropies are dominated by the de-
caying potential effect at large scales, but that all three sources of anisotropy
can produce signatures of order ∆T/T ∼ 10−6 as shown in Figure 5.

In addition to the effects discussed here, many other sources of secondary
anisotropies (such as gravitational lensing, the Vishniac effect accounting for
matter velocities and flows into local potential wells, and the Sunyaev-Zel’dovich
(§ 4.5.4) distortions from the Compton scattering of CMB photons by electrons
in the hot cluster medium) can also be significant. See reference [79] for a
more complete list and thorough discussion of the different sources of CMBR
anisotropies.

4.2 Gravitational lensing

Observations of gravitational lenses [112] provide measures of the abundance and
strength of nonlinear potential fluctuations along the lines of sight to distant
objects. Since these calculations are sensitive to the gravitational potential, they
may be more reliable than galaxy and velocity field measurements as they are
not subject to the same ambiguities associated with biasing effects. Also, since
different cosmological models predict different mass distributions, especially at
the higher redshifts, lensing calculations can potentially be used to confirm or
discard competing cosmological models.

As an alternative to solving the computationally demanding lens equations,
Cen et al. [49] developed an efficient scheme to identify regions with surface
densities capable of generating multiple images accurately for splittings larger
than three arcseconds. They applied this technique to a standard CDM model
with Ω0 = 1, and found that this model predicts more large angle splittings (>
8′′) than are known to exist in the observed Universe. Their results suggest that
the standard CDM model should be excluded as a viable model of our Universe.
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Figure 4: The top two images represent temperature fluctuations (i.e., ∆T/T )
due to the Sachs-Wolfe effect and Doppler shifts in a standard critically closed
HDM model with no reionization and baryon fractions 0.02 (plate 1: 4◦ × 4◦,
rms = 2.8 × 10−5) and 0.2 (plate 2: 8◦ × 8◦, rms = 3.4 × 10−5). The bottom
two plates image fluctuations in an “early and gradual” reionization scenario of
decaying neutrinos with baryon fraction 0.02 (plate 3: 4◦×4◦, rms = 1.3×10−5;
and plate 4: 8◦ × 8◦, rms = 1.4 × 10−5).
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Figure 5: The top two images represent the proper motion and Rees–Sciama
effects in the CMBR for a critically closed CDM model (upper left), together
with the corresponding column density of voids and clusters over the same re-
gion (upper right). The bottom two images show the secondary anisotropies
dominated here by the decaying potential effect in an open cosmological model
(bottom left), together with the corresponding gravitational potential over the
same region (bottom right). The rms fluctuations in both cases are on the order
of ±5 × 10−7, though the open model carries a somewhat larger signature.
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A similar analysis for a flat low density CDM model with a cosmological constant
(Ω0 = 0.3, Λ/3H2

0 = 0.7) suggests a lower and perhaps acceptable number of
lensing events. However, an uncertainty in their studies is the nature of the
lenses at and below the resolution of the numerical grid. They model the lensing
structures as simplified Singular Isothermal Spheres (SIS) with no distinctive
cores.

Large angle splittings are generally attributed to larger structures such as
clusters of galaxies, and there are indications that clusters have small but finite
core radii rcore ∼ 20− 30h−1 kpc. Core radii of this size can have an important
effect on the probability of multiple imaging. Flores and Primack [66] consid-
ered the effects of assuming two different kinds of splitting sources: isothermal
spheres with small but finite core radii ρ ∝ (r2 + r2core)

−1, and spheres with a
Hernquist density profile ρ ∝ r−1(r + a)−3, where rcore ∼ 20 − 30h−1 kpc and
a ∼ 300h−1 kpc. They find that the computed frequency of large-angle split-
tings, when using the nonsingular profiles, can potentially decrease by more than
an order of magnitude relative to the SIS case and can bring the standard CDM
model into better agreement with observations. They stress that lensing events
are sensitive to both the cosmological model (essentially the number density of
lenses) and to the inner lens structure, making it difficult to probe the models
until the structure of the lenses, both observationally and numerically, is better
known.

4.3 First star formation

In CDM cosmogonies, the fluctuation spectrum at small wavelengths has a loga-
rithmic dependence at mass scales smaller than 108 solar masses, which indicates
that all small scale fluctuations in this model collapse nearly simultaneously in
time. This leads to very complex dynamics during the formation of these first
structures. Furthermore, the cooling in these fluctuations is dominated by the
rotational/vibrational modes of hydrogen molecules that were able to form us-
ing the free electrons left over from recombination and those produced by strong
shock waves as catalysts. The first structures to collapse may be capable of pro-
ducing pop III stars and have a substantial influence on the subsequent thermal
evolution of the intergalactic medium, as suggested by Figure 1, due to the ra-
diation emitted by the first generation stars as well as supernova driven winds.
To know the subsequent fate of the Universe and which structures will survive
or be destroyed by the UV background, it is first necessary to know when and
how the first stars formed.

Ostriker and Gnedin [101] have carried out high resolution numerical simu-
lations of the reheating and reionization of the Universe due to star formation
bursts triggered by molecular hydrogen cooling. Accounting for the chemistry of
the primeval hydrogen/helium plasma, self-shielding of the gas, radiative cool-
ing, and a phenomenological model of star formation, they find that two distinct
star populations form: the first generation pop III from H2 cooling prior to re-
heating at redshift z ≥ 14; and the second generation pop II at z < 10 when
the virial temperature of the gas clumps reaches 104 K and hydrogen line cool-
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ing becomes efficient. Star formation slows in the intermittent epoch due to
the depletion of H2 by photo-destruction and reheating. In addition, the ob-
jects which formed pop III stars also initiate pop II sequences when their virial
temperatures reach 104 K through continued mass accretion.

In resolving the details of a single star forming region in a CDM Universe,
Abel et al. [2, 3] implemented a non-equilibrium radiative cooling and chem-
istry model [1, 19] together with the hydrodynamics and dark matter equations,
evolving nine separate atomic and molecular species (H, H+, He, He+, He++,
H−, H+

2 , H2, and e−) on nested and adaptively refined numerical grids. They
follow the collapse and fragmentation of primordial clouds over many decades
in mass and spatial dynamical range, finding a core of mass ∼ 200 M⊙ forms
from a halo of about ∼ 105 M⊙ (where a significant number fraction of hydro-
gen molecules are created) after less than one percent of the halo gas cools by
molecular line emission. Bromm et al. [43] use a different Smoothed Particle
Hydrodynamics (SPH) technique and a six species model (H, H+, H−, H+

2 , H2,
and e−) to investigate the initial mass function of the first generation pop III
stars. They evolve an isolated 3σ peak of mass 2 × 106M⊙ which collapses at
redshift z ∼ 30 and forms clumps of mass 102 − 103M⊙ which then grow by
accretion and merging, suggesting that the very first stars were massive and in
agreement with [3].

4.4 Lyman-alpha forest

The Lyman-alpha forest represents the optically thin (at the Lyman edge) com-
ponent of Quasar Absorption Systems (QAS), a collection of absorption fea-
tures in quasar spectra extending back to high redshifts. QAS are effective
probes of the matter distribution and the physical state of the Universe at early
epochs when structures such as galaxies are still forming and evolving. Although
stringent observational constraints have been placed on competing cosmological
models at large scales by the COBE satellite and over the smaller scales of our
local Universe by observations of galaxies and clusters, there remains sufficient
flexibility in the cosmological parameters that no single model has been estab-
lished conclusively. The relative lack of constraining observational data at the
intermediate to high redshifts (0 < z < 5), where differences between competing
cosmological models are more pronounced, suggests that QAS can potentially
yield valuable and discriminating observational data.

Several combined N-body and hydrodynamic numerical simulations of the
Lyman forest have been performed recently ([61, 94, 129], for example), and all
have been able to fit the observations remarkably well, including the column
density and Doppler width distributions, the size of absorbers [56], and the line
number evolution. Despite the fact that the cosmological models and parameters
are different in each case, the simulations give roughly similar results provided
that the proper ionization bias is used (bion ≡ (Ωbh

2)2/Γ, where Ωb is the bary-
onic density parameter, h is the Hubble parameter and Γ is the photoionization
rate at the hydrogen Lyman edge). However, see [45] for a discussion of the
sensitivity of statistical properties on numerical resolution, and [93] for a sys-

Living Reviews in Relativity (2001-2)
http://www.livingreviews.org

http://www.livingreviews.org


P. Anninos 28

tematic comparison of five different cosmological models to determine which
attributes are sensitive physical probes or discriminators of models. A theoret-
ical paradigm has thus emerged from these calculations in which Lyman-alpha
absorption lines originate from the relatively small scale structure in pregalac-
tic or intergalactic gas through the bottom-up hierarchical formation picture in
CDM-like Universes. The absorption features originate in structures exhibiting
a variety of morphologies commonly found in numerical simulations (see Fig-
ure 6), including fluctuations in underdense regions, spheroidal minihalos, and
filaments extending over scales of a few megaparsecs.

4.5 Galaxy clusters

Clusters of galaxies are the largest gravitationally bound systems known to be in
quasi-equilibrium. This allows for reliable estimates to be made of their mass as
well as their dynamical and thermal attributes. The richest clusters, arising from
3σ density fluctuations, can be as massive as 1014–1015 solar masses, and the en-
vironment in these structures is composed of shock heated gas with temperatures
of order 107–108 degrees Kelvin which emits thermal bremsstrahlung and line
radiation at X-ray energies. Also, because of their spatial size of ∼ 1h−1 Mpc
and separations of order 50h−1 Mpc, they provide a measure of nonlinearity on
scales close to the perturbation normalization scale 8h−1 Mpc. Observations of
the substructure, distribution, luminosity, and evolution of galaxy clusters are
therefore likely to provide signatures of the underlying cosmology of our Uni-
verse, and can be used as cosmological probes in the observable redshift range
0 ≤ z ≤ 1.

4.5.1 Internal structure

Thomas et al. [120] investigated the internal structure of galaxy clusters formed
in high resolution N-body simulations of four different cosmological models,
including standard, open, and flat but low density Universes. They find that the
structure of relaxed clusters is similar in the critical and low density Universes,
although the critical density models contain relatively more disordered clusters
due to the freeze-out of fluctuations in open Universes at late times. The profiles
of relaxed clusters are very similar in the different simulations since most clusters
are in a quasi-equilibrium state inside the virial radius and generally follow
the universal density profile of Navarro et al. [100]. There does not appear to
be a strong cosmological dependence in the profiles as suggested by previous
studies of clusters formed from pure power law initial density fluctuations [59].
However, because more young and dynamically evolving clusters are found in
critical density Universes, Thomas et al. suggest that it may be possible to
discriminate among the density parameters by looking for multiple cores in the
substructure of the dynamic cluster population. They note that a statistical
population of 20 clusters could distinguish between open and critically closed
Universes.
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Figure 6: Distribution of the gas density at redshift z = 3 from a numeri-
cal hydrodynamics simulation of the Lyman-alpha forest with a CDM spectrum
normalized to second year COBE observations, Hubble parameter of h = 0.5, a
comoving box size of 9.6 Mpc, and baryonic density of Ωb = 0.06 composed of
76% hydrogen and 24% helium. The region shown is 2.4 Mpc (proper) on a side.
The isosurfaces represent baryons at ten times the mean density and are color
coded to the gas temperature (dark blue = 3×104 K, light blue = 3×105 K). The
higher density contours trace out isolated spherical structures typically found at
the intersections of the filaments. A single random slice through the cube is also
shown, with the baryonic overdensity represented by a rainbow-like color map
changing from black (minimum) to red (maximum). The He+ mass fraction is
shown with a wire mesh in this same slice. To emphasize fine structure in the
minivoids, the mass fraction in the overdense regions has been rescaled by the
gas overdensity wherever it exceeds unity.
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4.5.2 Number density evolution

The evolution of the number density of rich clusters of galaxies can be used to
compute Ω0 and σ8 (the power spectrum normalization on scales of 8h−1 Mpc)
when numerical simulation results are combined with the constraint σ8Ω

0.5
0 ≈

0.5, derived from observed present-day abundances of rich clusters. Bahcall et
al. [22] computed the evolution of the cluster mass function in five different
cosmological model simulations and find that the number of high mass (Coma-
like) clusters in flat, low σ8 models (i.e., the standard CDM model with σ8 ≈ 0.5)
decreases dramatically by a factor of approximately 103 from z = 0 to z ≈ 0.5.
For low Ω0, high σ8 models, the data result in a much slower decrease in the
number density of clusters over the same redshift interval. Comparing these
results to observations of rich clusters in the real Universe, which indicate only
a slight evolution of cluster abundances to redshifts z ≈0.5–1, they conclude
that critically closed standard CDM and Mixed Dark Matter (MDM) models
are not consistent with the observed data. The models which best fit the data
are the open models with low bias (Ω0 = 0.3 ± 0.1 and σ8 = 0.85 ± 0.5), and
flat low density models with a cosmological constant (Ω0 = 0.34 ± 0.13 and
Ω0 + Λ = 1).

4.5.3 X-ray luminosity function

The evolution of the X-ray luminosity function, as well as the number, size and
temperature distribution of galaxy clusters are all potentially important discrim-
inants of cosmological models and the underlying initial density power spectrum
that gives rise to these structures. Because the X-ray luminosity (principally
due to thermal bremsstrahlung emission from electron/ion interactions in the
hot fully ionized cluster medium) is proportional to the square of the gas den-
sity, the contrast between cluster and background intensities is large enough to
provide a window of observations that is especially sensitive to cluster structure.
Comparisons of simulated and observed X-ray functions may be used to deduce
the amplitude and shape of the fluctuation spectrum, the mean density of the
Universe, the mass fraction of baryons, the structure formation model, and the
background cosmological model.

Several groups [44, 50] have examined the properties of X-ray clusters in
high resolution numerical simulations of a standard CDM model normalized to
COBE. Although the results are very sensitive to grid resolution (see [15] for
a discussion of the effects from resolution constraints on the properties of rich
clusters), their primary conclusion, that the standard CDM model predicts too
many bright X-ray emitting clusters and too much integrated X-ray intensity,
is robust since an increase in resolution will only exaggerate these problems.
On the other hand, similar calculations with different cosmological models [50,
46] suggest reasonable agreement of observed data with Cold Dark Matter +
cosmological constant (ΛCDM), Cold + Hot Dark Matter (CHDM), and Open
or low density CDM (OCDM) evolutions due to different universal expansions
and density power spectra.
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4.5.4 SZ effect

The Sunyaev-Zel’dovich (SZ) effect is the change in energy that CMB photons
undergo when they scatter in hot gas typically found in cores of galaxy clusters.
There are two main effects: thermal and kinetic. Thermal SZ is the dominant
mechanism which arises from thermal motion of gas in the temperature range
107–108 K, and is described by the Compton y parameter

y = σT

∫

nekBTe

mec2
dl, (9)

where σT = 6.65 × 10−25 cm2 is the Thomson cross-section, me, ne and Te are
the electron rest mass, density and temperature, c is the speed of light, kB is
Boltzmann’s constant, and the integration is performed over the photon path.
Photon temperature anisotropies are related to the y parameter by ∆T/T ≈ −2y
in the Rayleigh-Jeans limit. The kinetic SZ effect is a less influential Doppler
shift resulting from the bulk motion of ionized gas relative to the rest frame of
the CMB.

Springel et al. [117] used a Tree/SPH code to study the SZ effects in a
CDM cosmology with a cosmological constant. They find a mean amplitude for
thermal SZ (y = 3.8 × 10−6) just below current observed upper limits, and a
kinetic SZ about 30 times smaller in power. Da Silva et al. [60] compared thermal
SZ maps in three different cosmologies (low density + Λ, critical density, and low
density open model). Their results are also below current limits: y ≈ 4 × 10−6

for low density models with contributions from over a broad redshift range z ≤ 5,
and y ≈ 1× 10−6 for the critical density model with contributions mostly from
z < 1. However, further simulations are needed to explore the dependence of
the SZ effect on microphysics, i.e., cooling, star formation, supernovae feedback.

4.6 Cosmological sheets

Cosmological sheets, or pancakes, form as overdense regions collapse prefer-
entially along one axis. Originally studied by Zel’dovich [128] in the context
of neutrino-dominated cosmologies, sheets are ubiquitous features in nonlin-
ear structure formation simulations of CDM-like models with baryonic fluid,
and manifest on a spectrum of length scales and formation epochs. Gas col-
lapses gravitationally into flattened sheet structures, forming two plane parallel
shock fronts that propagate in opposite directions, heating the infalling gas. The
heated gas between the shocks then cools radiatively and condenses into galactic
structures. Sheets are characterized by essentially five distinct components: the
preshock inflow, the postshock heated gas, the strongly cooling/recombination
front separating the hot gas from the cold, the cooled postshocked gas, and the
unshocked adiabatically compressed gas at the center. Several numerical calcu-
lations [42, 113, 20] have been performed of these systems which include baryonic
fluid with hydrodynamical shock heating, ionization, recombination, dark mat-
ter, thermal conductivity, and radiative cooling (Compton, bremsstrahlung, and
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atomic line cooling), in both one and two spatial dimensions to assert the sig-
nificance of each physical process and to compute the fragmentation scale. See
also [14] where fully general relativistic numerical calculations of cosmological
sheets are presented in plane symmetry, including relativistic hydrodynamical
shock heating and consistent coupling to spacetime curvature.

Figure 7: Two different model simulations of cosmological sheets are presented:
a six species model including only atomic line cooling (left), and a nine species
model including also hydrogen molecules (right). The evolution sequences in the
images show the baryonic overdensity and gas temperature at three redshifts fol-
lowing the initial collapse at z = 5. In each figure, the vertical axis is 32 kpc
long (parallel to the plane of collapse) and the horizontal axis extends to 4 Mpc
on a logarithmic scale to emphasize the central structures. Differences in the
two cases are observed in the cold pancake layer and the cooling flows between
the shock front and the cold central layer. When the central layer fragments, the
thickness of the cold gas layer in the six (nine) species case grows to 3 (0.3) kpc
and the surface density evolves with a dominant transverse mode corresponding
to a scale of approximately 8 (1) kpc. Assuming a symmetric distribution of
matter along the second transverse direction, the fragment masses are approxi-
mately 107 (105) solar masses.

In addition, it is well known that gas which cools to 1 eV through hydrogen
line cooling will likely cool faster than it can recombine. This nonequilibrium
cooling increases the number of electrons and ions (compared to the equilibrium
case) which, in turn, increases the concentrations of H− and H+

2 , the intermedi-
aries that produce hydrogen molecules H2. If large concentrations of molecules
form, excitations of the vibrational/rotational modes of the molecules can ef-
ficiently cool the gas to well below 1 eV, the minimum temperature expected
from atomic hydrogen line cooling. Because the gas cools isobarically, the re-
duction in temperature results in an even greater reduction in the Jeans mass,
and the bound objects which form from the fragmentation of H2 cooled cosmo-
logical sheets may be associated with massive stars or star clusters. Anninos
and Norman [16] have carried out 1D and 2D high resolution numerical calcu-
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lations to investigate the role of hydrogen molecules in the cooling instability
and fragmentation of cosmological sheets, considering the collapse of perturba-
tion wavelengths from 1 Mpc to 10 Mpc. They find that for the more ener-
getic (long wavelength) cases, the mass fraction of hydrogen molecules reaches
nH2/nH ∼ 3 × 10−3, which cools the gas to 4 × 10−3 eV and results in a frag-
mentation scale of 9 × 103 M⊙. This represents reductions of 50 and 103 in
temperature and Jeans mass respectively when compared, as in Figure 7, to the
equivalent case in which hydrogen molecules were neglected.

However, the above calculations neglected important interactions arising
from self-consistent treatments of radiation fields with ionizing and photo-disso-
ciating photons and self-shielding effects. Susa and Umemura [118] studied the
thermal history and hydrodynamical collapse of pancakes in a UV background
radiation field. They solve the radiative transfer of photons together with the
hydrodynamics and chemistry of atomic and molecular hydrogen species. Al-
though their simulations were restricted to one-dimensional plane parallel sym-
metry, they suggest a classification scheme distinguishing different dynamical
behavior and galaxy formation scenarios based on the UV background radia-
tion level and a critical mass corresponding to 1 − 2σ density fluctuations in a
standard CDM cosmology. These level parameters distinguish galaxy formation
scenarios as they determine the local thermodynamics, the rate of H2 line emis-
sions and cooling, the amount of starburst activity, and the rate and mechanism
of cloud collapse.
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5 Conclusion

This review is intended to provide a flavor of the variety of numerical cos-
mological calculations performed of different phenomena occurring throughout
the history of our Universe. The topics discussed range from the strong field
dynamical behavior of spacetime geometry at early times near the Big Bang
singularity and the epoch of inflation, to the late time evolution of large scale
matter fluctuations and the formation of clusters of galaxies. Although a com-
plete, self-consistent, and accurate description of our Universe is impractical
considering the complex multiscale and multiphysics requirements, a number
of enlightening results have been demonstrated through computations. For ex-
ample, both monotonic AVTD and chaotic oscillatory BLK behavior have been
found in the asymptotic approach to the initial singularity in a small set of
inhomogeneous Bianchi and Gowdy models, though it remains to be seen what
the generic behavior might be in more general multidimensional spacetimes.
Numerical calculations suggest that scalar fields play an important complicated
role in the nonlinear or chaotic evolution of cosmological models with conse-
quences for the triggering (or not) of inflation and the subsequent dynamics
of structure formation. It is possible, for example, that these fields can influ-
ence the details of inflation and have observable ramifications as fractal patterns
in the density spectrum, gravitational waves, galaxy distribution, and cosmic
microwave background anisotropies. All these effects require further studies.
Numerical simulations have been used to place limits on curvature anisotropies
and cosmological parameters at early times by considering primordial nucle-
osynthesis in anisotropic and inhomogeneous cosmologies. Finally, the large
collection of calculations performed of the post-recombination epoch (for ex-
ample, cosmic microwave, gravitational lensing, Lyman-alpha absorption, and
galaxy cluster simulations) have placed strong constraints on the standard model
parameters and structure formation scenarios when compared to observations.
Considering the range of models consistent with inflation, the preponderance
of observational, theoretical and computational data suggest a best fit model
that is spatially flat with a cosmological constant and a small tilt in the power
spectrum.

Obviously many fundamental issues remain unresolved, including the back-
ground or topology of the cosmological model which best describes our Universe,
the generic singularity behavior, the dynamics of inflaton fields, the imprint
of complex interacting scalar fields, the fundamental nonlinear curvature and
gravitational wave interactions, the correct structure formation scenario, and
the origin and spectrum of primordial fluctuations, for example, are uncertain.
However the field of numerical cosmology has matured in the development of
computational techniques, the modeling of microphysics, and in taking advan-
tage of current computing technologies, to the point that it is now possible to
perform high resolution multiphysics simulations and reliable comparisons of
numerical models with observed data.
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6 Appendix: Basic Equations and Numerical

Methods

Some basic equations relevant for fully relativistic as well as perturbative cosmo-
logical calculations are summarized in this section, including the complete Ein-
stein equations, choices of kinematical conditions, initial data constraints, stress-
energy-momentum tensors, dynamical equations for various matter sources, and
the Newtonian counterparts on background isotropic models. References to nu-
merical methods are also provided.

6.1 The Einstein equations

6.1.1 ADM formalism

There are many ways to write the Einstein equations. The most common is
the ADM or 3+ 1 form [21] which decomposes spacetime into layers of three-
dimensional space-like hypersurfaces, threaded by a time-like normal congruence
nµ = (1,−βi)/α. The general spacetime metric is written as

ds2 = (−α2 + βiβ
i)dt2 + 2βidx

idt+ γijdx
idxj , (10)

where α and βi are the lapse function and shift vector respectively, and γij is the
spatial 3-metric. The lapse defines the proper time between consecutive layers of
spatial hypersurfaces, the shift propagates the coordinate system from 3-surface
to 3-surface, and the induced 3-metric is related to the 4-metric via γµν =
gµν + nµnν . The Einstein equations are written as four constraint equations,

(3)R+K2 −KijK
ij = 16πGρH, (11)

∇i

(

Kij − γijK
)

= 8πGsj , (12)

twelve evolution equations,

∂tγij = Lβγij − 2αKij ,

∂tKij = LβKij −∇i∇jα+

α

[

(3)Rij − 2KikK
k
j +KKij − 8πG

(

sij −
1

2
sγij +

1

2
ρHγij

)]

,

(13)

and four kinematical or coordinate conditions for the lapse function and shift
vector that can be specified arbitrarily (see § 6.2). Here,

Lβγij = ∇iβj + ∇jβi,

LβKij = βk∇kKij +Kik∇jβ
k +Kkj∇iβ

k,
(14)

where ∇i is the spatial covariant derivative with respect to γij ,
(3)Rij the

spatial Ricci tensor, K the trace of the extrinsic curvature Kij , and G is the
gravitational constant. The matter source terms ρH, sj , sij and s = sii as seen
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by the observers at rest in the time slices are obtained from the appropriate
projections

ρH = nµnνTµν , (15)

si = −γµi nνTµν , (16)

sij = γµi γ
ν
j Tµν (17)

for the energy density, momentum density and spatial stresses, respectively.
Here c = 1, and Greek (Latin) indices refer to 4(3)-dimensional quantities.

It is worth noting that several alternative formulations of Einstein’s equa-
tions have been suggested, including hyperbolic systems [105] which have nice
mathematical properties, and conformal traceless systems [115, 28] which make
use of a conformal decomposition of the 3-metric and trace-free part of the ex-
trinsic curvature. Introducing γ̃ij = e−4ψγij with e4ψ = γ1/3 so that the deter-

minant of γ̃ij is unity, and Ãij = e−4ψAij , evolution equations can be written in

the conformal traceless system for ψ, γ̃ij , K, Ãij and the conformal connection
functions, though not all of these variables are independent. However, it is not
yet entirely clear which of these methods is best suited for generic problems. For
example, hyperbolic forms are easier to characterize mathematically than ADM
and may potentially be more stable, but can suffer from greater inaccuracies by
introducing additional equations or higher order derivatives. Conformal treat-
ments are considered to be generally more stable [28], but can be less accurate
than traditional ADM for short term evolutions [5].

Many numerical methods have been used to solve the Einstein equations,
including variants of the leapfrog scheme, the method of McCormack, the two-
step Lax-Wendroff method, and the iterative Crank-Nicholson scheme, among
others. For a discussion and comparison of the different methods, the reader
is referred to [39], where a systematic study was carried out on spherically
symmetric black hole spacetimes using traditional ADM, and to [28, 5, 11] (and
references therein) which discuss the stability and accuracy of hyperbolic and
conformal treatments.

6.1.2 Symplectic formalism

A different approach to conventional (i.e., 3 + 1 ADM) techniques in numerical
cosmology has been developed by Berger and Moncrief [38]. For example, they
consider Gowdy cosmologies on T 3 ×R with the metric

ds2 = e−λ/2eτ/2
(

−e−2τdτ2 + dθ2
)

+

e−τ
[

eP dσ2 + 2ePQdσdδ +
(

ePQ2 + e−P
)

dδ2
]

, (18)

where λ, P and Q are functions of θ and τ , and the coordinates are bounded by
0 ≤ (θ, σ, δ) ≤ 2π. The singularity corresponds to the limit τ → ∞. For small
amplitudes, P and Q may be identified with + and × polarized gravitational
wave components and λ with the background cosmology through which they
propagate. An advantage of this formalism is that the initial value problem
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becomes trivial since P , Q and their first derivatives may be specified arbitrarily
(although it is not quite so trivial in more general spacetimes).

Although the resulting Einstein equations can be solved in the usual space-
time discretization fashion, an interesting alternative method of solution is the
symplectic operator splitting formulation [38, 97] founded on recognizing that
the second order equations can be obtained from the variation of a Hamiltonian
decomposed into kinetic and potential subhamiltonians,

H = H1 +H2 =
1

2

∮ 2π

0

dθ
(

π2
P + e−2Pπ2

Q

)

+
1

2

∮ 2π

0

dθe−2τ
(

P 2
,θ + e2PQ2

,θ

)

.

(19)
The symplectic method approximates the evolution operator by

eH∆τ = eH2∆τ/2eH1∆τeH2∆τ/2 + O(∆τ)3, (20)

although higher order representations are possible. If the two Hamiltonian com-
ponents H1 and H2 are each integrable, their solutions can be substituted di-
rectly into the numerical evolution to provide potentially more accurate solu-
tions with fewer time steps [32]. This approach is well-suited for studies of
singularities if the asymptotic behavior is determined primarily by the kinetic
subhamiltonian, a behavior referred to as Asymptotically Velocity Term Domi-
nated (see § 3.1.2 and [31]).

Symplectic integration methods are applicable to other spacetimes. For ex-
ample, Berger et al. [35] developed a variation of this approach to explicitly take
advantage of exact solutions for scattering between Kasner epochs in Mixmaster
models. Their algorithm evolves Mixmaster spacetimes more accurately with
larger time steps than previous methods.

6.2 Kinematic conditions

For cosmological simulations, one typically takes the shift vector to be zero,
hence Lβγij = LβKij = 0. However, the shift can be used advantageously
in deriving conditions to maintain the 3-metric in a particular form, and to
simplify the resulting differential equations [54, 55]. See also reference [114]
describing an approximate minimum distortion gauge condition used to help
stabilize simulations of general relativistic binary clusters and neutron stars.

Several options can be implemented for the lapse function, including geodesic
(α = 1), algebraic, and mean curvature slicing. The algebraic condition takes
the form

α = F1(x
µ)F2(γ), (21)

where F1(x
µ) is an arbitrary function of coordinates xµ, and F2(γ) is a dy-

namic function of the determinant of the 3-metric. This choice is computation-
ally cheap, simple to implement, and certain choices of F2 (i.e., 1 + ln γ) can
mimic maximal slicing in its singularity avoidance properties [7]. On the other
hand, numerical solutions derived from harmonically-sliced foliations can exhibit
pathological gauge behavior in the form of coordinate “shocks” or singularities
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which will affect the accuracy, convergence and stability of solutions [4, 74].
Also, evolutions in which the lapse function is fixed by some analytically pre-
scribed method (either geodesic or near-geodesic) can be unstable, especially
for sub-horizon scale perturbations [6].

The mean curvature slicing equation is derived by taking the trace of the
extrinsic curvature evolution equation (13),

∇i∇iα = α
[

KijK
ij + 4πG (ρH + s)

]

+ βi∇iK − ∂tK, (22)

and assuming K = K(t), which can either be specified arbitrarily or determined
by imposing a boundary condition on the lapse function after solving (22) for the
quantity α/∂tK [55]. It is also useful to consider replacing ∂tK in equation (22)
with an exponentially driven form as suggested by Eppley [63], to reduce gauge
drifting and numerical errors in maximal [23] and mean curvature [6] sliced
spacetimes. The mean curvature slicing condition is the most natural one for
cosmology as it foliates homogeneous cosmological spacetimes with surfaces of
homogeneity. Also, since K represents the convergence of coordinate curves
from one slice to the next and if it is constant, then localized caustics (crossing
of coordinate curves) and true curvature singularities can be avoided. Whether
general inhomogeneous spacetimes can be foliated with constant mean curvature
surfaces remains unknown. However, for Gowdy spacetimes with two Killing
fields and topology T 3×R, Isenberg and Moncrief [80] proved that such foliations
do exist and cover the entire spacetime.

6.3 Sources of matter

6.3.1 Cosmological constant

A cosmological constant is implemented in the 3 +1 framework simply by intro-
ducing the quantity −Λ/(8πG) as an effective isotropic pressure in the stress-
energy tensor

Tµν = − Λ

8πG
gµν . (23)

The matter source terms can then be written

ρH =
Λ

8πG
, (24)

sij = − Λ

8πG
γij , (25)

with si = 0.

6.3.2 Scalar field

The dynamics of scalar fields is governed by the Lagrangian density

L = −1

2

√−g [gµνφ;µφ;ν + ξRf(φ) + 2V (φ)] , (26)
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where R is the scalar Riemann curvature, V (φ) is the interaction potential,
f(φ) is typically assumed to be f(φ) = φ2, and ξ is the field-curvature coupling
constant (ξ = 0 for minimally coupled fields and ξ = 1/6 for conformally coupled
fields). Varying the action yields the Klein-Gordon equation

gµνφ;µν − ξRφ− ∂φV (φ) = 0, (27)

for the scalar field and

Tµν = (1 − 2ξ)φ;µφ;ν +

(

2ξ − 1

2

)

gµνφ;σφ
;σ

−2ξφφ;µν + 2ξφgµνg
σλφ;σλ + ξGµνφ

2 − gµνV (φ), (28)

for the stress-energy tensor, where Gµν = Rµν − gµνR/2.
For a massive, minimally coupled scalar field [41]

Tµν = φ;µφ;ν −
1

2
gµνg

ρσφ;ρφ;σ − gµνV (φ), (29)

and

ρH =
1

2
γijφ;iφ;j +

1

2
η2 + V (φ), (30)

si = −ηφ;i, (31)

sij = γij

(

−1

2
γklφ;kφ;l +

1

2
η2 − V (φ)

)

+ φ;iφ;j , (32)

where

η = nµ∂µφ =
1

α
(∂t − βk∂k)φ, (33)

nµ = (1,−βi)/α, and V (φ) is a general potential which, for example, can be
set to V = λφ4 in the chaotic inflation model. The covariant form of the scalar
field equation (27) can be expanded as in [86] to yield

1

α

(

∂t − βk∂k
)

η =
1√
γ
∂i(

√
γγij∂jφ) +

1

α
γij∂iα∂jφ+Kη − ∂φV (φ), (34)

which, when coupled to (33), determines the evolution of the scalar field.

6.3.3 Collisionless dust

The stress-energy tensor for a fluid composed of collisionless particles (or dark
matter) can be written simply as the sum of the stress-energy tensors for each
particle [125],

Tµν =
∑

mnuµuν , (35)

wherem is the rest mass of the particles, n is the number density in the comoving
frame, and uµ is the 4-velocity of each particle. The matter source terms are

ρH =
∑

mn(αu0)2, (36)

si =
∑

mnui(αu
0), (37)

sij =
∑

mnuiuj . (38)
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There are two conservation laws: the conservation of particles ∇µ(nu
µ) = 0, and

the conservation of energy-momentum ∇µT
µν = 0, where ∇µ is the covariant

derivative in the full 4-dimensional spacetime. Together these conservation laws
lead to uµ∇µu

ν = 0, the geodesic equations of motion for the particles, which
can be written out more explicitly in the computationally convenient form

dxi

dt
=
giαuα
u0

, (39)

dui
dt

= −uαuβ∂ig
αβ

2u0
, (40)

where xi is the coordinate position of each particle, u0 is determined by the
normalization uµuµ = −1,

d

dt
≡ vµ∂µ = ∂t + vi∂i (41)

is the Lagrangian derivative, and vµ = uµ/u0 is the “transport” velocity of the
particles as measured by observers at rest with respect to the coordinate grid.

6.3.4 Ideal gas

The stress-energy tensor for a perfect fluid is

Tµν = ρhuµuν + Pgµν , (42)

where gµν is the 4-metric, h = 1 + ǫ+P/ρ is the relativistic enthalpy, and ǫ, P ,
ρ and uµ are the specific internal energy (per unit mass), pressure, rest mass
density and four-velocity of the fluid. Defining

u = −nµuµ = αu0 =
(

1 + uiui
)1/2

=

(

1 − ViV
i

α2

)−1/2

, (43)

as the generalization of the special relativistic boost factor, the matter source
terms become

ρH = ρhu2 − P, (44)

si = ρhuui, (45)

sij = Pγij + ρhuiuj . (46)

The hydrodynamics equations are derived from the normalization of the 4-
velocity, uµuµ = −1, the conservation of baryon number, ∇µ(ρu

µ) = 0, and
the conservation of energy-momentum, ∇µT

µν = 0. The resulting equations
can be written in flux conservative form as [126]

∂D

∂t
+
∂(DV i)

∂xi
= 0, (47)

∂E

∂t
+
∂(EV i)

∂xi
+ P

∂W

∂t
+ P

∂(WV i)

∂xi
= 0, (48)
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∂Si
∂t

+
∂(SiV

j)

∂xj
− SµSν

2S0

∂gµν
∂xi

+
√−g ∂P

∂xi
= 0, (49)

where W =
√−gu0, D = Wρ, E = Wρǫ, Si = Wρhui, V

i = ui/u0, and g
is the determinant of the 4-metric satisfying

√−g = α
√
γ. A prescription for

specifying an equation of state (e.g., P = (Γ − 1)E/W = (Γ − 1)ρǫ for an ideal
gas) completes the above equations.

When solving equations (47, 48, 49), an artificial viscosity method is needed
to handle the formation and propagation of shock fronts [126, 72, 73]. Although
these methods are simple to implement and are computationally efficient, they
are inaccurate for ultrarelativistic flows with very high Lorentz factors. On
the other hand, a number of different formulations [67] of these equations have
been developed to take advantage of the hyperbolic and conservative nature
of the equations in using high resolution shock capturing schemes (although
strict conservation is only possible in flat spacetimes – curved spacetimes exhibit
source terms due to geometry). Such high resolution Godunov techniques [107,
24] provide more accurate and stable treatments in the highly relativistic regime.
A particular formulation due to [24] is the following:

∂
√
γ U(~w)

∂t
+
∂
√−g F i(~w)

∂xi
=

√−g S(~w), (50)

where

S(~w) =

[

0, Tµν
(

∂gνj
∂xµ

− Γδνµgδj

)

, α

(

Tµ0 ∂ lnα

∂xµ
− TµνΓ0

νµ

)]

, (51)

F i(~w) =

[

D

(

vi− βi

α

)

, Sj

(

vi− βi

α

)

+ Pδij , (E−D)

(

vi− βi

α

)

+ Pvi
]

, (52)

and ~w = (ρ, vi, ǫ), U(~w) = (D,Si, E − D), E = ρhW̃ 2 − P , Sj = ρhW̃ 2vj ,

D = ρW̃ , vi = γijvj = ui/(αu0) + βi/α, and W̃ = αu0 = (1 − γijv
ivj)−1/2.

6.4 Constrained nonlinear initial data

One cannot take arbitrary data to initiate an evolution of the Einstein equa-
tions. The data must satisfy the constraint equations (11) and (12). York [127]
developed a procedure to generate proper initial data by introducing conformal
transformations of the 3-metric γij = ψ4γ̂ij , the trace-free momentum compo-

nents Aij = Kij − γijK/3 = ψ−10Âij , and matter source terms si = ψ−10ŝi

and ρH = ψ−nρ̂H, where n > 5 for uniqueness of solutions to the elliptic equa-
tion (53) below. In this procedure, the conformal (or “hatted”) variables are
freely specifiable. Further decomposing the free momentum variables into trans-
verse and longitudinal components Âij = Âij∗ + (l̂w)ij , the Hamiltonian and
momentum constraints are written as

∇̂i∇̂iψ − R̂

8
ψ +

1

8
ÂijÂ

ijψ−7 − 1

12
K2ψ5 + 2πGρ̂ψ5−n = 0, (53)

Living Reviews in Relativity (2001-2)
http://www.livingreviews.org

http://www.livingreviews.org


P. Anninos 42

(∇̂j∇̂jw)i +
1

3
∇̂i

(

∇̂jw
j
)

+ R̂ijw
j − 2

3
ψ6∇̂iK − 8πGŝi = 0, (54)

where the longitudinal part of Âij is reconstructed from the solutions by

(l̂w)ij = ∇̂iwj + ∇̂jwi − 2

3
γ̂ij∇̂kw

k. (55)

The transverse part of Âij is constrained to satisfy ∇̂jÂ
ij
∗ = Â j

∗j = 0.
Equations (53) and (54) form a coupled nonlinear set of elliptic equations

which must be solved iteratively, in general. The two equations can, however,
be decoupled if a mean curvature slicing (K = K(t)) is assumed. Given the

free data K, γ̂ij , ŝ
i and ρ̂, the constraints are solved for Âij∗ , (l̂w)ij and ψ.

The actual metric γij and curvature Kij are then reconstructed by the corre-
sponding conformal transformations to provide the complete initial data. Refer-
ence [6] describes a procedure using York’s formalism to construct parametrized
inhomogeneous initial data in freely specifiable background spacetimes with
matter sources. The procedure is general enough to allow gravitational wave
and Coulomb nonlinearities in the metric, longitudinal momentum fluctuations,
isotropic and anisotropic background spacetimes, and can accommodate the
conformal-Newtonian gauge to set up gauge invariant cosmological perturba-
tion solutions as free data.

6.5 Newtonian limit

The Newtonian limit is defined by spatial scales much smaller than the horizon
radius, peculiar velocities small compared to the speed of light, and a gravita-
tional potential that is both much smaller than unity (in geometric units) and
slowly varying in time. A comprehensive review of the theory of cosmological
perturbations can be found in [99].

6.5.1 Dark and baryonic matter equations

The appropriate perturbation equations in this limit are easily derived for a
background FLRW expanding model, assuming a metric of the form

ds2 = −(1 + 2Φ)dt2 + a(t)2(1 − 2Φ)γijdx
idxj , (56)

where

γij = δij

(

1 +
kr2

4

)−2

, (57)

and k = −1, 0, +1 for open, flat and closed Universes. Also, a ≡ 1/(1+z) is the
cosmological scale factor, z is the redshift, and Φ is the comoving inhomogeneous
gravitational potential.

The governing equations in the Newtonian limit are the hydrodynamic con-
servation equations,

∂ρ̃b

∂t
+

∂

∂xi
(ρ̃bv

i
b) + 3

ȧ

a
ρ̃b = 0, (58)

Living Reviews in Relativity (2001-2)
http://www.livingreviews.org

http://www.livingreviews.org


43 Computational Cosmology: Early Universe to Large Scale Structure

∂(ρ̃bv
j
b)

∂t
+

∂

∂xi
(ρ̃bv

i
b v

j
b) + 5

ȧ

a
ρ̃bv

j
b +

1

a2

∂p̃

∂xj
+
ρ̃b

a2

∂Φ̃

∂xj
= 0, (59)

∂ẽ

∂t
+

∂

∂xi
(ẽvib) + p̃

∂vib
∂xi

+ 3
ȧ

a
(ẽ+ p̃) = S̃cool, (60)

the geodesic equations for collisionless dust or dark matter (in comoving coor-
dinates),

dxid
dt

= vid, (61)

dvid
dt

= −2
ȧ

a
vid − 1

a2

∂Φ̃

∂xi
, (62)

Poisson’s equation for the gravitational potential,

∇2Φ̃ = 4πGa2(ρ̃b + ρ̃d − ρ̃0), (63)

and the Friedman equation for the cosmological scale factor,

da

dt
= H0

[

Ωm(
1

a
− 1) + ΩΛ(a2 − 1) + 1

]1/2

. (64)

Here ρ̃d, ρ̃b, p̃ and ẽ are the dark matter density, baryonic density, pressure
and internal energy density in the proper reference frame, xi and vib are the
baryonic comoving coordinates and peculiar velocities, xid and vid are the dark
matter comoving coordinates and peculiar velocities, ρ̃0 = 3H2

0Ω0/(8πGa
3) is

the proper background density of the Universe, Ω0 is the total density parame-
ter, Ωm = Ωb + Ωd is the density parameter including both baryonic and dark
matter contributions, ΩΛ = Λ/(3H2

0 ) is the density parameter attributed to
the cosmological constant Λ, H0 = 100h km s−1 Mpc−1 is the present Hub-
ble constant with 0.5 < h < 1, and S̃cool represents microphysical radiative
cooling and heating rates which can include Compton cooling (or heating) due
to interactions of free electrons with the CMBR, bremsstrahlung, and atomic
and molecular line cooling. Notice that ‘tilded’ (‘non-tilded’) variables refer to
proper (comoving) reference frame attributes.

An alternative total energy conservative form of the hydrodynamics equa-
tions that allows high resolution Godunov-type shock capturing techniques is

∂ρb

∂t
+

1

a

∂

∂xi
(ρbṽ

i
b) = 0, (65)

∂(ρbṽ
j
b)

∂t
+

1

a

∂

∂xi
(ρbṽ

i
b ṽ

j
b + pδij) +

ȧ

a
ρbṽ

j
b +

ρb

a

∂Φ̃

∂xj
= 0, (66)

∂E

∂t
+

1

a

∂

∂xi
(Eṽib + pṽib) +

2ȧ

a
E +

ρbṽ
i
b

a

∂Φ̃

∂xi
= Scool, (67)

with the corresponding particle and gravity equations

dxid
dt

=
ṽid
a
, (68)
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dṽid
dt

= − ȧ
a
ṽid − 1

a

∂Φ̃

∂xi
, (69)

∇2Φ̃ =
4πG

a
(ρb + ρd − ρ0), (70)

where ρb is the comoving density, ρ0 = a3ρ̃0, ṽ
i
b is the proper frame peculiar

velocity, p is the comoving pressure, E = ρbṽ
2
b/2+p/(γ−1) is the total peculiar

energy per comoving volume, and Φ̃ is the gravitational potential.

These equations are easily extended [19] to include reactive chemistry of nine
separate atomic and molecular species (H, H+, He, He+, He++, H−, H+

2 , H2, and
e−), assuming a common flow field, supplementing the total mass conservation
equation (58) with

∂ρ̃j
∂t

+
∂

∂xi
(ρ̃jv

i
b) + 3

ȧ

a
ρ̃j =

∑

i

∑

l

kil(T )ρ̃iρ̃l +
∑

i

Iiρ̃i (71)

for each of the species, and including the effects of non-equilibrium radiative
cooling and consistent coupling to the hydrodynamics equations. The kil(T )
are rate coefficients for the two body reactions and are tabulated functions of
the gas temperature T . The Ii are integrals evaluating the photoionization and
photodissociation of the different species. For a comprehensive discussion of the
cosmologically important chemical reactions and reaction rates, see reference [1].

Many numerical techniques have been developed to solve the hydrodynamic
and collisionless particle equations. For the hydrodynamic equations, the meth-
ods range from Lagrangian SPH algorithms [64, 76, 103] to Eulerian finite
difference techniques on static meshes [110, 104], nested grids [17], moving
meshes [70], and adaptive mesh refinement [47]. For the dark matter equations,
the canonical choices are treecodes [123] or PM and P3M methods [78, 62],
although many variants have been developed to optimize computational per-
formance and accuracy, including grid and particle refinement methods (see
references cited in [68]). An efficient method for solving non-equilibrium, multi-
species chemical reactive flows together with the hydrodynamic equations in a
background FLRW model is described in [1, 19].

The reader is referred to [83, 68] for thorough comparisons of different nu-
merical methods applied to problems of structure formation. Reference [83]
compares (by binning data at different resolutions) the statistical performance
of five codes (three Eulerian and two SPH) on the problem of an evolving CDM
Universe on large scales using the same initial data. The results indicate that
global averages of physical attributes converge in rebinned data, but that some
uncertainties remain at small levels. [68] compares twelve Lagrangian and Eule-
rian hydrodynamics codes to resolve the formation of a single X-ray cluster in a
CDM Universe. The study finds generally good agreement for both dynamical
and thermodynamical quantities, but also shows significant differences in the
X-ray luminosity, a quantity that is especially sensitive to resolution [15].
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6.5.2 Linear initial data

The standard Zel’dovich solution [128, 62] can be used to generate initial condi-
tions satisfying observed or theoretical power spectra of matter density fluctu-
ations. Comoving physical displacements and velocities of the collisionless dark
matter particles are set according to the power spectrum realization

∣

∣

∣

∣

δρ

ρ
(k)

∣

∣

∣

∣

2

∝ knT 2(k), (72)

where the complex phases are chosen from a gaussian random field, T (k) is a
transfer function [25] appropriate to a particular structure formation scenario
(e.g., CDM), and n = 1 corresponds to the Harrison-Zel’dovich power spectrum.
The fluctuations are normalized with top hat smoothing using

σ2
8 =

1

b2
=

∫ ∞

0

4πk2P (k)W 2(k)dk, (73)

where b is the bias factor chosen to match present observations of rms density
fluctuations in a spherical window of radius Rh = 8h−1 Mpc. Also, P (k) is the
Fourier transform of the square of the density fluctuations in equation (72), and

W (k) =
3

(kRh)3
(sin(kRh) − (kRh) cos(kRh)) (74)

is the Fourier transform of a spherical window of radius Rh.
Overdensity peaks can be filtered on specified spatial or mass scales by Gaus-

sian smoothing the random density field [25]

σ(ro) =
1

(2πR2
f )

3/2

∫

δρ

ρ
(r′) exp

(

−|ro − r′|2
2R2

f

)

d3r′ (75)

on a comoving scale Rf centered at r = ro (for example, Rf = 5h−1 Mpc
with a filtered mass of Mf ∼ 1015M⊙ over cluster scales). Nσ peaks are gen-
erated by sampling different random field realizations to satisfy the condition
ν = σ(ro)/σ(Rf) = N , where σ(Rf) is the rms of Gaussian filtered density
fluctuations over a spherical volume of radius Rf .

Bertschinger [40] has provided a useful and publicly available package of pro-
grams called COSMICS for computing transfer functions, CMB anisotropies,
and gaussian random initial conditions for numerical structure formation cal-
culations. The package solves the coupled linearized Einstein, Boltzman, and
fluid equations for scalar metric perturbations, photons, neutrinos, baryons, and
collisionless dark matter in a background isotropic Universe. It also generates
constrained or unconstrained matter distributions over arbitrarily specifiable
spatial or mass scales.
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