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Abstract 

The large-deformation mechanics and multiphysics of continuous or fracturing partially 

saturated porous media under static and dynamic loads are significant in engineering and science. 

This article is devoted to a computational coupled large-deformation periporomechanics paradigm 

assuming passive air pressure for modeling dynamic failure and fracturing in variably saturated 

porous media. The coupled governing equations for bulk and fracture material points are formulated 

in the current/deformed configuration through the updated Lagrangian-Eulerian framework. It is 

hypothesized that the horizon of a mixed material point remains spherical, and its neighbor points 

are determined in the current configuration. As a significant contribution, the mixed 

interface/phreatic material points near the phreatic line are explicitly considered for modeling the 

transition from partial to full saturation (vice versa) through the mixed peridynamic state concept. 

We have formulated the coupled constitutive correspondence principle and stabilization scheme in 

the updated Lagrangian-Eulerian framework for bulk and interface points. We numerically 

implement the coupled large deformation periporomechanics through a fully implicit fractional-step 

algorithm in time and a hybrid updated Lagrangian-Eulerian meshfree method in space. Numerical 

examples are presented to validate the implemented stabilized computational coupled large 

deformation periporomechanics and demonstrate its efficacy and robustness in modeling dynamic 

failure and fracturing in variably saturated porous media. 

Keywords: Large deformation, updated Lagrangian, periporomechanics, porous media, fracture, 

phreatic line 

 

1. Introduction 

The large-deformation mechanics and multiphysics of deformable porous geomaterials (clay and 

sand) and biomaterials (human tissues and bone) are significant in engineering and science (e.g., 

geohazards and biomechanics) (e.g., [1–7]). The coupled large deformation and fluid flow/cracking 

can compromise the integrity of civil infrastructure and could damage human tissues under certain 

circumstances (e.g., [8–11]). For instance, faulting propagation triggered by earthquake involves 

large deformation and multiphysics in geomaterials [12–15]. Landslides and landfill slope failure 

could be triggered by large deformation, multiphysics processes, or cracking in geomaterials [16–

18]. Computational coupled poromechanics is an essential tool in studying the mechanics and 

physics of such continuous or fracturing porous materials under static and dynamic loads (e.g., [2, 

19–21]). Coupled unsaturated periporomechanics [22–25] is a strong nonlocal reformulation of 

classical coupled local poromechanics [26–28] through the peridynamic effective force state [22, 29, 

30] and stabilized multiphase correspondence principle [25, 31]. The coupled governing equations, 

including the motion equation and mass balance equation, are formulated in terms of integral-
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differential equations (integration in space and differentiation in time) in lieu of partial differential 

equations [24]. Through the stabilized multiphase correspondence principle, classical constitutive 

models and physics laws can be incorporated in periporomechanics for modeling the coupled 

deformation, fracturing, and fluid flow processes in porous media under static and dynamic loads 

[25]. These salient features of periporomechanics make it a legitimate method for modeling coupled 

static and dynamic large-deformation mechanics and physics of continuous or fracturing porous 

media. We note that the coupled periporomechanics has been formulated using the total 

Lagrangian-Eulerian framework [24]. In [32], the authors formulated an updated-Lagrangian 

periporomechanics framework for modeling extreme large-deformation in unsaturated porous 

media under drained conditions (i.e., uncoupled). As a new contribution, in this article, we propose 

a fully coupled large-deformation periporomechanics paradigm in the updated Lagrangian-Eulerian 

framework for modeling dynamic failure and fracturing in variably saturated porous media. In this 

new framework, the phreatic interface/line [28, 33] is explicitly considered through the mixed 

peridynamic state concept. 

To incorporate the classical constitutive models for porous media into this new coupled 

periporomechanics paradigm, we reformulate the original multiphase constitutive correspondence 

principle [22] in the updated Lagrangian-Eulerian framework. It has been demonstrated in [25] that 

the multiphase correspondence principle in the total Lagrangian-Eulerian periporomechanics 

framework has a zero-energy mode instability issue. In [32] we have also shown that the single-

phase correspondence principle for the extreme large-deformation periporomechanics formulated 

in the updated Lagrangian-Eulerian framework inherits the zero-energy mode instability. The 

authors adopted the so-called sub-horizon concept to remove the zero-energy mode associated 

with the correspondence principle. However, this method is computationally demanding because a 

sub-horizon will need to be defined for each bond in its horizon (see [32] for details). In this study, 

we first demonstrate that the coupled updated Lagrangian-Eulerian periporomechanics also inherits 

the zero-energy mode issue (see section 2.3). To reduce the computational cost, we adopt the 

multiphase stabilization scheme formulated in [25] to resolve the zero-energy mode instability. We 

refer to the literature for a thorough review of the remedies for circumventing the zero-energy 

mode associated with the peridynamic correspondence principle (e.g., [25, 31, 32, 34], among 

others). 

The interface between saturated zone and unsaturated zone in variably saturated porous media 

is called the phreatic interface/line [9, 35]. The porous material across the phreactic line has 

different mechanical and physical properties because of the variation of degree of saturation across 

the phreatic line. We note that the phreatic line has not been explicitly considered in the previously 

formulated satuated/unsaturated periporomechanics models. For a mixed material point near the 

phreatic line, its neighboring material points can be in either a saturated or unsaturated zone. 

Therefore, to simulate variably saturated soils with a phreatic line using coupled periporomechanics, 

the material points near the phreatic line should be treated as composite material points. As a 

significant contribution and novelty, in this study, the mixed interface/phreatic material points near 

the phreatic line are explicitly considered for better modeling the transition from partially to fully 

saturated states (vice versa) of porous media through the mixed peridynamic state concept [29]. 

Specifically, the peridynamic state (e.g., effective force state and fluid flow state) at the material 

point across the interface line is decomposed into two states, i.e., saturated and unsaturated states 

(see Section 2.2 for details). Following the lines in the stabilization scheme for the bulk mixed 

material point (i.e., material points and their neighboring points in either fully saturated or 

unsaturated zones), we have formulated the coupled constitutive correspondence principle and its 

stabilization scheme for the phreatic interface material points in the updated Lagrangian-Eulerian 

framework. 

We numerically implement the coupled large deformation periporomechanics through a fully 

implicit fractional-step algorithm in time [24] and a hybrid updated Lagrangian-Eulerian meshfree 

method in space with Open MPI [36] for high-performance computing. We refer to the classical 

literature for technical discussions on monolithic and fractional-step/staggered algorithms for 

numerically implementing the coupled poromechanics in time (e.g., [37–41], among others). It is 
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hypothesized that the horizon of a mixed material point remains spherical, and its neighbor points 

are determined in the current configuration. In line with this hypothesis, in the numerical 

implementation, the neighboring material list of a material point updated at time step n is used for 

the computation at time step n + 1. The coupled periporomechanics is computationally more 

demanding than other continuum-based computational methods such as the finite element method 

(FEM) and XFEM for modeling porous media [1, 2, 19, 20]. We refer to the literature for coupling 

peridynamics with FEM for modeling porous media (e.g.,[42, 43] and others) and the mixed finite 

element methods for large deformation in unsaturated porous media (e.g., [2, 21, 44] and others). 

Numerical examples are presented to validate the implemented stabilized coupled large-

deformation periporomechanics and demonstrate its efficacy and robustness in modeling dynamic 

failure and fracturing in partially saturated porous media. 

The original contributions of this article include (i) the mathematical formulation of a fully 

coupled large-deformation periporomechanics paradigm through the updated Lagrangian-Eulerian 

framework, (ii) the explicit treatment of interface material points as a composite point through the 

mixed peridynamic state concept, (iii) the formulation of the coupled constitutive correspondence 

principle in the updated Lagrangian-Eulerian framework and its stabilization scheme through an 

energy method, and (iv) the numerical implementation of the computational large-deformation 

periporomechanics via an implicit-implicit fractional step and mixed meshfree algorithm, and (v) the 

validation and demonstration of the robustness of the large-deformation periporomechanics 

paradigm for modeling dynamic failure/fracturing in porous media. For sign convention, the 

assumption in continuum mechanics is followed, i.e., for the solid skeleton, tensile force/stress is 

positive, and compression is negative. For fluid pressure, compression is positive, and tension is 

negative. 

2. Coupled large-deformation unsaturated periporomechanics 

We present the mathematical formulation of the coupled large-deformation periporomechanics 

in the updated Lagrangian-Eulerian framework for fracturing unsaturated porous media assuming 

passive air pressure. The phreatic interface points are explicitly considered in this new framework 

through the mixed peridynamic state concept. In line with the total Lagrangian-Eulerian 

periporomechanics, it is assumed that a porous material body can be represented by a finite number 

of mixed material points that are endowed with two kinds of degrees of freedom, i.e., displacement 

and fluid pressure. In the current/deformed configuration, a mixed material point has 

poromechanical and physical interactions with all mixed material points within its neighborhood H , 

i.e., the family. Here H is a spherical domain around a material point x with radius δ, called horizon 

in periporomechanics, in the current deformation. In the updated Lagrangian-Eulerian formulation, 

it is hypothesized that the horizon remains the same. In line with this hypothesis, the family H of a 
mixed material point x in the current configuration is determined by 

  (1) 

where B denotes a porous media body and ζ = x’−x is the mixed (multiphase) bond between 

material points x and x0. With this hypothesis, the extreme distortion of the horizon for large 

deformation of the solid skeleton in the total Lagrangian formulation can be avoided. Indeed, this 

hypothesis is consistent with the Eulerian formulation of peridynamics for solids in [45]. However, 

the material point of the solid skeleton is described by its motion, and the fluid phase is described 

by the relative Eulerian coordinate referring to the solid skeleton. Thus, the mixed material points 

in the horizon of a material point x evolves with time in the large deformation regime. 

Figure 1 presents the schematics of the initial configuration, current/deformed configuration, 

and future configuration of a porous material body. We note that all variables refer to the 

current/deformed configuration in the formulation presented in this section instead of the 

initial/undeformed configuration as in the total Lagrangian-Eulerian periporomechanics. For 

conciseness of notations, in the current configuration the peridynamic state variable without a 

prime denotes the variable evaluated at x on the associated bond ζ = x’ − x and the peridynamic 
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state variable with a prime stands for the variable evaluated at x0 on the associated bond ζ0 = x − x0, 

e.g., T = T [x]hx0 − xi and T 0 = T [x0]hx − x0i. In what follows, we first present the governing equations 

and coupled correspondence principle in the updated Lagrangian-Eulerian framework for a mixed 

material point (and its neighbor material points) 

 

Figure 1: Kinematics of the mixed solid skeleton and pore fluid material points in the updated Lagrangian-Eulerian formulation: 

initial configuration, current/deformed configuration, and future configuration. 

(i.e., the bulk material point) in the unsaturated or fully saturated domain. Second, we formulate 

the governing equations and coupled correspondence principle for the phreatic material point 

through the mixed peridynamic state concept. Third, we present the stabilization scheme for the 

phreatic material point since the stabilization scheme for a bulk material point is a special case, 

followed by a brief discussion of the material models and physical laws in the new framework. 

2.1. Formulation of a material point in unsaturated or fully saturated zones 

We define the deformation vector state Y = y’ − y as the mapping of ζ from the current 

to the next configuration in which y’ and y represent the same material points of the solid skeleton 

in the next configuration. 

In line with the total Lagrangian formulation of periporomechanics [23–25], the equation of 

motion at point x in the current configuration reads  

(2)
 

where T and T’ are the effective force vector states at material points x and x0, respectively, T w 

and T’w are the fluid force vector states at material points x and x0, dV 0 is the volume of the 

neighboring point in the current domain, and u¨ is the acceleration vector, and ρ is the density of the 

mixture. Assuming weightless pore air, the density of the mixture ρ reads 

  (3) 

where ρs is the intrinsic density of the solid, ρw is the intrinsic density of water, Sr is the degree of 

saturation, and φ is the porosity in the current configuration. The balance of mass at x in the current 

configuration reads 

(4)
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where V
˙
s is the solid volume change rate at x, Q and Q0 are the fluid flow states at x and x0, 

respectively, pw is the pore water pressure, Qs is the source term and Kw is the bulk modulus of 

water. 

For a fracture material point, similar to (2) the equation of motion can be written as 

(5)
 

Where 

(6)

 

The mass balance in the fracture space can be written as 

(7)
 

where Qf and Q0
f are fracture flow states at material points x and x0, respectively. In the fully 

saturated regime, Sr = 1 and ∂Sr/∂pw = 0. Therefore, equations (2),(4), (5), and (7) naturally 

degenerate into the equations under saturated conditions. In what follows we cast the coupled 

corresponding principle in the updated-Lagrangian-Eulerian framework. 

2.1.1. Coupled corresponding principle in the updated Lagrangian-Eulerian framework 

The rate of strain energy of the solid skeleton assuming elastic deformation in the updated 

Lagrangian-Eulerian periporomechanics reads [22] 

(8)
 

Next we express the rate of strain energy of the solid skeleton in terms of effective stress and the 

rate of deformation. 

The velocity gradient [32] can be written as 

(9)
 

Where K is the spatial shape tensor 

(10)
 

Given (19), the rate of nonlocal deformation reads, 

(11)
 

The rate of the strain energy of the solid skeleton assuming elastic deformation can be written as [22, 

29], 

(12)

 

where i,j,k = 1,2,3. 
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Then, it follows from (12) and (8) that the effective force state can be related to the effective 

Cauchy stress tensor as 

(13)
 

Through the effective force concept, the fluid force state can be written as 

(14)
 

The rate from of energy dissipation due to fluid flow in periporomechanics can be written as [22] 

(15)
 

where Φ = p0
w − pw is the pressure potential state. Similar to (9), the spatial gradient of fluid pressure 

in the current configuration can be written as [23, 32] 

(16)
 

The rate form of the energy dissipation due to fluid flow in classical poromechanics [22] reads 

(17)

 

Then, from (15) and (17) the fluid flow state can be written as 

(18)
 

Next, we present the governing equations for a mixed material point at the phreatic interface/line. 

2.2. Formulation of a mixed material point at the phreatic interface/line 

In this formulation, the mixed material point near the phreatic line is called the phreatic mixed 

material points. The phreatic material point could lie in the unsaturated (vadose) zone or the 

saturated (phreatic) zone. However, a percentage of the material points in its horizon lies in the 

vadose zone and the remaining material points lie in the phreatic zone. For this reason, it is 

hypothesized that the deformation state, effective force state, fluid pressure state, and fluid flow 

state can be decomposed into two parts through the mixed (double) peridynamic state concept, i.e., 

T (1) and T (2), Y (1) and Y (2), Q(1) and Q(2), and Φ(1) and Φ(2). Figure 2 sketches the periporomechanics 

representation of the phreatic interface points for the solid skeleton and fluid phases through mixed 

(double) peridynamic state concept [29]. 

It follows from this hypothesis and in line with (8) that the strain energy density at a phreatic 

mixed point reads, 

(19)
 

The two velocity gradient tensors L(1) and L(2) at a phreatic mixed material point can be written as 
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(20)
 

(21)
 

 

From (20) and (21) we can obtain the rate form of the two deformation tensor at the interface point, 

i.e., D(1) and D(2). From a classical constitutive model for the solid skeleton we have 

 

Figure 2: Schematics of the phreatic interface material points in periporomechanics for (a) the solid skeleton phase and (b) the 

pore fluid phase through mixed (double) peridynamic state concept. 

two stress tensors, i.e., σ(1) and σ(2). Then the corresponding strain energy density of (19) in classical 

unsaturated poromechanics reads 

 

where W
˙(1) and W

˙(2) are strain energy densities associated with the neighboring material points 

under saturated and unsaturated conditions, respectively. 

From (19) and (22), it follows that the effective force states at a phreatic material point can be 

written as 
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(23)
 

(24)
 

Through the effective force state concept, the fluid force states at the phreactic material point read 

(25)
 

(26)
 

Then, substituting (23), (24), (25) and (26) into (2) we have the equation of motion at the 

phreatic material point in terms of the total force states as 

(27)
 

For the fluid phase, the energy dissipation rate at a phreatic material point through fluid flow can 

be written as 

(28)
 

At a phreatic material point, the two fluid pressure gradient vectors can be written as 

(29)
 

(30)
 

Given (29) and (30), flux vectors q(1) and q(2) can be obtained through the generalized Darcy’s law for 

unsaturated porous media. Then, the energy dissipation rate due to fluid flow at a phreatic material 

point in classical poromechanics reads 

 
It follows from (31) and (28) that the two fluid flow states at a phreatic material points read 

(32)
 

(33)
 

Given (32) and (33) the balance of mass at a phreatic material point can be written as 

(34)
 

In this study we assume that the fracturing is not across the phreatic interface/line. However, 

the formulation for fracturing material points across the phreatic line can be achieved following the 

lines in this section and in [23]. 

2.3. Coupled stabilization scheme in the updated Lagrangian-Eulerian framework 

In this section, we derive an two-phase stabilized scheme for the two-phase correspondence 

principle for the phreatic material point derived in the previous section. Note that the stabilization 
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scheme of the mixed material point completely in either saturated or unsaturated domain is a 

special case of the phreatic material point. For a phreatic material point, the two spatial deformation 

gradient vectors are written as 

(35)
 

(36)
 

 

The two residual deformation vector states that are written as 

(37)
 

(38) 

Substituting (37) and (38) into (35) and (36) generates two null tensors implying that the nonuniform 

deformation state is not considered by the correspondence principle derived in the last section [32]. 

The missing non-uniform deformation state is the origin of the zero-energy mode associated with 

the standard correspondence principle. 

The energy method [25] is adopted for its computational efficiency. The effective force state with 

stabilization can be written as 

(39)
 

where T (1)
s and T (2)

s are the stabilization terms corresponding to T (1) and T (2), respectively. Next, we 

determine the two stabilization terms from the energy method. Following [25, 31] we propose that 

the stabilization force states take the form 

(40)
 

(41) 

where β(1) and β(2) are weighting factors. The strain energy associated with the non-uniform 

deformation is written as 

(42)

 

where • is the state dot product operator. Ws(Y (1)) in (42) can be expressed as 

(43)

 

Similarly, we have 

(44)
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In line with the formulation of the standard correspondence principle the stabilized force state 

terms at a phreatic material point can be determined as 

(45)
 

(46)

 

In this study to simplify (45) and (46) it is assumed that β(1) and β(2) are constants as 

(47)
 

(48)
 

where G is the stabilization parameter [25, 31], C is the micro-elastic modulus [25], and 

 

(49)

 

It follows then that (45) and (46) can be written as 

(50)

 

(51)

 

Then the effective force state at a phreatic material point can be written as  

(52)

 

The parameters C(1) and C(2) can be determined by the strain energy method assuming an isotropic 

elastic deformation of the skeleton as follows. For simplicity, a microelastic peridynamic model [46] 

is adopted to determine the elastic energy in the solid skeleton. 

Let u and u0 are the displacement vectors at material points x and x0 respectively referring to the 

current configuration. The rate form of the strain energy density at point x due to deformation η = 

u0 − u can be written as 

(53)

 

where η = ||η||, ζ = ||ζ||, and ϕ(1) and ϕ(2) are defined as follows. 

(54)

 

(55)
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Consider an isotropic deformation of the solid skeleton the stretch of a bond reads 

(56) 

where C1 is a material constant. The micro-potential [25] can be written as 

(57)
 

(58)
 

Substituting (57) and (58) into (53) gives 

(59)

 

From the classical elastic theory, the incremental elastic strain energy density of the solid skeleton 

at a phreatic material point under isotropic deformation reads 

(60)

 

where K is the elastic bulk modulus and v is the elastic volumetric strain under isotropic deformation. 

From (60) and (59) C under three-dimensional condition can be written as 

(61)
 

(62)
 

Next, we first demonstrate the fluid flow state in the updated Lagrangian-Eulerian formulation 

inherits the instability as in the total Lagrangian-Eulerian formulation and then present an 

stabilization scheme through the energy method for the fluid phase. The two residual flow states at 

a phreatic material points read 

(63)
 

(64)
 

Substituting (63) or (64) into the spatial nonlocal pressure gradient (16) generates 
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(65)

 

It is implied by (65) the correspondence principle for fluid flow in the updated Lagrangian-Eulerian 

formulation will generate zero-energy mode instability under non-uniform fluid flow conditions. We 

define the stabilization terms for the flow states at a phreatic material point as 

(66)
 

where λ(1) and λ(2) are positive parameters. The fluid flow dissipation energy through 

periporomechanics in the updated-Lagrangian formulation reads 

(67)
 

It follows from (63) and (67) that 

(68)

 

Similarly, we have 

(69)
 

From (15), (68) (69) the stabilized terms for the fluid flow state accounting for the nonuniform 

fluid potential state can be written as 

(70)

 

(71)

 

For simplicity, we assume that 𝜆 takes the form 
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Where 𝐾𝑝
1 and 𝐾𝑝

2 are the hydraulic micro-conductivities. Then we obtain 

 
Then, the stabilized fluid flow state at 𝒙 is written as  

 

Next, we derive the material variables through an energy method assuming an isotropic fluid flow. 

The dissipation potential energy at a phreatic point reads, 

 

The peridynamic hydraulic micro-conductivity can be related to the classical hydraulic conductivity 

by equating the peridynamic fluid dissipation potential to the classical fluid dissipation potential at 

a phreatic point. For simplicity, we assume a linear pressure field in a body, pw = C2(1·x) for a three-

dimensional case. The fluid flow micro potential [25] can be written as 

(77)
 

Then we have 

(78)

 

Assuming an isotropic fluid flow, the classical fluid dissipation energy in classical poromechanics 

reads 

 
where kw is the intrinsic permeability of saturated porous media and kr is the relative permeability for 

the partially saturated case. 

It follows from (78) and (79) that the hydraulic micro-conductivities at a phreatic material point 

under three-dimensional condition are 
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2.4. Constitutive models and physical laws 

We summarize the constitutive models and physical laws. The effective stress tensor can be 

determined by an isotropic linear elastic model (or a plastic or visco-plastic constitutive model [32]) 

as 

 

where C is the forth-order elastic modulus tensor [4], σ
ˆ˙ 

is the rotated Cauchy stress and De is the 

elastic deformation rate tensor. Given the velocity gradient tensor the rate of unrotated 

deformation rate tensor reads 

 
 

where R is the rotation tensor from the left polar decomposition of F. 

 

Once the effective Cauchy stress tensor is updated it is rotated back to the deformed configuration 

as follows 

 

Similarly, the fluid flux q can be determined by the generalized Darcy’s law for unsaturated fluid 

flow as 

 

where kr is the relative permeability, grad(Φ)g is the nonlocal fluid pressure gradient referring to the 

current configuration, µ is the water viscosity and kw is the intrinsic permeability tensor. 

For large deformation applications there exists pure rotations that change the reference frame with 

no deformation. Therefore the permeability tensor needs to modified as 

 

It follows from (87) that (86) [2] can be written as 

 

The fluid flow state in the fracture space reads 
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where qf is the fluid flow vector in fracture space. Through Darcy’s law for unsaturated fluid flow the 

fracture fluid flow vector qf can be written as 

 

where kf
r is the relative permeability, kf is the intrinsic permeability of fracture space, and ∇gΦf is the 

nonlocal fracture fluid pressure gradient determined as 

 

where 

  

And 

 

The porosity in (3) can be written as [21] 

 

 

where φt is the current configuration porosity and 

 J = det(F) (95) 

The degree of saturation Sr can be determined from the soil-water retention curve (e.g., [47–51]) 

that depends on the volume strain of the solid skeleton (e.g., porosity). In this study, we adopt the 

one in [21, 52, 53] which reads 

 
where a1, a2, and n are all material parameters. Given Sr the relative permeability kr can be written as 

 
where m = (n − 1)/n. 

The bond-breakage criteria is based on the deformation energy stored in a poromechanical bond. 

With effective force state the energy density in an intact poromechanical bond ζ reads 

 
where η˙ = u˙ 0 − u˙ is the relative displacement vector. The bond breakage is realized through the 

influence function at the material point level for both the solid and fluid phases. The influence 

function will be replaced by a new influence function %ω, where % is defined as 

 
In periporomechanics, the failure at solid skeleton material points is tracked through a scalar 

damage variable ϕ [24]. This damage variable is defined as the fraction of broken solid bonds at a 

material point in its horizon 
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where ϕ ∈ [0,1] and ω0 is defined as 

 
3. Numerical implementation 

In this section, we implement the computational large-deformation periporomechanics model 

through an implicit-implicit fractional step algorithm. With an undrained operator split, the strongly 

coupled problem is decomposed into an undrained deformation stage and a partially saturated fluid 

flow stage. The list of neighboring material points of a mixed material point is updated in the 

deformed configuration at each time step through a dedicated search algorithm. The evolution of 

phreatic material points across the phreatic line is tracked at each time step through another 

dedicated search algorithm. In this study, we focus on deformation-driven processes, and loading 

conditions are applied to the solid skeleton. Thus, we first solve the deformation problem and then 

the fluid flow process. We note that in other applications, such as hydraulic fracturing, wherein fluid 

pressure drives deformation, it would be preferred to solve the fluid flow first. 

3.1. Time discretization of the deformation stage 

In the deformation stage, the equation of motion is solved under undrained condition through an 

implicit Newton’s method [24, 39]. 

Given un, u˙ n, u¨n at time step n. Let ∆u¨k
n

+1
+1 = u¨n

k+1
+1 − u¨n and k is the iteration counter. 

Following Newmark’s method [1], the displacement, velocity, and accelerations of the solid skeleton 

at time step n + 1 can be written as 

 

 
where β1 and β2 are numerical integration parameters. For unconditional stability [1] β1 ≥ β2 ≥ 0.5. 

The solution procedure for the solid deformation stage with phreatic material points is outlined 

in Figure 3. A detailed description of its numerical implementation is provided in Algorithm 1. At tn+1, 

the residual of the motion equation for a mixed point in the bulk space reads 
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Figure 3: Flowchart of Newton’s method for solving the motion equation in the deformation stage of 

the fractional step algorithm for coupled updated Lagrangian-Eulerian periporomechanics. 
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Similarly, the residual of the motion equation for a phreatic material point reads 
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The terms of the fluid pressure in (105) are determined from the explicit fluid pressure predictor 

pek
w

+1 computed under the undrained condition. Given pw,n and p˙w,n at time step n, let ∆pe
˙
w,n+1 = 

pe
˙
w,n+1 − p˙w,n. From Newmark’s method [1, 25] pew,n+1 can be written as 

  

Through the undrained operator split, the rate form of pew,n+1 at a material point in the bulk 

Reads 

 
Similarly, the rate of the predicted fluid pressure at a phreatic material point can be written as 

 
Algorithms 2 and 3 summarize the algorithms for computing the force states in the residual the 

motion equation at a bulk material point and a phreatic material point, respectively. 
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Substituting (102), (103), and (104) into (105) and using (107), ∆u¨n+1 can be solved by Newton’s 

method as follows. 

  

where Ru is the global residual vector of the motion equations and Au is the global tangent operator 

of the motion equation 

 
Solving (111) we obtain 

  

Finally, we have, 

 

3.2. Time discretization of the unsaturated fluid flow stage 

Given pw,n, p˙w,n, and un, the unsaturated fluid flow stage solves p˙w,n+1 in the updated configuration 
of the solid skeleton configuration using an implicit Newton’s method at time 

step n + 1. Let ∆ ˙pk
w

+1 = p˙kw
+1 − p˙w,n. From Newmark’s method [1] we have 

 

 

The solution procedure for the unsaturated flow stage with phreatic material points is outlined in 

Figure 4. A detailed description of its numerical implementation is provided in Algorithm 4. At tn+1, 

the residual of the mass balance equation for a bulk material point is written as 

 

Figure 4: Flowchart of Newton’s method for solving the mass balance equation in the unsaturated fluid flow stage of the 

fractional step algorithm for coupled updated Lagrangian-Eulerian periporomechanics. 
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Similarly, the residual of the mass balance equation for a phreatic material points reads 

 

Algorithms 5 and 6 show the algorithms for computing the fluid flow and volume rate states for 

the residual vector of the mass balance equations for the bulk and phreatic material points. Through 
an implicit Newton’s method, ∆ ˙pw,n+1 can be solved as follows. 

 

where Rp is the global residual vector of the mass balance and Ap is the corresponding global tangent 

operator 

 

 
Solving (118) gives, 

 

Finally, we have 

 

 

3.3. Spatial discretization of the updated Lagrangian-Eulerian periporomechanics 

The mixed Lagrangian-Eulerian meshfree method is adopted to spatially discretize the coupled 

governing equations [23]. Let P denote the number of total material points in the problem domain 

and Ni be the number of material points in the horizon of material point i. The spatially discretization 

of the motion equation and mass balance equation can be written as 
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Where 

 
 

A is an global assembly operator [23, 54], and Vi and Vj are the volumes of material points i and j, 

respectively, in the current configuration. It is noted that (125), (126), (128) (129) and are written in 

the forms for the phreatic material points in which only one term remains for a bulk material points. 

In (125) and (126), the effective force state and the water force state are written as 
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The fluid flow states in (128) read 

 

The velocity gradients in (129) read 

 

In the next section, we present numerical examples to validate the computational 

implementation and demonstrate the efficacy of the proposed computational periporomechanics for 

modeling dynamic failure and fracturing in unsaturated porous media. 

 



 

24 

4. Numerical examples 

4.1. Example 1: Validation of the coupled stabilization scheme 

In this example, we simulate the dynamic consolidation of a three-dimensional unsaturated soil 

specimen to validate the proposed coupled stabilization scheme. Figure 5 presents the geometry of 

the soil column, loading protocol, and boundary conditions. The problem domain is discretized into 

9,000 uniform mixed material points. The distance of two neighboring material point centers is ∆x = 

0.1 m. For the fluid phase, the bottom boundary is prescribed constant fluid pressure, and all other 

boundaries are impervious. The solid phase is modeled 

 

Figure 5: Problem setup for example 1. 

using an isotropic elastic correspondence model [22, 23]. The intrinsic permeability is assumed 

isotropic and uniform. The material properties chosen are ρs = 2.1×103 kg/m3, ρw = 1×103 kg/m3, µw = 

1×10−3 Pa·s, initial porosity φ0 = 0.33, bulk modulus K = 3.3×104 kPa, shear modulus µs = 1.62 × 104 kPa, 

water bulk modulus Kw = 2 ×105 kPa, kw = 1 × 10−14 m2, n = 1.25, sa = 10 kPa. The initial uniform effective 

stress σ = -12.33 kPa. The initial fluid pressure pw = -15 kPa (i.e., Sr = 0.82). The loading rate is u˙y = 0.01 
m/s. The total loading time t = 5 s with the time increment ∆t = 0.005 s. 

Figures 6 and 7 compare the contours of displacement and pressure, respectively, from the 

simulations using different values of G. The results of simulations with the standard correspondence 

material model (G = 0) show noticeable oscillations. However, the oscillations have disappeared in 

the results with the stabilized correspondence material model (G = 1.0). 

Figure 8 plots the results of the vertical velocity within the specimen with three values of G at uy 

= 0.05 m on the top boundary. Figure 9 plots the fluid pressure within the specimen with three values 

of G at the same load step. The results in Figures 8 and 9 show the effect of stabilization could depend 

on the value of G. This preliminary study implies that the simulation with G = 1.0 removes the 

oscillations of the vertical velocity and fluid pressure in this example. 

4.2. Example 2: Variably saturated flow with an evolving phreatic interface in porous media 

In this example, we simulate variably saturated fluid flow with the evolution of the phreatic 

interface in a rigid porous material. Figure 10 presents the problem setup and the contour of the 

initial fluid pressure with the phreatic line. The initial fluid pressure is prescribed through a linear 

function of the distance above and below the phreatic line as shown in Figure 10. The solid skeleton 

is assumed rigid. All fluid boundaries are impervious. The problem domain is discretized into 15,000 

uniform mixed material points with ∆x = 0.15 m. The initial phreatic line is determined through the 

search algorithm 2 introduced in Section 3. The material properties chosen are ρw = 1 ×103 kg/m3, µw 

= 1 × 10−3 Pa.s, Kw = 2 × 105 kPa, 
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Figure 6: Contours of the vertical displacement with (a) G = 0.0 and (b) G = 1.0 at uy = 0.05 m. 

 

Figure 7: Contours of water pressure (kPa) with (a) G = 0.0 and (b) G = 1.0 at uy = 0.05 m. 

 
Depth (m) 

Figure 8: Variation of the vertical velocity along the specimen at uy = 0.05 m from the simulations with three values of G. 

kw = 1 × 10−15 m2, a1 = 0.038, a2 = 3.49, n = 3.0, sa = 50 kPa. The horizon is δ = 3.05∆x. The total simulation 

time t = 8 h (hour) with ∆t = 1 s. 

Figures 11 and 12 plot the results of the simulation at (a) t = 1 h, (b) t = 4 h, and (c) t = 8 h. Fluid 

flow in the problem domain is driven by initial condition of the pressure in the 
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Figure 9: Variation of water pressure along the specimen at uy = 0.05 m from the simulations with three values of G. 

 

Figure 10: Problem setup for example 2 and the contour of initial fluid pressure (kPa) with a phreatic line. 

domain. The initial spatial variation of fluid pressure drives fluid flow toward the unsaturated zone 

causing the phreatic interface to move toward the right bottom of the problem domain. The initial 

straight phreatic line becomes curved because of the saturated and unsaturated fluid flow within the 

problem domain. This example demonstrates that the implemented variably saturated 

periporomechanics with a dedicated search algorithm for phreatic material points can adequately 

model the evolution of the phreatic interface under partially saturated fluid flow condition in porous 

media. 

4.3. Example 3: Mode I cracking 

In this example, we simulate mode I crack propagation and unsaturated fluid flow in a porous 

body in two dimensions. We compare the numerical results from the updatedLagrangian formulation 

in this study to the results from the total-Lagrangian periporomechanics in [24]. Figure 13 presents 

the problem geometry, boundary conditions, and loading protocol. The pre-existing crack is defined 

by eliminating interaction between material points across the crack plane [24]. All fluid phase 

boundaries of the specimen are assumed impermeable. The problem domain is discretized into 20000 

uniform mixed material points with ∆x = 0.0025 m. 

The solid phase is modeled using an isotropic elastic correspondence constitutive model 

[22, 23]. The material properties are ρs = 2×103 kg/m3, ρw = 1×103 kg/m3, µw = 1×10−3 Pa·s, initial 

porosity φ0 = 0.25, G0 = 225 J/m2, K = 1.346 × 107 kPa, µs = 1.095 × 107 kPa, intrinsic permeability kw = 

1×10−16 m2, a1 = 0.038, a2 = 3.49, n = 1.78, sa = 1.2×104 kPa. The horizon δ = 3.05 ∆x. The stabilization 

parameter G = 1.0. The initial uniform effective stress σ = -13 kPa. The initial water pressure in the 

specimen is -15 kPa (Sr = 0.87). The loading rate u˙y = 2.0 ×10−6 m/s. The total loading time t = 1000 s 

with ∆t = 0.5 s. 
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The results are presented in Figures 14, 15, and 16. Figure 14 compares the reaction force versus 

the applied displacement on the top boundary from the simulations using the 

 

Figure 11: Contours of the water pressure (kPa) in the problem domain at (a) t = 1 h, (b) t = 4 h and (c) t = 8 h. 

 

Figure 12: Evolution of the phreatic interface (red line) in the problem domain at (a) t = 1 h, (b) t = 4 h and (c) t = 8 h. 

updated Lagrangian formulation to the results from the total-Lagrangian formulation. The results in 

Figure 14 show good agreement between the two curves before the peak load. The slight difference 

between the two curves after the peak load could be due to the fact that the neighboring points of a 

mixed material point are updated on each time step in the updated Lagrangian formulation. 
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 Applied Displacement (x 10  m) 

Figure 14: Comparison of the loading curves from the total and updated Lagrangian formulations. 

 

Figure 15: Contours of damage variable (ϕ) from the simulations using (a) total and (b) updated Lagrangian formulations at uy 

= 0.002 m (×50). 

Figures 15 and 16 plot the contours of damage variable and water pressure at uy = 0.002 m 

respectively from the simulations using total and updated Lagrangian formulations. The results in 

both figures show that the crack opening leads to a similar development of negative pressures (larger 

matric suction) in the vicinity of the crack. The negative water pressures are due to the fluid flow into 

the crack space in the mode I cracking process. The results from the total and updated formulation 

are in good agreement, while there is a slight difference in both the value of water pressure and the 

length of crack propagation. We note that the mode I crack propagation in this example is brittle in 
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nature. Thus, it is postulated that large deformation is not required for the crack to propagate. Indeed, 

this postulation is supported 

 

Figure 16: Contours of water pressure (MPa) from the simulations using (a) total and (b) updated Lagrangian formulations at 

uy = 0.002 m (×50). 

by the consistency between the results from the updated and total Lagrangian formulations. 

4.4. Wetting collapse of an unsupported vertical cut 

In this example, we simulate the wetting collapse of an unsupported vertical cut in an unsaturated 

soil. Figure 17 depicts the problem domain and boundary conditions. The problem domain is 

discretized into 13,000 mixed material points with ∆x = 0.1 m. 

 

Figure 17: Problem setup for example 4 and the contour of the initial effective stress in y-direction (kPa). 

 

Figure 18: Contours of plastic shear strain at (a) pw = -23.3 kPa, (b) pw = -21.9 kPa and (c) pw = -20.5 kPa. (× 2) 
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The solid skeleton is modeled using a critical state elastoplastic constitutive model for 

unsaturated porous media in [23]. The material parameters are ρs = 2.3 × 103 kg/m3, ρw = 1 × 103 kg/m3, 

µw = 1 × 10−3 Pa·s, φ0 = 0.25, K = 5.56 × 104 kPa, µs = 1.064 × 104 kPa, Kw = 2 × 105 kPa, kw = 1 × 10−8 m/s, 

a1 = 0.038, a2 = 3.49, n = 1.78, sa = 25 kPa. For the plastic model, initial pre-consolidation pressure p¯c0 

= -500 kPa, specific volume at unit pre-consolidation pressure N = 2.2, critical state line slope M = 1, 

swelling index κ = 0.03, compression index λ = 0.13, and fitting parameters b1 = 0.185 and b2 = 1.42. 

The horizon δ = 3.05∆x. The stabilization parameter G = 0.1. The initial water pressure pw = − 50 kPa 

(i.e., matric suction = 50 kPa) throughout the problem domain. The vertical effective stress is 

prescribed by the equation σy = ρsgh + Srpw,0, where h is the depth from the top surface. The horizontal 

effective stress σx = Srpw,0. In this example, the wetting collapse of the soil is simulated by by uniformly 

reducing the matric suction in the problem domain. 

Figures 18 and 19 plot the contours of plastic shear and plastic volume strain, respectively, at 

three load steps of (a) pw = -23.3 kPa, (b) pw = -21.9 kPa, and (c) pw = -20.5 kPa. Here the plastic shear 

strain εp
s is the equivalent plastic strain, i.e., εp

s = 3 results in 18 reveals that the failure is initiated at 

the left-bottom corner of the vertical cut from where the deformation band propagates upward. 

Figure 19 show that the maximum dilatation appears to occur at the free upper surface of the soil. As 

the soil deforms outward, this zone of dilatation propagates downward along with the shear band as 

shown in Figures 18 and 19 (b) and (c). 

 

Figure 19: Contours of plastic volume strain at (a) pw = -23.3 kPa, (b) pw = -21.9 kPa, and (c) pw = -20.5 kPa. (× 2) 

Next, we repeat the same simulation with a finer spatial discretization with 26,000 material points. 

The same horizon is utilized for both analyses. The results of the two simulations are compared in 

Figures 20 and 21. Figure 20 plots the contour of plastic shear strain at the same load step. Figure 21 

presents the contour of plastic volume strain at the same load step. The results demonstrate that the 

contours of shear and volume strain from both simulations are in good agreement. The width of the 

deformation zone and magnitude of the plastic deformation appear insensitive to the two spatial 

discretizations. It may be due to the same horizon adopted for the two simulations. 

4.5. Dynamic failure of a dam triggered by earthquake 

In this example, we demonstrate the efficacy of the proposed computational periporomechanics 

for modeling the dynamic failure of variably saturated porous media under earthquake loading. For 

this purpose, we simulate the dynamic failure of the Lower San Fernando Dam during the 1971 San 

Fernando earthquake (Mw = 6.6). We refer to the celebrated literature [12, 55, 56] for more 

information about the post-earthquake investigation of this event. Figure 22 shows (a) the sketch of 

the geometry of the dam reported in the literature Seed et al. [56], (b) the geometry and boundary 

condition adopted in this study, and (c) the water table in the 
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Figure 20: Contours of plastic shear strain from the simulations with (a) 26000 material points and (b) 13000 material points. 

(× 2) 

 

Figure 21: Contours of plastic volume strain from the simulations with (a) 26000 material points and (b) 13000 material points. 

(× 2) 

reservoir and the phreatic line within the dam. The base of the dam is constrained against the vertical 

motion, and the horizontal ends are constrained against lateral movement. The problem domain is 

discretized into 60,000 uniform mixed points with ∆x = 0.33 m. The horizon δ = 3.05∆x. The 

stabilization parameter G = 0.25. 

 

Figure 22: (a) Schematic of the dimensions of the dam reported in the literature, (b) Geometry, soil layers within the dam and 

boundary conditions in this study, and (c) sketch of water table in the reservoir and phreatic line in the dam. 
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Figure 23: Contours of (a) the initial water pressure (kPa), and (b) the initial vertical effective stress (kPa) in the numerical 

model. 

The bulk of the dam is made of various types of fines [12]. The core material is simplified as a 

single slightly overconsolidated clay in this example. The remainder of the dam is composed of looser 

and weaker hydraulic filler material outlined in brown in Figure 22. The input parameters for both 

materials are ρs = 2 × 103 kg/m3, ρw = 1 × 103 kg/m3, µw = 1 × 10−3 Pa·s, φ0 = 0.375 [1], K = 2.33 × 104 kPa, 

µs = 1.167 × 104 kPa, Kw = 2 × 105 kPa, n = 3, sa = 1.2 × 103 kPa. The plastic material parameters [32] for 

the core material are pc = −700 kPa, N = 2.0, M = 1.2, κ = 0.02 and λ = 0.09. For the filler material the 

parameters are pc = −400 kPa, N = 1.75, M = 0.9, κ = 0.04 and λ = 0.13. 

 

Figure 24: Recorded acceleration profile during the earthquake (Pacoima

 Dam accelerogram, www.strongmotioncenter.org). 

Figure 23 (a) and (b) plots the initial geostatic stress and initial water pressure within the dam, 

which are generated by a quasi-static elastic analysis. With the crest of the dam taken as the datum, 

the initial effective skeleton stress is computed by the gravitational load on the soil within the dam. 

Pore water pressure along the upstream slope of the dam is prescribed by pw = ρwgh, where h is the 

distance between the water table and the upstream slope. Pore water pressure and matric suction 

within the dam are computed through the seepage analysis as in [1]. The negative water pressure in 

the vadose zone is prescribed by pw = −ρwgh, where h is the vertical distance above the phreatic line. 

Figure 24 plots the acceleration profile recorded during the earthquake. The strong ground 

motion only lasted for 12 s. The acceleration profile in the blue frame marks the input data in this 

study. In the coupled analysis, this acceleration profile is applied to the bottom of the dam as shown 

in Figure 22. The results are presented in Figures 25 and 26. 

Figure 25 plots the snapshots of the equivalent plastic shear strain within the dam at (a) t = 4 s, 

(b) t = 10 s, and (c) t = 16 s respectively. The results show that the large plastic shear strain has 

occurred at the toe of the upstream slope and the location beneath the core of the dam. The results 

may imply that failure initiated at the toe and progressed toward 
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Figure 25: Snapshots of the contours of the plastic shear strain within the dam at (a) t = 4 s, (b) t = 10 s, and (c) t = 16 s. 

 

Figure 26: Snapshots of the contours of the water pressure (kPa) within the dam at (a) t = 4 s, (b) t = 10 s, and (c) t = 16 s. 

the core of the dam. Figure 26 presents the contours of water pressure within the dam at the same 

three time steps. The results in Figure 26 show that the water pressure increased at the base of the 

dam, which may imply the liquefaction of the soil under the dam core during the earthquake. The 

numerical results are consistent with the results based on the mixed finite element method in [1]. 

For a more realistic simulation of the dynamic failure of the dam under earthquake loads, a more 

representative constitutive model for different zones of soils within the dam will be required, which 

is beyond the scope of the present work. 

5. Closure 

In this study, we have formulated a computational coupled large-deformation periporomechanics 

paradigm assuming passive air pressure for modeling dynamic failure and fracturing in variably 

saturated porous media. In this new computational periporomechanics paradigm, the coupled 

governing equations for both bulk and fracture material points are formulated in the current 

configuration through the updated Lagrangian-Eulerian framework. It is hypothesized that the 
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horizon of a mixed material point remains spherical, and its neighbor points are determined in the 

current configuration. As a significant novelty, the mixed phreatic material points across the phreatic 

line are explicitly considered through the mixed peridynamic state concept. To incorporate the 

classical constitutive models into the nonlocal framework, we have developed the coupled 

constitutive correspondence principle with stabilization in the updated Lagrangian-Eulerian 

framework for the bulk and phreatic material points. We have numerically implemented the coupled 

large-deformation periporomechanics paradigm through an implicit-implicit fractional-step 

algorithm in time and a hybrid updated Lagrangian-Eulerian meshfree method in space. We first 

present numerical examples to validate the implemented coupled stabilized scheme and the fluid 

flow across the phreatic line in partially saturated porous media. We then conduct numerical 

examples to demonstrate the robustness and efficacy of the proposed computational framework in 

modeling fracturing and failure in partially saturated deformable porous media under static and 

dynamic loads. 
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