
https://helda.helsinki.fi

Computational Creativity Infrastructure for Online Software

Composition : A Conceptual Blending Use Case

Martins, Pedro

2019-02-08

Martins , P , Goncalo Oliveira , H , Carlos Gonçalves , J , Cruz , A , Cardoso , A ,

þÿ�Z���n�i�d�a�r�s���i�c��� �,� �M� �,� �L�a�v�r�a�c��� �,� �N� �,� �L�i�n�k�o�l�a� �,� �S� �,� �T�o�i�v�o�n�e�n� �,� �H� �,� �H�e�r�v�a���s� �,� �R� �,� �M�é�n�d�e�z� �,� �G� �&

þÿ�G�e�r�v�a���s� �,� �P� �2�0�1�9� �,� �'� �C�o�m�p�u�t�a�t�i�o�n�a�l� �C�r�e�a�t�i�v�i�t�y� �I�n�f�r�a�s�t�r�u�c�t�u�r�e� �f�o�r� �O�n�l�i�n�e� �S�o�f�t�w�a�r�e� �C�o�m�p�o�s�i�t�i�o�n

: A Conceptual Blending Use Case ' , IBM Journal of Research and Development , vol. 63 ,

no. 1 , 9 , pp. 9:1-9:17 . https://doi.org/10.1147/JRD.2019.2898417

http://hdl.handle.net/10138/303572

https://doi.org/10.1147/JRD.2019.2898417

other

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 1

Computational Creativity Infrastructure for Online Software Composition: A
Conceptual Blending Use Case

Pedro Martins, Hugo Gonçalo Oliveira, João Carlos Gonçalves, António Cruz, F. Amílcar Cardoso,
Martin Žnidaršič, Nada Lavrač, Simo Linkola, Hannu Toivonen, Raquel Hervás, Gonzalo Méndez,
Pablo Gervás

Computational Creativity [CC] is a multidisciplinary research field, studying how to engineer

software that exhibits behavior which would reasonably be deemed creative. This article shows

how composition of software solutions in this field can effectively be supported through a CC

infrastructure that supports user-friendly development of CC software components and

workflows, their sharing, execution and reuse. The infrastructure allows CC researchers to

build workflows that can be executed online and be easily reused by others through the

workflow web address. Moreover, it enables the building of procedures composed of software

developed by different researchers from different laboratories, leading to novel ways of

software composition for computational purposes that were not expected in advance. This

capability is illustrated on a workflow that implements a Concept Generator prototype based on

the Conceptual Blending framework. The prototype consists of a composition of modules made

available as web services, and is explored and tested through experiments involving blending of

texts from different domains, blending of images, and poetry generation.

1 Introduction
Computational Creativity [CC] is a multidisciplinary research
field mainly focused on the study and design of computational
systems whose behavior can be deemed creative. Although
originally seen as a subfield of Artificial Intelligence [AI], CC is
now regarded as a multidisciplinary endeavor that draws on
research from AI, Cognitive Science, Social Anthropology,
Philosophy and Arts.

The current research in CC comprises not only various
computational systems based on different cognitive theories
related to creativity, such as bisociation and conceptual blending
[1-9], but also evaluation methods to assess the quality of the
aforementioned systems [10]. As for application domains, the
research has been addressing different areas, including visual
arts [11,12], music [13], poetry [14,15], and mathematics [16].

Collaborative frameworks aimed at the development, testing
and sharing of creative systems are an ideal infrastructure to
explore different ways of software composition and reuse, and
to expand the range of application of a particular module.

We present a visual programming platform that was
developed to allow the collaborative design, execution,
adaptation and reuse of workflows for computational creativity
applications. Such workflows are built by combining individual
shared software components originally designed for performing
specific tasks, or for providing access to specific resources.
Building of procedures that are composed of software developed
by different researchers from different laboratories is simplified,
leading to novel ways of software composition for
computational purposes that were not expected in advance. To
illustrate the capabilities of the platform, we introduce
DivagoFlow, a workflow that implements a Concept Generator
prototype based on the Conceptual Blending framework. We

propose and discuss several CC applications based on the
integration of DivagoFlow with other modules. These
applications include blending of text from different domains,
blending of images, and poetry generation.

The final aim of our contribution is to provide CC researchers
with an easy way to share and test their works, which will
simplify the creation of collaborative projects. The workflows
presented herein are already a result of combining various
modules developed by researchers from different laboratories.

In Section 2 we present a brief description of a selection of
easy-to-use workflow management systems that allow the user
to compose complex computational pipelines in a modular
visual programming manner, paying special attention to the
ConCreTeFlows platform. In Section 3, we will make a concise
introduction to the Conceptual Blending [CB] framework,
which will provide context for the description, in Section 4, of
DivagoFlow’s architecture and its implementation using
ConCreTeFlows. In Section 5 we describe experiments that
illustrate the capabilities of the platform. Section 6 draws
conclusions and discusses future work, which includes
refinements and the design of new modules.

2 Infrastructures for Computational Creativity
Infrastructures supporting computational creativity and the
generation of creative systems are scarce, although some recent
research attempts have tried to fill this gap. One of the recent
developments is FloWr [17], a system for implementing creative
systems as scripts over processes, manipulated visually as
flowcharts. Another example is the ConCreTeFlows
infrastructure [18], which was developed to enable the
construction, sharing and execution of CC workflows,
composed of software ingredients of different partners of the

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 2

European project ConCreTe1. Both of these infrastructures use
different types of resources (e.g., musical, pictorial and textual
inputs) to support the development of some typical CC task such
as poetry generation, metaphor creation, generation of
narratives, creation of fictional ideas and conceptual blending.

ConCreTeFlows2 is an online cloud-based platform. It was
developed as a fork of the more generally data analysis oriented
ClowdFlows [19], but unlike ClowdFlows, it offers various
software components from the field of computational creativity
and supports their specific resources and software requirements,
such as widgets for accessing ConceptNet [20] and support for
the Processing programming language.

ConCreTeFlows runs in any standards compliant Web
browser and needs no client side installation. Software
components in the workflows (denoted as widgets) can be either
native ones, which are deployed on the ConCreTeFlows
platform, or web-services, which can be added to the platform
on the fly.

The user interface of ConCreTeFlows follows a visual
programming paradigm and allows for creation of complex
workflow processes by dragging, dropping and connecting the
software building blocks. The basic software components in
ConCreTeFlows are graphically represented as widgets. The
connections among them represent data transfers from one
component's output to another one's input. Every widget
performs a task based on its inputs and user defined parameters
and stores the results on its outputs. ConCreTeFlows can be
extended by adding new workflow components that can offer
graphical user interaction during run-time and visualization of

1 https://cordis.europa.eu/project/rcn/109703_en.html

results by implementing views in any format that can be
rendered in a web browser.

The graphical user interface of ConCreTeFlows is shown in
Figure 1. On the top of the interface there is a toolbar where
workflows can be saved, deleted, and executed. Below the
toolbar, on the left, is the widget repository, which is a list of
available widgets grouped by their functionality. By clicking on
them, the widgets can be added to the workflow construction
canvas on the right, which is the main part of the user interface.
At the bottom, there is a console for displaying success and
error messages. For each widget successfully executed, there is
a success message. In the case of a failed execution, an error
message is displayed containing the widget’s name and an
identification of problem (e.g., absence of input data).

The platform aims to support and facilitate workflow sharing
and reusability by allowing the authors to make the workflows
public (they are private by default) and offer them for reuse and
adaptation to others. Each public workflow is assigned a unique
URL that can be shared or published by the author and then
accessed by anyone to either replicate the experiment or use the
workflow as a template to design new similar workflows.

When a user that is not its author accesses a public workflow,
its copy is created and added to the user's workflow repository.
The copy includes the structure, all the parameter settings and
all the data, which ensures replicability of its results and allows
the new workflow's user to change and adapt the workflow to
their needs without causing any change to the original one.

2 http://concreteflows.ijs.si

Figure 1 The user interface of ConCreTeFlows with an example of a workflow with TextStorm and DivagoFlow as central modules: a blend is
produced from textual descriptions of concepts in natural language.

https://cordis.europa.eu/project/rcn/109703_en.html
http://concreteflows.ijs.si/

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 3

3 Brief Introduction to Conceptual Blending
The Conceptual Blending [CB] theory [21] was proposed to
explain mechanisms involved in the creation of meaning and
insight in the everyday mind. It provides a comprehensive
description of the so-called conceptual integration process,
which intends to explain how two distinct concepts like “horse”
and “bird” can be blended into a different concept like
“Pegasus”. The theory also provides a set of consistent
principles as well as a terminology that can be used in creativity
modeling. As a result, the CB framework has been the basis for
a few artificial creative systems [1-8].

A key element in CB theory is the mental space, a partial and
temporary structure of knowledge built for the purpose of local
understanding and action [22]. To describe the CB process, the
theory makes use of a network of four mental spaces (Figure
2(a)). Two of these correspond to the input spaces, i.e., the
content that will be blended (e.g., “horse” and “bird” are the
input spaces for the “Pegasus” concept). The blending process
starts by finding a partial mapping between elements of these
two spaces that are perceived as similar or analogous in some
respect (cross-space mapping). This mapping is reflected in a
third mental space, called generic space, which contains what
the initial spaces have in common, allowing it to encapsulate the

conceptual structure shared by the given input spaces This third
mental space provides guidance to the next step of the process,
denoted as selective projection, where the matched elements as
well as other surrounding elements are merged and projected

into a new and final mental space, called the blend(ed) Space.

Figure 2(b) depicts an example of conceptual blending,
where the concept “computer virus” results from the blending of
two mental spaces: “computer” and “virus”. An initial cross-
space mapping, which is represented with dense dashed lines,
maps “Computer” onto “Host” and “Program” onto “Virus”.
From those correspondences, selective projections are made into
the blended space, which includes not only the initial matched
elements but also some related (neighbor) elements. The
outcome is a blended space that describes what we know as a
“computer virus”. Note that this is a simplified example and, for
the purpose of simplicity, the generic space is omitted.

Further stages of the blending process elaborate and complete
the blend. The completion stage corresponds to the use of
existing knowledge in long-term memory to generate
meaningful structures in the blend, whereas the elaboration
stage involves cognitive work to perform a simulation of the
blended space. There is not a pre-established order for these
operations and several iterations may occur.

Figure 2 (a) The original four-space conceptual blending network [21] and (b) the “computer virus” blend example.

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 4

The possibilities for blending are seemingly unlimited. As
such, the complexity and the quality of blends can be quite
heterogeneous. The blending process is guided by optimality

principles [21, 23], which are responsible for providing
guidance towards highly integrated, coherent and easily
interpreted blends. Fauconnier and Turner, who proposed the
CB theory, provide a list of eight optimality principles [20]:

1. Integration: a blend must constitute a tightly
integrated scene that can be manipulated and
perceived as a unit.

2. Topology: For any input space and any element in
that space projected into the blend, it is optimal for
the relations of the element in the blend to match the
relations of its counterpart.

3. Web: Manipulating the blend as a unit must maintain
the web of appropriate connections to the input
spaces easily and without additional surveillance or
computation.

4. Intensification of vital relations: the blending process
has the ability to compress a diffuse conceptual
structure into more intelligible and manipulable
human-scale situations in the blended space. That
compression is likely to occur when mental spaces
are connected by vital relations, such as time, space,
cause-effect, analogy, or a part-whole relation. The
principle of intensification of vital relations states
that diffuse structures should be compressed by
scaling a single vital relation (e.g., scale down an
interval of time) or transforming vital relations into
others.

5. Maximization of vital relations: the number of vital
relations in the blended space should be maximized
in order to create human scale.

6. Pattern Completion: Other things being equal,
complete elements in the blend by using existing
integrated patterns as additional inputs.

7. Unpacking: The blend alone must enable the
understander to unpack the blend to reconstruct the
inputs, the cross-space mapping, the generic space,
and the network of connections between all these
spaces.

8. Relevance; All things being equal, if an element
appears in the blend, there will be pressure to find
significance for this element. Significance will
include relevant links to other space and relevant
functions in running the blend.

In the following sections, we will describe how the
ConCreTeFlows platform can be used to implement ideas from
CB theory for novel concept creation.

4 The DivagoFlow Architecture
DivagoFlow is a workflow for creating novel concepts, inspired
by the CB theory and implemented on top of ConCreTeFlows. It
represents an evolution from a previous CB system, Divago
[24]. It is relevant to the field of CC as a general-purpose
concept generator designed to be used in a wide diversity of
application domains and to be combined with other artificial

creative systems.

In order to create novel concepts, DivagoFlow starts by
selecting two concepts or domains from a given knowledge
base, and then produces a blend from them.

We start from the latter task, as it forms the core of conceptual
blending, which comprises selective projection and subsequent
tasks aimed at creating a blend with an emergent structure on its
own (the blend inherits a partial structure from the input spaces
but also develops a structure that is independent of the two input
spaces).

4.1 Blending Given Concepts
Humans blend concepts subconsciously, but for computers it is
a non-trivial task. Given two concepts to be blended, what are
the possible blends? How to compute them, and how to assess
their feasibility computationally?

DivagoFlow aims to invent novel blends, and at its core is the
ability to interpret what blending two concepts might mean.
Equipped with this ability, it may then try to select pairs of
concepts to blend (see next subsection).

The architecture of DivagoFlow for blending concepts is
depicted in Figure 3. There are two central modules: the
Mapper and the BlendFactory.

These modules interact with four mental spaces as in the CB
theory. The spaces are represented as computational versions of
concept maps [25]. A concept map is a semantic network that
denotes the relationship between the concepts of a given
domain, which correspond to the elements of a mental space in
the CB framework. It corresponds to the factual part of the
micro-theory of the domain. We often represent concept maps
as graphs in which the relations are arcs and elements are nodes.
Figure 4 shows two concept maps for “bird” and “horse”
connected through the common concept “cover”. Both domains
are built with relations from a set of possibilities. The meaning
of those relations is summarized in Table 1.

In addition to concept maps, the mental spaces in DivagoFlow
may also include other types of knowledge: instances, rules,
integrity constraints, and frames [26].

An instance is a particular example of a given domain. For
example, a particular description of a bird is an instance of the
domain Bird.

Rules are used to represent inherent causality. An example of
a rule is “If A has wheels, then A can roll”.

Integrity constraints are rules that serve to assess the
consistency of the concept by describing events or facts that
cannot occur simultaneously.

Frames are a type of knowledge that includes a set of conditions
and guidelines to define properties of the blend to be generated.
They have the role of describing abstract prototypes of entities,
actions, reasoning, situations or idiosyncrasies.

Let us now focus now on how the modules operate.

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 5

 4.1.1 The Mapper
The Mapper performs the selection of elements from the input
spaces for projection. Such selection is achieved by means of a
partial mapping between the two concept maps using structural

alignment. This operation looks for the largest isomorphic
(structurally equivalent) pair of sub-graphs contained in the
input spaces. Here, structural equivalence means that the graphs
have the same edges (relations) regardless of the nodes. In terms
of algorithmic structures, the mapping consists of a unique set of
one-to-one associations of semantic concepts in the form of
textual strings. The one-to-one associations are named dormant

bridges.

The Mapper uses a spreading activation algorithm to look for
the largest isomorphic pair of subgraphs, while the structure
matching is performed through an algorithm inspired by the

Sapper framework [27].

Starting at specific concepts, the spreading activation finds a
set of concepts that were activated during the execution of the

Figure 3 Concept blending architecture of DivagoFlow.

Figure 4 Conceptual maps of the two domains “horse” and “bird”. The horizontal dashed lines correspond to the pairs of concepts defining a mapping.

Table 1 Short description of the relations shown in Figure 4.

Relation Meaning
ability(A,B) A is able to B
existence(A,B) A exists in B
isa(A,B) A is a B
lay(A,B)
purpose(A,B)
pw(A,B)
sound(A,B)

A lays B
A’s purpose is B
A is part of the (whole) B
A’s sound is B

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 6

algorithm. The concept’s spreading (expansion) is done in a
breadth first fashion. The concepts are activated according to a
function of their relations and user specified thresholds, which
together work as a filter. Hence, it is a type of graph search.

While the Sapper framework requires two cycles to obtain a
mapping: one for laying down dormant bridges with the
triangulation rule and another one for finding the mapping, the
Mapper uses three cycles: one for laying down dormant bridges
with the triangulation and squaring rules; another one for
spreading activation; and a final one for finding the mapping
[6]. Figure 4 also illustrates a mapping between two domains –
Horse and Bird – via structural alignment.

The triangle rule creates a dormant bridge between two
concepts when both share a common concept with the same
relation:

relation(A,C) ˄ relation (B,C) → A≈B.

Likewise, the square rule handles the situation where the two
concepts do not share a common concept as described above but
do share an existing dormant bridge. In that case, the dormant
bridge performs a similar function as the common concept and
allows a new dormant bridge to be created if both concepts
share the same relation with nearby concepts:

A≈B ˄ relation(A,C) ˄ relation (B,D) → C≈D.

4.1.2 The BlendFactory
The second module, the BlendFactory, takes the output from the
Mapper, the input spaces and a given generic space, and
produces blends (see dashed block in Figure 3).

It starts by taking the mappings provided by the Mapper and
performing a projection into the blend space. All the possible
projections resulting from the mapping must be represented in
the blend space at this stage, as we want to be as exhaustive as
possible.

The mapping “horse” ↔ “bird” (see Figure 4) has four
alternative projections: each node is projected as a separate
concept (nodes “horse” and “bird' in the blend), no node is
projected (“nil” node in the blend space) or both nodes are
combined into a node for a new concept “horse | bird”. Each of
these four combinations may be a part of a possible blend.

Non-mapped nodes are projected as a copy of themselves and
as a nil node (meaning that the node may appear or not in each
of the possible blends). After the projection of nodes is
concluded, the relations of the input spaces are also projected
into the blend.

The whole set of selective projections summarize the set of all
possible blends, which is called the blendoid. If the input spaces
also contain other knowledge components, like rules, frames,
instances and integrity constraints, they are also projected into
the blend space.

The blendoid thus obtained constitutes the initial population
of a genetic algorithm [GA] that explores the space of all

possible blends resulting from the projection step. The GA
interacts with two auxiliary components, the Elaboration and
the Constraints. In each iteration, the GA sends each blend to
the Elaboration component, which is responsible for applying
context-dependent knowledge from the Generic Space and thus
enriching the blend. Then it sends the result to the Constraints
component, which implements the optimality principles of the
CB theory as a set of constraints that applies to the blend to
assess it. In other words, the evaluation of an individual is made
by the direct application of the optimality principles. This
component provides, therefore, the fitness function for the
evolutionary process. The optimality constraints can be seen as
competing pressures over the evolutionary process.

When the GA finds a solution with a satisfactory fitness value
or a pre-defined number of iterations are reached, the
BlendFactory stops the execution of the GA and returns the best
blend. Figure 5 illustrates a blend of Bird with Horse.

A key feature of the DivagoFlow concept generator, inherited
from the original Divago framework [3], is the explicit use of
the Optimality Principles in the blending process. Several other
computational models of CB do not explicitly implement this
component.

In particular, six principles have been modeled: Integration,
Topology, Unpacking, Maximization/Intensification of Vital
Relations, Web and Relevance. For each of them, a measure is
provided (see [8] for details). The fitness of each blend is
measured as a weighted sum of the individual measured values.

To assess the novelty of each blend, the BlendFactory makes
use of the edit distance between the input spaces and the blend,
i.e., the number of insert and delete operations required to
transform one space into the other. The larger the distance to
both input spaces, the higher is the novelty of the blend.

4.2 Choosing What to Blend
We have described above how blends are produced by
DivagoFlows, given two concepts to blend. The overall aim of
DivagoFlows is, however, to create novel blends, and selecting
what to blend is a major component of the creative process.
While concept blending is a relatively focused task (find an
optimal blend for the given concepts), deciding what to blend is
a much more open task (find a pair of concepts/domains/input
spaces that give an interesting blend). Obviously, these two
subtasks are tightly intertwined and selection should be
informed of the blending process.

The overall DivagoFlow implementation, discussed in more
detail in next subsection and represented in Figure 6, includes
the Domain Spotter [DS], a module that tries to spot promising
input spaces to blend within a large-scale concept map. More
specifically, DS takes a semantic network and extracts two sub-
graphs to be used as input by both the Mapper and the
BlendFactory. To perform the task, the module uses exclusively
structural information from the semantic network and therefore
does not resort to any additional resources (e.g., to perform
semantic analysis).

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 7

The algorithm behind the DS is based on the formalized work
by Nagel et al. [28]. The principle supporting both the DS and
the work of Nagel et al. is the juxtaposition of two apparently
unrelated domains (sets of concepts and relations) through a
single term, the bridging concept. Intuitively, the ideal concept
to select as a bridging concept is one that is present in at most
two relations. As an example, we can think of the concept “life”
connected (e.g., through relations “isa”) to a concept of the
domain “animal” and to different concept of the domain “plant”.
In this case, the bridging concept “life” is a vertex of the
semantic graph, with a degree of two, connecting the “animal”

and “plant” input spaces, and thus being present in the
intersection of both spaces.

This notion of pairing two disjoint frames of reference using a

single connection (relation or concept) was put forth by Koestler
and named bisociation [29]. Our implementation allows the
existence of more than one bridging node in the same pair of
graphs, although the algorithm gives preference to a single
bridging node solution. Additionally, the DS allows the
manipulation of a highly interconnected semantic graph and an
improved capability for handling real world blending examples.

Hence, this module executes a partitioning of the semantic
graph in two sub-graphs, corresponding these to the two input
spaces required. On the other hand, both input spaces should be
maximized in cardinality (number of concepts or vertices) to
maximize the information contained in the extracted graphs. The
input spaces should also have a similar cardinality to correct for
bias in either input spaces and, thus, give both an equal
opportunity for influence in the succeeding modules of the
concept generator.

Assuming that the semantic graph may represent a vast
amount of knowledge, possibly from multiple domains and thus
may be composed of a large amount of concepts and relations,
the DS resorts to a fast GA capable of handling large output
blends in real-time [30]. As an example, with a custom version
of ConceptNet V5 (1791604 edges and 1229508 concepts) [20]
and a population of 256 chromosomes we have an average
execution time per epoch of 0.973±1.421 seconds (Intel X3470,
32 GB of RAM, Windows 7 x64 SP1).

The GA uses heuristics such as the degree of the vertex
chosen as bridging concept, the cardinality of both the sub-
graphs corresponding to the input spaces, including the ratio

Figure 5 Blend of “bird” with “horse”.

Figure 6 The extended DivagoFlow as an executable workflow in
ConCreTeFlows.

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 8

between the two cardinalities. These heuristics are combined in
the fitness function, which guides the optimization process
behind the partitioning of the semantic graph.

One of the main differences between our work and Nagel's is
that the latter requires two completely disjoint sets, while ours
allows a user configured tolerance of the intersection between
the two extracted domains. It is, thus, better prepared for
handling real semantic data with partially overlapping regions.

This tolerance is calculated as a ratio between the cardinality
of both the extracted input spaces (sub-graphs) and the number
of vertices (concepts) in their intersection. However, this
intersection should ideally only be composed of one vertex, the
bridging concept. Therefore, the algorithm aims to find a
minimum possible number of vertices in the intersection.

4.3 Integration in ConCreTeFlows
We have implemented DivagoFlow in the ConCreTeFlows
platform to offer its main functionalities as web services and
allow its integration with other modules being developed within
ConCreTe. Each of the DivagoFlow modules (Mapper,
BlendFactory and Domain Spotter) was implemented as a
widget (“drop-in” graphical elements available in the
ConCreTeFlows user interface).

4.4 Auxiliary tools
We developed two auxiliary tools to support the development
and use of DivagoFlow: Concept Blend Visualizer and
TextStorm, a concept map generator.

These tools will be described next. In addition, we have
developed a tool for generation of visual metaphors, also
applicable in conjunction with DivagoFlow (see Section 5).

4.4.1 Concept Blend Visualizer
The first tool, Concept Blend Visualizer [CBV], provides an
interactive visualization where the different stages of the
blending mechanism are represented in a four-space CB
network. Each of the four mental spaces – the two input spaces,
the blend and the generic space – is depicted as a large circle
containing a node-link diagram, which represents all the
concepts and relationships belonging to that space.

The visualization not only adapts to any user-provided
datasets, but also sorts nodes inside each concept space through
a force-based layout that attracts related nodes while repelling
others, which creates self-organizing networks and prevents
overlaps. Additionally, the initial position of nodes is calculated
through a layout that minimizes edge intersections, thus
reducing visual noise. Figure 7 presents a visualization by the
CBV of a Horse and Bird conceptual blend, where it depicts all
four mental spaces.

 The visualization is interactive and can be panned and
zoomed with the mouse, while individual nodes can be selected
or dragged. Selecting a node will highlight it and shows the
names of the edges connected to that node, while the remaining
edges will be faded out. If the user hovers the perimeter of the
large circle that represents a space, it will highlight only the
edges between that mental space and the others.

Edges within each space are directed and their direction is
represented by the line's thickness that resembles an arrow,
where the thinnest end points to the target node. If the same
concepts have multiple types of relationships, this is represented
with branching edges. Furthermore, there are non-directed
colored edges that represent relationships between spaces when
a node is selected. Nodes that exist both in the input space and
in the blend will be connected through a blue line, similar nodes
between the input spaces will be connected with a pink line, and
relationships between the generic space are represented with a
red line.

4.4.2 TextStorm
The second tool, TextStorm [31], is aimed at extracting concept
maps from natural language texts. Given an input text,
TextStorm applies Part-of-Speech tagging and looks for entries
in WordNet [32]. Then, it builds predicates that map relations
between two concepts from parsing sentences. The goal is to
extract from utterances such as “Cows, as well as rabbits, eat
only vegetables, while humans eat also meat”, the predicates
{eat(cow,vegetables), eat(rabbit, vegetables), eat(human,

vegetables), eat(human, meat)}, which will form its concept
map.

Since, in real world, concepts in text are not named every time
the same way, TextStorm uses WordNet's synonymy semantic
relationship [32] to identify the concepts that were already
referred before with a different name, taking advantage of the
fact that WordNet’s organization is based on synonymy: words
are grouped in sets of synonyms (synsets).

5 Experiments with DivagoFlow
We report and discuss a series of experiments on
ConCreTeFlows in which DivagoFlow is integrated with other
modules to build different CC applications including blending
of texts from different domains, blending images, and poetry
generation from texts.

Our main goal is to illustrate the capability of the
infrastructure in allowing novel ways of software composition.
However, it should be noted that this series of experiments does
not include an evaluation of the different compositions in terms
of the quality of the artifacts produced. For this type of
evaluation, we refer the reader to previous works where
comprehensive evaluations were performed [3,8,33,34].

5.1 Experiment with DivagoFlow + TextStorm
The combination of DivagoFlow and TextStorm modules is
especially useful when text is used as a resource.

Figure 1 depicts a screenshot of a workflow implementation
in ConCreTeFlows where TextStorm and DivagoFlow are
combined to produce blends from a textual description of
concepts in natural language. Figure 8 contains a visualization
of the blend produced by the workflow depicted in Figure 1.

5.2 Experiment with DivagoFlow + Vismantic
Vismantic [33] is a tool to generate visual metaphors, which can
be used to visualize possible blends. Vismantic takes as input
two concepts and outputs an image where properties relating to
both concepts are present. The resulting visual blend is not a

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 9

representation of a blend created by a concept blender, but an
independent visual blend of the two concepts. As such, it can be
used as a visual complement to the output of DivagoFlow.

In order to generate images, Vismantic first finds photos
tagged with the two concepts in Flickr3, respectively. Then, it
analyzes each retrieved image keeping only the relevant images
with high enough quality.

For each kept image, Vismantic separates the subject (the
most salient object) and the background, and inpaints the subject
mask in the background image aiming to hide any marks of the
subject.

 To create visual metaphors, Vismantic implements three
visual operations: juxtaposition, replacement and fusion (see
[33] for details). In this paper, we consider the latter two

3 https://www.flickr.com/

operations. In replacement, the subject of an image is replaced
with the subject of another image, e.g., a bird replaced with a
horse could show horse on a tree branch as is shown in Figure 9
(a). In fusion, the texture of a subject is used to paint the other
subject, e.g. a bird fused with a horse could show bird's
silhouette where feathers resemble horse's fur as is shown in
Figure 9 (b).

5.3 Experiment with DivagoFlow + PoeTryMe
PoeTryMe [14] is a poetry generation platform that relies on a
modular architecture, which enables the independent
development of each module and provides a high level of
customization, depending on the needs of the system and ideas
of the user or developer.

Figure 7 Visualization of the mental spaces of a “horse-bird” blend by the Concept Blend Visualizer. The input spaces for “horse” and “bird” are shown
on the left and right respectively, the blend space is shown on the bottom and the generic space is represented on the top. The node “humansetting” is
selected, highlighting the node’s relationship with the node “farm” as well as showing its relationships with other mental spaces through colored edges.
Best viewed in color.

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 10

It was originally developed for Portuguese, but, among other
instantiations, it was later adapted to Spanish and English [34].
Poetry is generated with the help of a given semantic network
and a grammar with rules for generating lines based on the
relations of the network. A generation strategy exploits the
previous in order to generate new natural language fragments
where a known semantic relation holds, and it organizes
generated lines, such that they suit, as much as possible, the
structure of a poetic form and exhibit certain features, such as
rhymes.

Similarly to previous work [35], where it was used for
generating poetry from TextStorm concept maps, here
PoeTryMe was run using the graph of the Horse-Bird blend as
its semantic network.

Yet, given that the current generation grammars did not have
rules for most of the relations in this graph, a new grammar had
to be created.

This was done automatically, as follows:

Figure 9 Examples of Vismantic's visual operations using horse and bird
as input concepts: (a) replacement (bird replaced with horse); (b) fusion
(horse fused with bird).

Figure 8 Visualization of the hamster-cat blend produced by the workflow depicted in Figure 1.

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 11

1. Every line in 55000+ Song Lyrics dataset4 was scanned for
the presence of two words that were related in a small
collection of concept maps previously used by DivagoFlow.
For instance:
1.1. (wing, pw, bird) → as a bird with a broken wing
1.2. (eye, purpose, see) → the eye can see
1.3. (green, isa, color) → but green is the color of spring

2. For each of the previous 397 lines found, the name of the
related words is replaced by a placeholder and the resulting
pattern is added to a grammar as a possible way to render the
relation type in text. For the previous examples:
2.1. pw → as a <arg2> with a broken <arg1>
2.2. purpose → the <arg1> can <arg2>

4 https://www.kaggle.com/mousehead/songlyrics

2.3. isa → but <arg1> is the <arg2> of spring

We present poems for the horse and bird graphs, as well as for
the horse-bird blend. All of them are blocks-of-four lines with
the same length, some with eight syllables (first three), others
with ten (last three). They were all generated with a generate-
and-test strategy. More precisely, for each line to fill, up to
n=2,000 textual fragments are produced sequentially and tested
against the target size and rhyme, while keeping the best one.

Blocks of four lines generated for the Horse graph:

Figure 10: One of the possible mappings - drawn as a semantic network - generated by the EEmapper module. This mapping contains 1,195 pairs of
concepts. A partial zoom of this mapping is shown inside the highlighted red rectangle. In that magnification we can evaluate the same structure of edges
(isomorphism) which maps concepts from two subsets of the input graphs.

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 12

horse is the equinae of my hell

horse is the equinae of farewell

walk away, my sweet horse, over the land

and, sure, the reverent leg must stand

Blocks of four lines generated for the Bird graph:

every bird that sings is born to fly

mommy and daddy don't see eye to eye

but this parrot was meant to speak away

where a bird with a broken leg lay

as a bird with a broken wing

but nest is the container of spring

she run her beak, but can't chirp right

bird is the aves of the night

Blocks of four lines generated for the Horse-Bird blend:

like a horse-bird with clipped paw-wing

but owl is the horse-bird of spring

don't traction food horse-bird to eye

mine paw-wing at times can run-fly

every leg has a paw-wing

but nest is the container of spring

she run her ear, but can't hear right

day and mane-feathers, dark and white

a little music from the nest next straw

a little music from the leg next claw

when we neigh-chirp not thro' the tail-beak

every parrot that sings deserves to speak

parrot must be the horse-bird of the blues

nest must be the container angels choose

you're like a leg with the broken claw

walked to the next nest directly next straw

The presented blocks sketch how the integration of a poetry
generation system with DivagoFlow may result in text
constrained by the input spaces. The produced text may be used
as an alternative way of invoking the original concepts or the
blends, creatively, due to the presence of features that are
typical of poems, including the organization in four lines with
the same number of syllables, always ending in rhyme. This
happens while words related to the input space are used in
semantically-coherent lines.

The evaluation of these examples is out of the scope of the
paper. Though, an evaluation of poems produced by PoeTryMe,
in different languages, is presented elsewhere [34], focusing on
poetic features (metrics and rhyme); variation of text in different
poems produced with the same seed words; and topicality,
which is related to the semantic connection between the seed
words and the words used.

5.4 Dealing with more realistic graphs
We have recently added a new component to ConCreTeFlows,
the mapping module EEmapper [36]. It is an evolution from the
work presented in [37] and executes a similar task to the Mapper
module – the extraction of a concept map (a mapping) from
semantic networks.

The EEmapper was developed in order to have an algorithm
fast enough to extract mappings, in real-time, from large non-
trivial conceptual graphs on the Internet, such as ConceptNet
[20]. The speed requirement is not only due to the requirement
of handling large semantic structures, but to support future
developments and increased complexity in the fitness function
of the optimization algorithm. We previously implemented an
optimum mapper capable of finding the largest mappings [38]
but, by being optimal, that algorithm is not able to work in real-
time with conceptual graphs containing more than a hundred
concepts. This happens because finding isomorphic sub-graphs
is a complex task with a computational time complexity
between polynomial and exponential [39].

As with Mapper, the EEmapper extracts mappings of
concepts by finding sub-isomorphisms in the input conceptual
graphs. Each isomorphism is built according to the structure of
edges and their labels between two sub-graphs contained within
the larger conceptual graph. The EEmapper is built on a GA,
which stochastically evolves a large number of individuals
through many generations, each individual representing a
mapping of concepts. As any GA, the search for an optimal
mapping is done according to the search space defined by the
fitness function. Since the EEmapper is still a proof of concept,
the fitness of any mapping is simply the number of concept pairs
contained in the mapping. Hence, the EEmapper aims to find the
mapping with the greatest amount of concept associations.

The mapper evolves isomorphisms heading towards the
optimum guided by the fitness function. Each chromosome is
built by first randomly choosing a pair of distinct concepts (the
root pair – similar to Sapper’s dormant bridge), and then
randomly expanding the mapping in an isomorphic way. The
isomorphism is structured according to the same sequence of
nearby relations connected to either the left or the right concepts
contained in the pair in a breadth first expansion. Each
chromosome is thus composed by two sub-graphs connected
either to the left or right root pair concept. Both sub-graphs have
exactly the same edge structure (the direction and label of every
edge). A mapping is extracted from the set of concepts
contained in those sub-graphs. During evolution, a mutation
operator is continuously applied to both the root pair of every
chromosome and the structural pattern of relations defining the
isomorphism in order to roam the search space. In each epoch,
the mapper applies a tournament selection to exert selection
pressure on the population towards the optimum solution – the
largest mapping – which is returned when the evolution reaches
a time limit.

The EEmapper in its ConCreTeFlows version is invoked by

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 13

the workflow as a remote Web Service5. To demonstrate the
mapper web service, we have a publicly available workflow
titled EEmapper6. The workflow is comprised of various format
converters, the EEmapper itself and a conceptual graph drawing
module. In this workflow, as input spaces, we have two
semantic graphs given as triples defining the concepts and
edges. These triplets are stated as Comma Separated Values
[CSV] in the form source,relation,target with the source and
target concepts corresponding to the vertices in the semantic
graph and their relation name to the label of the directed edge
connecting the two vertices.

To be compatible with other modules present in ConCreTe-
Flows, the EEmapper component works with inputs and outputs
in Divago format (e.g., facts and rules in Prolog) and hence this
workflow uses two converters to adapt each input in the CSV
format to the DT format required by the EEmapper module. The
two remaining EEmapper inputs are pop and tim. The former
specifies the size of the population being evolved by the GA
internal to the mapping module and the latter specifies the
maximum time (in seconds) that the GA can execute. As in any
GA and in general, the larger these two values are, the higher
the probability of obtaining better results.

After its execution, the EEmapper module generates two
outputs. The first is the best mapping found by the algorithm
and the second output is the same analogy but projected back in
the original conceptual graph. As an example, a mapping
containing 1,195 concept pairs is shown in Figure 10.

6 Conclusion
In this paper we presented ConCreTeFlows - a visual
programming platform for development, execution and sharing
of workflows for computational creativity applications. The
platform was showcased through a conceptual blending solution
named DivagoFlow, which is based on the Conceptual Blending
framework.

The core concept blending part of DivagoFlow is composed
of two modules, the Mapper and the BlendFactory.

The Mapper performs the selection of elements from the input
spaces for projection by searching for partial mappings between
the two concept maps using structural alignment.

The BlendFactory takes such mappings, the input spaces and
a given generic space, and produces blends. This module is
based on a genetic algorithm that explores the space of all
possible blends resulting from the projection step. An
implementation of the optimality principles of the CB Theory
provides the fitness function for the evolutionary process.

The module that selects what concepts to blend is Domain
Spotter. It introduces an autonomous and pro-active search for
seemingly unrelated input spaces from a wide concept space.
This module takes a semantic graph and extracts two sub-graphs
to be used as input by both the Mapper and the BlendFactory.

5 http://unoesis.hopto.org:8080/ws?wsdl

6 http://concreteflows.ijs.si/workflows/copy-workflow/469

To perform the task, the module uses exclusively structural
information from the semantic graph and therefore does not
resort to any additional resources (e.g., to perform semantic
analysis). We have also described experiments where
DivagoFlow was combined with other systems. This included
TextStorm, used for acquiring concept maps from text,
Vismantic, for generating visual blends, and PoeTryMe, for
producing poetry inspired by given concepts, including blends.
All these experiments confirm that DivagoFlow can be used as a
piece in other workflows, towards the generation of different
creative artifacts.

Some interesting topics for future work can be identified.
First, DivagoFlow can only deal with two input spaces.
However, the original CB framework, as proposed by
Fauconnier and Turner [22], allows the existence of more than
two input spaces. Although this is a limitation of our method, it
cannot be regarded as a significant drawback or a simplistic
modelling of the CB mechanism, as the use of two input spaces
is sufficient to ensure advanced and complex forms of blending
[40].

Also, the Domain Spotter identifies input spaces linked with
(at least) a bridging concept. This is a common strategy to
identify seemingly unrelated pieces of information, as the
bridging concept often corresponds to metaphors or ambiguous
concepts [41]. We do not expect further improvements in the
Mapper module but we do believe that the ensemble Domain
Spotter + EEmapper can still be substantially improved in at
least two aspects: additional changes in the genetic mutation to
traverse more of the search space and support for multi-
objective optimization allowing multiple angles of semantic
evaluation in the evolving mappings.

Finally, the CB Visualizer has not been integrated in the
platform so far, but we envisage to do so in a near future. It can
either be integrated as a part of the BlendFactory or as an
independent widget that communicates with the BlendFactory.

Acknowledgment
This research was partly funded by the Slovene Research
Agency and supported through EC funding for the project
ConCreTe (grant number 611733) that acknowledges the
financial support of the Future and Emerging Technologies
(FET) programme within the Seventh Framework Programme
for Research of the European Commission.

References
1. M. Eppe, E. Maclean, E., R. Confalonieri, et al., “A computational
framework for conceptual blending,” Artificial Intelligence, vol. 256,
105-129, 2018. (journal)

2. T. Veale and D. O’Donoghue. “Computation and blending,”
Cognitive Linguistics, Special Issue on Conceptual Blending, pp. 253–
282, 2000. (journal)

http://unoesis.hopto.org:8080/ws?wsdl
http://concreteflows.ijs.si/workflows/copy-workflow/469

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 14

3. F. C. Pereira, “Creativity and AI: A Conceptual Blending approach,”
PhD thesis, University of Coimbra, Jan 2005. (thesis)

4. P. Thagard and T. C. Stewart, “The AHA! experience: Creativity
through emergent binding in neural networks,” Cognitive Science, vol.
35, no. 1, pp. 1–33, Oct 2010. (journal)

5. M. Schorlemmer, A. Smaill, K.-U. Kühnberger, et al.,“COINVENT:
Towards a computational concept invention theory,” Proceedings of the

5th Int. Conference on Computational Creativity, ICCC-14, Ljubljana,
Slovenia, 2014. (conference proceedings)

6. T. R. Besold and E. Plaza, “Generalize and Blend: Concept Blending
Based on Generalization, Analogy, and Amalgams,” Proceedings of the

6th Int. Conference on Computational Creativity, ICCC-15, 2015.
(conference proceedings)

7. T. Veale, “From Conceptual Mash-ups to Bad-ass Blends: A Robust
Computational Model of Conceptual Blending”. In T. Veale and F. A.
Cardoso, editors, Computational Creativity: The Philosophy and
Engineering of Autonomously Creative Systems, pages 71–89.
Springer, 2018. (book chapter)

8. P. Martins, F. C. Pereira, and F. A. Cardoso, “The nuts and bolts of
conceptual blending: Multidomain concept creation with Divago,” In T.
Veale and F. A. Cardoso, editors, Computational Creativity: The

Philosophy and Engineering of Autonomously Creative Systems, pp
91–118. Springer, 2018. (book chapter)

9. W. Dubitzky, T. Kötter, O. Schmidt, and M. R, Berthold, “Towards
creative information exploration based on Koestler’s concept of
bisociation,” In Bisociative Knowledge Discovery, pp. 11-32. Springer,
Berlin, Heidelberg, 2012 (book chapter)

10. A. K. Jordanous, “Evaluating computational creativity: a
standardised procedure for evaluating creative systems and its
application,” Doctoral dissertation, University of Sussex, 2013 (thesis).

11. S. Colton, “The painting fool: Stories from building an automated
painter,” Computers and creativity, pp. 3-38. Springer, Berlin,
Heidelberg, 2012. (journal)

12. D. Norton, D. Heath, and D. Ventura, “Finding creativity in an
artificial artist,” The Journal of Creative Behavior, vol. 47, no. 2, pp.
106-124, 2013. (journal)

13. A. Zacharakis, M. Kaliakatsos-Papakostas, C. Tsougras, and E.
Cambouropoulos, “Creating musical cadences via conceptual blending:
empirical evaluation and enhancement of a formal model,” Music

Perception: An Interdisciplinary Journal, vol. 35, no. 2, pp. 211-234,
2017. (journal)

14. H. Gonçalo Oliveira, “PoeTryMe: a versatile platform for poetry
generation,” Proceedings of the ECAI 2012 Workshop on

Computational Creativity, Concept Invention, and General Intelligence

(C3GI at ECAI 2012), PICS, Montpellier, France, August 2012.
(conference proceedings)

15. J. Toivanen, H. Toivonen, A. Valitutti, and O. Gross, “Corpus-
based generation of content and form in poetry,” Proceedings of the

Third International Conference on Computational Creativity, ICCC-12,
2012. (conference proceedings)

16. M. Martinez, A. M. Abdel-Fattah, U. Krumnack, et al., “Theory
blending: extended algorithmic aspects and examples,” Annals of

Mathematics and Artificial Intelligence, vol. 80, no. 1, pp. 65-89, 2017.
(journal)

17. J. Charnley and S. Colton and M. T. Llano and J. Corneli. “The
FloWr Online Platform: Automated Programming and Computational
Creativity as a Service”, Proceedings of the Seventh International

Conference on Computational Creativity, pp. 363-370, 2016.
(conference proceedings).

18. M. Žnidaršic, A. Cardoso, P. Gervás, et al., “Computational
creativity infrastructure for online software composition: A conceptual
blending use case,” In F. Pachet, A. Cardoso, V. Corruble, and F.
Ghedini, editors, Proceedings of the 7th International Conference on

Computational Creativity, ICCC-16, pages 371–379, Paris, 2016.
Association for Computational Creativity, Sony CSL Paris. (conference
proceedings)

19. J. Kranjc, V. Podpecan, and N. Lavrac, “Clowdflows: A cloud
based scientific workflow platform”. In Peter A. Flach, Tijl De Bie, and
Nello Cristianini, editors, ECML/PKDD (2), volume 7524 of Lecture
Notes in Computer Science, pages 816–819. Springer, 2012.
(conference proceedings)

20. R. Speer and C. Havasi. “Representing general relational
knowledge in ConceptNet 5,” Proceedings of the Eight International

Conference on Language Resources and Evaluation (LREC), pages
3679–3686, 2012. (conference proceedings)

21. G. Fauconnier and M. Turner, The Way We Think, New York: Basic
Books, 2002. (book)

22. G. Fauconnier, Mental Spaces: Aspects of Meaning Construction in

Natural Language, New York: Cambridge University Press, 1994.
(book)

23. G. Fauconnier and M. Turner, “Conceptual integration networks, ”
Cognitive Science, vol. 22, no. 2, pp. 133–187, 1998. (journal)

24. Pereira, F. C. Creativity and artificial intelligence: a conceptual

blending approach. Walter de Gruyter, 2007. (book)

25. J. Novak, Learning, Creating, and Using Knowledge: Concept

Maps as Facilitative Tools in Schools and Corporations, Lawrence
Erlbaum, Mahwah, NJ, 1 edition, 1998. 2nd edition published in 2010.
(book)

26. F. C. Pereira and A. Cardoso, “Experiments with free concept
generation in Divago,” Knowledge Based Systems, vol. 19, no. 7, pp.
459–471, 2006. (journal)

27. T. Veale, “Metaphor, Memory and Meaning: Symbolic and
Connectionist Issues in Metaphor Interpretation,” PhD Thesis, Dublin
City University, 1995. (thesis)

28. U. Nagel, K. Thiel, T. Kötter, et al., “Towards discovery of
subgraph bisociations,” In Michael R. Berthold, editor, Bisociative

Knowledge Discovery, volume 7250 of Lecture Notes in Computer
Science, pp. 263–284. Springer Berlin Heidelberg, 2012. (book
chapter)

29. A. Koestler, The Act of Creation, New York:Macmillan, 1964.
(book)

30. J. Gonçalves, P. Martins, A. Cruz, et al., “Seeking divisions of
domains on semantic networks by evolutionary bridging,” Proceedings

of the International Conference on Case-Based Reasoning (ICCBR),
Frankfurt, Germany, 2015. CEUR, CEUR. (conference proceedings)

31. A. Oliveira, F. C. Pereira, and A. Cardoso, “Automatic reading and
learning from text,”.Proceedings of the International Symposium on

Artificial Intelligence, pp. 69–72, 2001. (conference proceedings)

32. G. A. Miller, “Wordnet: A lexical database for English,” Commun.
ACM, vol. 38, no. 11, pp. 39–41, November 1995. (journal)

33. P. Xiao and S. Linkola, “Vismantic: Meaning-making with
images,” Proceedings of the Sixth International Conference on

Computational Creativity, ICCC-15), pp. 158–165, Park City, Utah,

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 15

June - July 2015. Brigham Young University, Brigham Young
University. (conference proceedings)

34. H. Gonçalo Oliveira, R. Hervás, A. Díaz, et al.,“Multilingual
extension and evaluation of a poetry generator,” Natural Language

Engineering, vol. 23, no. 6, pp. 929–967, 2017. (journal)

35. H. Gonçalo Oliveira and A. O. Alves, “Poetry from concept maps –
yet another adaptation of PoeTryMe’s flexible architecture,”
Proceedings of 7th International Conference on Computational

Creativity, ICCC-16, Paris, France, 2016. (conference proceedings)

36. J. Gonçalves, P. Martins, and A. Cardoso, “A fast mapper as a
foundation for forthcoming conceptual blending experiments,” Special

Track Analogy - Proceedings from The Twenty-Sixth International

Conference on Case-Based Reasoning (ICCBR 2018), 2018.
(conference proceedings)

37. J. Gonçalves, P. Martins, and A. Cardoso, “Blend City, Blendville,”
Proceedings of the Eighth International Conference on Computational

Creativity, ICCC-17, 2017. (conference proceedings)

38 J. M. Cunha, J. Gonçalves, P. Martins, et al., “A pig, an angel and a
cactus walk into a blender: A descriptive approach to visual blending,”.
Proceedomgs of the Eighth International Conference on Computational

Creativity, ICCC-2017, 2017. (conference proceedings)

39. L. Babai, W. M. Kantor, E. M. Luks. “Computational complexity
and the classification of finite simple groups,” Foundations of

Computer Science, 1983. (conference proceedings)

40. M. Turner, The Origin of Ideas, Oxford University Press, 2014.
(book)

41. T. Koetter, K. Thiel, and M. Berthold “Domain bridging
associations support creativity,” Proceedings of the First International

Conference on Computational Creativity, ICCC-2010, pp. 200–204,
2010. (conference proceedings)

Pedro Martins CISUC, Department of Informatics Engineering,

University of Coimbra, Portugal (pjmm@dei.uc.pt). Pedro Martins
holds a PhD degree in Computer Science, an MSc degree in
Informatics and Systems, and a BSc degree in Mathematics, with a
major in Computer Science, from the University of Coimbra. His main
research interests are in the fields of Computational Creativity,
Computer Vision, Computer Graphics, and Computational Art.
Currently, he is a researcher at the Centre for Informatics and Systems
of the University of Coimbra (CISUC) and an Assistant Professor at the
Department of Informatics Engineering of the University of Coimbra.

Hugo Gonçalo Oliveira CISUC, Department of Informatics

Engineering, University of Coimbra, Portugal (hroliv@dei.uc.pt).
Received a BSc degree (2006), a MSc degree (2007) and a PhD (2013),
all by the University of Coimbra. Has worked as a hired researcher in
the node of Coimbra of the project Linguateca (2007-2008); as a NLP
Engineer in Spotdata, Coimbra / Montpelier (2013); and is currently an
Assistant Professor at the Department of Informatics Engineering of the
University of Coimbra. Has had a PhD grant awarded by the
Portuguese Foundation for Science and Technology, FCT (2009-2012)
and won the best PhD thesis in the Computational Processing of the
Portuguese Language (2012-2014). Has (co-)authored 12 articles in
peer-reviewed journals and more than 60 papers in peer-reviewed
proceedings of scientific conferences. His main research interests are
Natural Language Processing and Computational Creativity.

João Carlos Gonçalves CISUC, Department of Informatics

Engineering, University of Coimbra, Portugal (jcgonc@dei.uc.pt). João
Gonçalves is a Ph.D. student and a member of the Cognitive and Media
Systems (CMS) group of the Centre for Informatics and Systems of the

University of Coimbra (CISUC). He finished his MSc in Informatics
Engineering in 2012 with a thesis implementing high performance
SVMs running on the GPU. His current research work is concerned
with the acquisition and development of new insights in the fields of
computational creativity, cognitive sciences and artificial consciousness
as well as high performance computing to make all of his creations
work swiftly and scalably.

António Cruz CISUC, Department of Informatics Engineering,

University of Coimbra, Portugal (antonioc@dei.uc.pt). A. Cruz
received a B.S. degree in 2011 and a M.S. degree in 2014 at the
University of Coimbra, and he is currently a PhD student at the Faculty
of Sciences and Technology of the University of Coimbra enrolled in
the Doctoral Program for Information Science and Technology. His
interests center around graphic design and programming applied to
Information Visualization, particularly the development of dynamic
data visualization methods and tools. Currently he is exploring the
visualization of multivariate big data within the field of Computational
Biology, including gene expression time-series, biological pathways,
and protein-protein interaction networks.

F. Amílcar Cardoso CISUC, Department of Informatics Engineering,

University of Coimbra, Portugal (amilcar@dei.uc.pt). F. Amílcar
Cardoso is a Lecturer at the Department of Informatics Engineering of
the University of Coimbra, where he teaches Artificial Intelligence,
Computational Creativity, Programming for Design and other topics.
He is currently Vice-President of Instituto Pedro Nunes, the technology
transfer and incubator of University of Coimbra. He developed
pioneering work on Computational Creativity in the 90s, and assumed
since then an active role in the area. In the last years, his research has
been focused mostly on computational models of Conceptual Blending.
He has been involved in two EU projects on Computational Creativity:
the FET CA PROSECCO - Promoting the Scientific Exploration of
Computational Creativity (FP7-ICT-FET-600653) and the FET/ICT
ConCreTe - Concept Creation Technology (FP7-ICT-FET-611733). He
was the General Chair of the International Conference on
Computational Creativity, held in Paris, France, June 2016. He is co-
editor of the forthcoming book “Computational Creativity - The
Philosophy and Engineering of Autonomously Creative Systems”, to be
published by Springer in 2019. He is founder of the Association for
Computational Creativity, where he currently serves as Treasurer.

Martin Žnidaršič Jozef Stefan Institute, 1000 Ljubljana, Slovenia

(martin.znidarsic@ijs.si). Martin Znidarsic is a researcher at the
Department of Knowledge Technologies of JSI, and Assistant Professor
at the JSI Postgraduate School. His main research interests are in data
mining and machine learning with a focus on probabilistic modelling,
evaluation modelling, sentiment analysis, and computational creativity.
He applies his work mostly in domains of ecology and finance. He was
involved in several EU projects from FP5 to H2020 programme
(ECOGEN, SIGMEA, Co-Extra, ConCreTe, WHIM, SAAM, etc.), and
is the coordinator of the CF-Web project (started in June 2017).

Nada Lavrač Jozef Stefan Institute, 1000 Ljubljana, Slovenia

(nada.lavrac@ijs.si). Nada Lavrac is Head of Department of
Knowledge Technologies of Jozef Stefan Institute, Ljubljana, Slovenia.
She is Professor at Jozef Stefan International Postgraduate School in
Ljubljana and at University of Nova Gorica. Her main research
interests are in Knowledge Technologies, an area of Information and
Communication Technologies. Her particular research interests are
machine learning, data mining, text mining, knowledge management
and computational creativity. Areas of applied research include data
mining applications in medicine, health care and bioinformatics, media
analysis and virtual enterprises. She is Ambassador of Science of
Slovenia and is an elected ECCAI Fellow. She was founding member

mailto:pjmm@dei.uc.pt
mailto:hroliv@dei.uc.pt
mailto:jcgonc@dei.uc.pt
http://m.sc/
mailto:antonioc@dei.uc.pt
mailto:amilcar@dei.uc.pt
mailto:martin.znidarsic@ijs.si
mailto:nada.lavrac@ijs.si

IBM J. Res. & Dev. Martins et al.: Computational Creativity Infrastructure for Online Software Composition Page | 16

of the International Machine Learning Society board, and is member of
the Artificial Intelligence in Medicine board. She was scientific and/or
organizational chair of numerous international conferences (including
AIME 2011, ILP 2012, ICCC 2014), she was invited speaker at
conferences (including MedInfo 2010, ECCB 2014, ISWC 2017). She
wrote 3 books and co-edited tens of conference proceedings. She
coordinated and participated in several EU projects.

Simo Linkola University of Helsinki, Helsinki, Finland

(simo.linkola@helsinki.fi). Simo Linkola obtained his M.Sc. degree on
computer science in 2016 from University of Helsinki, and is currently
pursuing his Ph.D. there. His research considers the intersection of
computational creativity, autonomous agents and multi-agent systems.
From a single agent perspective he is interested in how autonomous and
self-adaptive agents can exhibit creativity both in their outputs and in
their internal processes. In multi-agent settings his main focus is on
how a group of creative agents can work together in novel ways to
accomplish tasks that are not easily fulfilled by any single agent alone.

Hannu Toivonen University of Helsinki, Helsinki, Finland

(hannu.toivonen@helsinki.fi). Hannu Toivonen is Professor of
Computer Science at the University of Helsinki since 2002. He works
in the areas of artificial intelligence and data science, more specifically
in computational creativity and data mining. His current research focus
is on using data science for computational creativity, on self-aware and
creative systems, and on analysis and generation of natural language.
He has over 100 international refereed publications. According to
Google Scholar, he has been cited over 20,000 times and he has an h-
index of 51. Six of his publications have over 1,000 citations. He
served as Programme Chair of IEEE ICDM 2014, a leading data
mining conference, and of ICCC 2015, the International Conference on
Computational Creativity. He is Editorial Board member of the leading
journals (Data Mining and Knowledge Discovery; Machine Learning)
and a regular Senior Programme Committee member of the leading
conferences (SIGKDD, ICDM, ECML-PKDD, SDM, IJCAI, AAAI,
ICCC, ...) in his research areas.

Raquel Hervás Facultad de Informática, Universidad Complutense de

Madrid, Spain (raquelhb@fdi.ucm.es). Dr. Hervás received her PhD in

Computer Science in 2009, and she is Associate Professor in the
Computer Science School at the Universidad Complutense de Madrid
(UCM) since 2010. Dr. Hervás has been part of the research team in
several national and international research projects, including the
coordination of the IDiLyCo project, funded by the Spanish Ministry of
Economy. Her research focuses on applying natural language
technologies to different fields like accessibility, computational
creativity and narratology, and she is author of more than 70
international publications in these topics.

Gonzalo Méndez Facultad de Informática, Universidad Complutense

de Madrid, Spain (gmendez@fdi.ucm.es). Dr. Méndez received his PhD
in Computer Science from the Universidad Politécnica de Madrid
(UPM) in 2008. He is currently an Assistant Professor in the
Department of Software Engineering and Artificial Intelligence of the
Complutense University of Madrid. Dr. Méndez is the director of the
Instituto de Tecnología del Conocimiento (www.ucm.es/itc), where he
has been a researcher since 2008. He has been part of several national
and international research projects, being his current research interests
on narrative generation, natural language generation for figurative
language, accessibility systems and agent-based simulations. He is
author of more than 50 international publications on these topics.

Pablo Gervás Facultad de Informática, Universidad Complutense de

Madrid, Spain (pgervas@sip.ucm.es). Pablo Gervás is Associate
Professor at the Department of Software Engineering and Artificial
Intelligence of the School of Informatics at the Universidad
Complutense de Madrid. He is the director of the NIL research group
(Natural Interaction based on Language) and of the Instituto de
Tecnología del Conocimiento. Over the years, his research interests
have shifted towards studying the role of narrative in human
communication, with a view to applying it in human-computer
interaction. Besides his generic interest in understanding and modelling
language, he tries to tackle computational models of human creativity.
His interests include the following lines of research: Natural language
generation, Natural language analysis, NLP for accessibility, and NLP
and literary artifacts.

mailto:simo.linkola@helsinki.fi
mailto:hannu.toivonen@helsinki.fi
mailto:gmendez@fdi.ucm.es
http://www.ucm.es/itc
mailto:pgervas@sip.ucm.es
http://nil.fdi.ucm.es/
http://www.ucm.es/itc
http://nil.fdi.ucm.es/index.php?q=node/360
http://nil.fdi.ucm.es/index.php?q=node/359
http://nil.fdi.ucm.es/index.php?q=node/498

