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ABSTRACT

This paper presents a deep-learning-based algorithm dedicated to the processing of speckle noise in phase measurements in digital
holographic interferometry. The deep learning architecture is trained with phase fringe patterns including faithful speckle noise, hav-
ing non-Gaussian statistics and non-stationary property, and exhibiting spatial correlation length. The performances of the speckle de-
noiser are estimated with metrics, and the proposed approach exhibits state-of-the-art results. In order to train the network to de-noise
phase fringe patterns, a database is constituted with a set of noise-free and speckled phase data. The algorithm is applied to de-noising
experimental data from wide-field digital holographic vibrometry. Comparison with the state-of-the-art algorithm confirms the achieved
performance.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5140645., s

I. INTRODUCTION

Digital holography and digital holographic microscopy1–5 are
methods for recording and reconstructing three-dimensional images
of objects. Digital holographic interferometry is a very efficient tech-
nique for the measurement of deformation fields of object surfaces
and for the measurement of surface shapes and contours.5 As a gen-
eral rule, the object field is numerically reconstructed using a propa-
gation operator such as the discrete Fresnel transform or the angular
spectrum3 and, from the complex-valued data, the phase of the opti-
cal object field can be extracted. By the way, holographic phase imag-
ing measures the optical path length associated with the specimens
under interest and translates these data into relevant information.
The measured field of interest is wrapped in modulo 2π phase maps,
known as the phase fringe pattern.2,5 In any measurement from
digital holographic interferometry, speckle phase noise is induced

and de-noising is required.5 The specificity of the speckle noise in
holographic phase data is non-Gaussian, highly non-stationary, has
a correlation length, and is amplitude-dependent (noise depends on
the fringe density).

Since 10 years, deep learning has emerged as a very effi-
cient approach in signal and image processing. At the heart of
this new tool are the convolutional neural networks (CNN). The
CNN integrate several fundamental advances of the last few decades:
wavelet and multiresolution analysis, shrinkage and thresholding
algorithms, sparse representations, block matching, and dictionary
learning.6–9 In recent years, several applications of deep learning in
optics have emerged, when processing noise, such as optical coher-
ence tomography,10,11 hyperspectral imaging,12 and using multiscale
decompositions.13,14 Deep learning based algorithms applied to the
noise reduction in synthetic aperture radar imaging were also pro-
posed.15,16 The problem of the speckle reduction was approached
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with a deep learning based solution when taking into account
scattering effects.17 In the literature, a deep CNN was used as a
de-noising algorithm for the speckle noise reduction in the ampli-
tude image18 and fringe patterns.19,20 In the latter references, the
noise training is carried out on simulated fringes with added Gaus-
sian noise.

However, this does not address the real case of speckle noise.
Indeed, the speckle noise is non-Gaussian and non-stationary, and
in addition, speckle grains have a correlation length that cannot be
reproduced by simply adding Gaussian fluctuations. In this paper,
we demonstrate that efficient speckle de-noising can be at the state-
of-the-art for phase data in digital holographic interferometry if the
network is correctly trained by considering realistic speckle statis-
tics. To the best of our knowledge, this paper proposes the first CNN
architecture trained with faithful speckle noise conditions, having
non-Gaussian statistics and non-stationary property and exhibiting
spatial correlation length, in order to process noisy phase data from
holographic interferometry. The obtained results demonstrate that
the proposed scheme is state-of-the-art.

This paper is organized as follows: Sec. II describes the
basic fundamentals of digital holographic interferometry, Sec. III
describes the proposed approach, Sec. IV provides the results, and
Sec. V proposes application to experimental data from wide-field
digital holographic vibrometry. Section VI draws the conclusions of
this paper.

II. DIGITAL HOLOGRAPHIC INTERFEROMETRY

Basically, digital holograms are obtained by recording, with an
image sensor organized as a matrix of pixels, the coherent mixing
of the diffracted optical wave from the object surface, and a known
reference wave. Since the complex-valued optical field is recorded in
any digital holograms, the optical phase, and then the optical path
difference, can be retrieved and may yield the measurement of any
kind of perturbation at the surface of the object (vibration, heat-
ing, pneumatic changes, mechanical loads, etc.). Let O be the wave
front from the illuminated object and R be the wave front from the
reference wave, then the digital hologram can be expressed by the
following equation:21

H ≙ ∣R∣2 + ∣O∣2 + R
∗

O + RO
∗. (1)

The object surface producing the object wave front is generally
at distance d0 from the recording sensor, which is used without
any imaging lens (lens-less Fresnel configuration). Then, the Fres-
nel approximation provides the object field at the sensor plane21

(i =
√
−1),

O(x, y,d0) ≙ − i

λd0
exp(2iπd0

λ
)exp( iπd0

λ
(x2 + y

2))
×∫∫ A(X,Y)exp( iπ

λd0
(X2 + Y

2))
× exp((− 2iπ

λd0
)(xX + yY))dXdY . (2)

In Eq. (2), the object wave front at the object plane is A(X, Y)
= A0(X, Y)exp[iψ0(X, Y)], λ is the wavelength of light, A0 is related
to the object reflectance, and ψ0 is the optical phase related to
the object surface profile and roughness. It follows that the wave

front O is speckled due to roughness. From digitally recorded holo-
grams, the discrete Fresnel transform permits us to reconstruct the
object field at any distance dr from the recording plane. The numer-
ically reconstructed complex-valued image is obtained from the
following equation:

Ar ≙ hF × FFT∥H × hF∥. (3)

In Eq. (3), FFT means two-dimensional fast Fourier transform and
hF is the kernel defined by the following equation:

hF(x, y) ≙ 1√
λdr

exp(iπ dr
λ
− i

π

4
)exp[ iπ

λdr
(x2 + y

2)]. (4)

From the complex-valued data computed from Eq. (3), the ampli-
tude and phase of the diffracted fieldAr can be evaluated.When con-
sidering two different states at the surface of the object and recording
two holograms, the phase change can be computed by calculating
the difference between the two phases from the two holograms. This
phase change, equivalent to a Doppler phase, is related to the dis-
placement field U at the object surface and is a result of the object
solicitation. The relation Δφ = 2πU ⋅ (Ke − Ko)/λ holds,5 where Ke

is the normalized illumination vector from the light source to the
object and Ko is the observation vector (also normalized) from the
object to the sensor, both defined in a set of reference axes (i, j,
and k) attached to the object surface, with k being perpendicular
to the surface. Generally, the Doppler phase is obtained by mod-
ulo 2π and requires phase unwrapping to yield physically sound
data.22 Due to the speckle nature of the recorded holograms, the
Doppler phase includes speckle decorrelation noise and noise reduc-
tion techniques have to be involved. The specificity of the speckle
noise in the Doppler phase is that it is non-Gaussian and non-
stationary.23 In addition, it exhibits a correlation length related to the
speckle grain size and is amplitude-dependent. The noise amount in
the phase image is then related to the local fringe density, and the
probability density function of the phase noise is not shaped as a
Gaussian curve (in particular, it is bounded by [−π, +π]). In order
to yield quantitative data with reduced noise, the raw modulo 2π
phase has to be low-pass filtered. Figure 1 shows the illustrations
of digital holographic interferometry: panel (a) depicts the basic
holographic configuration in the Fresnel arrangement, panel (b)
shows a raw phase difference obtained in the case of stroboscopic
holography applied to a loud speaker,24 panel (c) exhibits the noise
from panel (b), and panel (d) shows the probability density func-
tion of the phase noise. Figures 1(c) and 1(d) show that the speckle
noise in phase data from digital holographic interferometry is non-
Gaussian and non-stationary. In Fig. 1(d), the red line is the the-
oretical probability density that fits the experimental one.23 In this
example, the standard deviation of noise is found to be almost
σ = 0.86 rad and the correlation factor of the speckle phases is around
|μ| = 0.81.

In the literature, there does exist a large diversity of approaches
to cope with noise in images.23 The best filtering scheme for de-
noising phase data from digital holographic metrology was found to
be the two-dimensional windowed Fourier transform (WFT2F).25

The main drawback of this algorithm is the computation time.
For example, on a laptop personal computer (PC) Intel core i5 at
2.30 GHz with MATLAB, the processing of the image sized
1024 × 1024 pixels with the WFT2F requires 63 s, 230 s, and 1600 s
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FIG. 1. Illustrations of digital holographic
interferometry: (a) basic scheme of the
holographic configuration in the Fresnel
arrangement, (b) example of the raw
phase difference obtained in the case
of stroboscopic holography applied to a

loud speaker,24 (c) phase noise from
(b), and (d) probability density function
of the phase noise (red: theoretical, with
|μ| = 0.81 and blue: experimental).

for kernel sizes at 10, 20, and 40 pixels, respectively. Over the past
10 years, deep learning-based artificial intelligence has become a very
effective tool for signal and image processing.26 It follows that alter-
native approaches to classical filtering schemes, exhibiting almost
the same performance, but the reduced computational time could be
of very high interest. Section III describes the method we followed in
this paper to de-noise phase fringe data, including high speckle noise
with a deep learning approach.

III. METHOD

A. Noisy phase data

In order to get phase fringe patterns with a diversity of both
signal-to-noise ratio (SNR) and fringe diversity, a realistic numerical
simulation was carried out. The goal is to get phase data with fringe
pattern diversity and corrupted with speckle noise, with the noise
amount being correlated with the fringe density and faithful statis-
tics. The arrangement to produce realistic simulations of speckled
phase data is shown in Fig. 2. The simulation principle is described
in Ref. 23, but we recall it here briefly. The simulator is based on a
double-diffraction27,28 system in which the inputs are complex val-
ued data with a random phase. The random phase is obtained by
considering that the surface related to the target is rough compared
to the wavelength of light (visible range). For numerical propaga-
tion, the object plane is supposed to be illuminated by a uniform
plane wave. A diaphragm with radius Ru is inserted in the back focal
plane of the first lens (i.e., the Fourier plane of the system). The value
of Ru is adjusted to control the speckle grain size in the phase data.
In order to produceNs pixels per speckle grain in the phase data, the
diaphragm is adjusted to Ru = 1/Nspx (px, pixel pitch in the image
plane). The roughness in the input plane is numerically simulated

by considering a surface profile with roughness h having Gaussian
statistics and Dirac-type autocorrelation function such that 2πh/λ
is higher than 2π.28 The surface deformation is simulated by using
analytical models, such as Gaussian distribution, first, second, and
third order polynomials, and Matlab functions, such as “peaks” or
“membrane.” The surface deformation is then added to the surface
roughness. The numerical propagation of the wave front into the
double diffraction system provides modulo 2π phase data corrupted
with realistic speckle noise.

B. Network training

The network considered in this paper is the one proposed by
Zhang et al.7. The network includes 59 layers and is based on the
concept of the residual network (DnCNN). A noisy image is sent
at the input of the network, and the output provides the noise. After

FIG. 2. Scheme to produce speckled phase data with the controlled speckle size
(from Ref. 23).
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getting the noise, it is necessary to subtract the output from the input
image to get the de-noised image. Therefore, the network works as a
noise estimator. This network trained on natural images and Gaus-
sian noise is used as a pre-trained network in the present study. In
order to train with phase decorrelation speckle noise, the network
has been adapted so as to be trained with a set of 40 fringe images
sized 1024 × 1024 pixels with a realistic speckle noise. The fringe
images are sine and cosine computed from five initial phase patterns
from the simulator of Sec. II. We also consider their transposed and
phase shifted version with a π/4 phase shift. This leads to a grand
total of 40 images. The noise level for the 40 images was set to 2 pix-
els per speckle grain in the simulator, which corresponds to realistic
on-line digital holographic recording conditions (refer also Sec. V).
Depending on the local fringe density in patterns, the signal-to-noise
ratio of its cosine, in the overall database, varies from 7.31 dB to
11.45 dB. From the database, 384 patches per image were consid-
ered, leading to a grand total of 15 360 patches. These 384 patches,
extracted from each image, were randomly selected for each of the
1920 epochs of the training. Furthermore, speckle noise realizations
of all images were regenerated (see Sec. II) before each new training
epoch and no data augmentation was performed. Mini-batch size
and initial learning rate were set to 128 and 0.0006, respectively,
as summarized in Table I. Therefore, a total of 230 400 iterations
were used for the training. Figure 3 shows the illustrations of the
selection of the phase fringe patterns and patches from the database.
Figure 3(a) shows a selection of 20 cosine images of the noise-free
phase data, sized 1024 × 1024 pixels, whereas Fig. 3(b) shows a ran-
dom selection of 20 × 384 = 7680 patches from the grand total of
15 360 patches.

The cost function, defined as the root-mean-square error
(RMSE), was minimized using the stochastic gradient descent. The
total duration of the training was about 32 h with 8 core desktop PC
including nvidia gtx1080 GPU. Before the training stage, the model
was initialized with values corresponding to the original DnCNN
model of Zhang,7 which corresponds to de-noising of natural images
with Gaussian noise. In order to validate the model, an evaluation
was performed with a second database including 25 phase fringe
patterns that have not been seen by the network in the training
stage. This database has been used in author’s previous works related
to phase de-noising in digital holography.23,29 The model was also

FIG. 3. (a) Set of 20 cosine images of the noise-free phase data, sized 1024
× 1024 pixels and (b) selection of 20 × 384 = 7680 patches from the grand total
of 15 360 patches.

compared with two other ones: the original DnCNN model from
Zhang,7 which is a model trained on sets of natural images with
Gaussian noise, and the same pre-trained model retrained on the
same fringe pattern database that was used for training with realistic
speckle noise, but with added Gaussian noise. The behavior of the
cost function vs the iteration number is reported in Fig. 4. One can
observe that it exhibits a larger variance than in the case of usual
network training with Gaussian noise. In order to improve perfor-
mances, we also introduced iterations in the de-noising process, as
shown in the processing scheme reported in Fig. 5. Therefore, 1–5
iterations were taken into account for the three models. The results
of the appraisals are provided in Sec. IV. Table I summarizes the
parameters that were taken into account for the training of three
different network models.

C. Metrics for quantitative appraisal

Quality metrics are required to analyze the performances of
the deep learning approach to de-noise speckled phase data. The
most adapted criterion for optical metrology is related to the error
of the processed phase. The phase error is calculated by subtracting
the original simulated noise-free phase fringe pattern from the de-
noised one, and then, the standard deviation σφ is estimated. The
peak-to-valley (PV) of the phase error is also of interest and is sim-
ply computed by calculating the difference between the maximum

TABLE I. Parameters of the training of the three network models: natural CNN from Zhang trained with natural images, CNN
from Zhang trained with fringes and added Gaussian noise, and CNN from Zhang trained with fringes and realistic speckle
noise.

CNN with natural CNN + fringe patterns CNN + fringe patterns
images7 + Gaussian noise + speckle noise

Number of layers 59 59 59
Patch size 50 × 50 50 × 50 50 × 50
Patch number in images 128 384 384
Selection of patches Random Random Random
Learning rate 0.1–0.0001 0.000 6 0.000 6
Epoch number 50 120 1920
Total number of iterations 8000 14 400 230 400
Noise level >13 dB 11 dB 7.31–11.45 dB
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FIG. 4. Evolution of the RMSE cost func-
tion of the training process: (a) Gaussian
model and (b) speckle model, the hor-
izontal red line indicates the minimum
value of the RMSE.

andminimumphase errors. However, such criteria have a significant
drawback since they are based on the calculation of an average error,
which does not account for distortions but may affect the structures
in the processed phase data. It follows that the same amount of error
can be observed between two restored phase data when one of them
may exhibit a very different perceived quality. However, the “quality
index,”Qindex, criterion fromWang and Bovik30 does account for the
perceived quality of restored images. The value of Qindex is included
in the range [−1, +1], when +1 is reached and when the two images
are quite similar. In this paper, the quality index will be used to check
the perceived quality. Another metric that can be considered is the
peak signal-to-noise ratio (noted PSNR), which is defined as the ratio
between themaximum gray level in the image and the standard devi-
ation between the initial and processed image. The PSNR is given in
the following equation for images digitized with nbits:

PSNR ≙ 10 log 10

⎡⎢⎢⎢⎢⎢⎢⎣
(2nbits − 1)2

1
MN ∑

i,j
(s(i, j) − d(i, j))2

⎤⎥⎥⎥⎥⎥⎥⎦
. (5)

FIG. 5. Scheme of the de-noising process used for the evaluation of the three
models. The phase is re-calculated by using an arctangent formula of the sine and
cosine images.

In Eq. (5), s(i, j) and d(i, j) refer to the initial noise-free phase data
and the enhanced one, respectively. The set of the index values (i,
j) relates to the matrix coordinates having M rows and N columns.
Finally, a last metric, called the method error,31 yields the value of
the phase error generated by the de-noising algorithm itself when its
input is composed of noise-free images. This error can be interpreted
as the lower bound of the phase error relative to the database used
for the evaluation. It is then computed as the mean value of phase
errors when the inputs of the de-noising algorithm are the noise-free
images from the database.

D. Challenger algorithms

The deep learning approach is compared to a set of reference
de-noising algorithms from the literature. In particular, the BM3D,32

the WFT2F,25 and the dual-tree wavelet transform (DTDWT)33

are selected because of their established performances. The block-
matching 3D (BM3D) filter relies both on local and non-local char-
acteristics of images. As a general rule, BM3D is based on the con-
cept of grouping and collaborative filtering. Grouping findsmutually
similar image blocks and stacks them together in dedicated arrays.
Collaborative filtering produces individual estimates of all grouped
blocks by filtering them jointly. The BM3D algorithm is recognized
as the state-of-the-art in natural image de-noising. The 2D win-
dowed Fourier transform filter, WFT2F, is based on a local Fourier
transform, which may take into account the non-stationary char-
acteristics of the noise. The WFT2F algorithm was designed for
phase filtering in speckle and holographic metrology;25 it can be
considered as the dedicated algorithm to process such data.23 The
dual-tree complex wavelet transform is an alternative approach to
the classical discrete wavelet transform (DWT) and offers impor-
tant enhancements in the context of image de-noising. As a main
property, such transform is nearly shift invariant and directionally
selective in the two and higher dimensions. This property is achieved
with a redundancy factor of only 2d for d-dimensional signals, which
is substantially lower than the undecimated DWT usually involved
in de-noising applications in image processing. In addition, the
DTDWT is non-separable but is based on a computationally efficient
separable filter bank.

IV. RESULTS

As the first results, we present comparisons of the three selected
model networks that correspond to the DnCNNmodel trained with
natural images with Gaussian noise, with noise-free fringe patterns
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with added Gaussian noise (an amount around 11 dB), or with
realistic speckle noise in phase data from the simulator, respec-
tively. These three models are called models “1,” “2,” and “3,”
respectively.

Validation is achieved with the database used in Ref. 23, which
is constituted with 25 phase fringe patterns with realistic speckle
decorrelation noise and cosine signal-to-noise ratio varying from
3 dB to 12 dB. As such fringe patterns have also been used for the
training, we have inserted a rotation of 90○ of the images of the
validation database to avoid any similar patterns when de-noising.
Therefore, it follows that there was no data augmentation in images
before training.

Figure 6 shows the comparisons and demonstrates that the
original DnCNN network without any specialized retraining (model
“1”) yields bad results for de-noising phase fringe patterns with real-
istic speckle noise, even when iterations are performed. The results
for model “2” show an important improvement with a score of about
0.07 rad at the second iteration. The best performance is obtained
with model “3” with a phase error at 0.031 rad at the 5th itera-
tion, whereas the state-of-the-artWFT2F algorithm provides a phase
error at 0.025 rad (dashed line in Fig. 6). The method error for mod-
els “1,” “2,” and “3” vs the iteration number is shown in Fig. 7.
Similarly as in Fig. 6, the dashed line corresponds to the WFT2F
algorithm.

Figure 7 shows that the method error (a minimum bound of the
rms phase error) for model “1” has weak values for the two first iter-
ations. The reason is that, practically, the network does not see any
presence of noise in the images. As a consequence, the input image
remains unchanged at the output of the network. For model “3,” the
method error is less than that of WFT2F until the second iteration
and is at 0.008 rad. The method error for model “2” is worse than
that for model “3,” whatever the number of iterations. Therefore, for
metrology purpose, model “2” should not be retained for any phase
de-speckling processing. Note that increasing the number of itera-
tions leads to an increase in the method error at an amount that
can reach two times the method error from WFT2F, for five itera-
tions. This means that too much iterations do contribute to degrade

FIG. 6. Mean phase error (rad) vs the iteration number for the three compared
models. For each model, the color code is dark blue, blue, green, orange, and
brown for 1, 2, 3, 4, and 5 iterations, respectively. The horizontal dotted line is the
mean phase error method from the WTF2F algorithm.

FIG. 7. Method error (a minimum bound of phase error vs the iteration number)
for the three compared models. For each model, the color code is dark blue, blue,
green, orange, and brown to 1, 2, 3, 4, and 5 iterations, respectively. The horizontal
dotted line is the method error of the WFT2F algorithm at 0.009 rad.

the phase data. In the following, we present the results obtained
for three iterations, which is a good compromise between the
metrological performance (low method error) and the de-noising
performance.

In Figs. 8 and 9, “DL” (deep learning approach) relates to the
network training with realistic speckle noise (model “3”). The DL
for 3 iterations is compared with the three best methods for speckled
phase de-noising: WFT2F, BM3D, and DTDWT. Figure 8(a) shows
the ranking of the rms phase error, Fig. 8(b) the ranking of theQindex,
and Fig. 8(c) the ranking of the PSNR for the four algorithms. Fig-
ure 8(d) shows the rms phase error for the 4 algorithms, Fig. 8(e)
the Qindex, and Fig. 8(f) the PSNR vs the input SNR in the cosine
image.

Figure 8 shows that DL is very close to the WFT2F for each of
the three appraisal metrics. The DTDWT algorithm yields relatively
good results although below that from DL. Note that the second
place of DL is obtained with a phase error at 0.032 rad. In Fig. 8(d),
DL and WFT2F have very similar behaviors for the SNR input vary-
ing from 6 dB to 12 dB. For a SNR from 3 dB to 6 dB, the difference
between DL andWFT2F slightly increases. This can be explained by
the fact that the DL algorithm was initially trained with high values
of the input SNR.

In Fig. 9, the peak-to-valley error (PV) is provided for the four
algorithms: DL, WFT2F, BM3D, and DTDWT. Figure 9 shows that
the PV for DL is better than those obtained with WFT2F, BM3D,
and DTDWT.

Note that in this paper, we considered 2 pixels per speckle
grain. When increasing the number of pixels per speckle grain, that
is, when increasing the speckle size, the SNR in the phase data
decreases. Hence, when increasing the speckle grain size, the SNR
decreases.34 It follows that the DnCNN requires to be re-trained with
the adapted set of data. However, the ranking observed in Figs. 8 and
9 is not changed. From Figs. 8 and 9, for such SNR values, the DL
de-noiser is state-of-the-art.

Table II summarizes the computation times obtained with DL,
WFT2F, BM3D, and DTDWT. Note that GPU computation for
WFT2F, BM3D, and DTDWT was not available. Therefore, the
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FIG. 8. Rankings and trends of the four algorithms vs metrics: (a) ranking of the rms phase error, (b) ranking of the Qindex , (c) ranking of the PSNR, (d) rms phase error for
the five algorithms vs the input SNR, (e) Qindex vs the input SNR, and (f) PSNR vs the input SNR.

four algorithms were run on a laptop PC Intel core i5 at 2.30 GHz
equipped withMATLAB, and the computation times were estimated
with this equipment. Of course, one may assume that their transpo-
sition into GPU would give better computation time; however, the
hierarchy would have to be checked.

It appears that the computation time is lower for DL compared
to WFT2F.

FIG. 9. Rankings of the four algorithms vs the peak-to-valley metric.

V. APPLICATION TO WIDE-FIELD HOLOGRAPHIC
VIBROMETRY

Digital holographic vibrometry is a powerful approach to study
the vibrations of structures when subject to stationary, transient,
or non-stationary excitations.35 The experimental setup is based on
high-speed recording of digital holograms in the Fresnel configu-
ration, as depicted in Fig. 10. The light is emitted from a contin-
uous Diode Pumper Solid State (DPSS) laser at λ = 532 nm with
a maximum power at 6 W. The sensor is a high-speed camera
from Photron, with pixel pitch at px = 20 μm and maximum spa-
tial resolution including 1024 × 1024 pixels at a low frame rate.
At 100 kHz, the spatial resolution is reduced to 264 × 384 pixels.
The exposure time is set to 1 μs. The negative zoom is adjusted
to capture holograms from a rectangular area sized 30 × 15 cm2

(∼450 cm2) when fulfilling the Shannon requirements for the holo-
gram sampling. The structure is an aluminum plate excited with

TABLE II. Iteration number and computation times obtained with DL, WFT2F, BM3D,
and DTDWT.

Algorithm Iterations Computation time (s)

DL 3 210
WFT2F 1 278
BM3D 3 130
DTDWT 3 11
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FIG. 10. (a) Experimental setup for wide-field holographic
vibrometry (PBS: polarizing beam splitter and DOE: diffrac-
tive optical element, λ/2 half-wave plate).

FIG. 11. (a) Experimental noisy Doppler phase for vibration at 17 512 Hz, (b)
Doppler phase processed with WFT2F, (c) Doppler phase processed with DL, and
(d) Doppler phase processed with DTDWT. The color bar indicates the range of
the color map in the modulo 2π phase images.

a mechanical shaker at a frequency of 17512 Hz. The beam to
illuminate the structure is spatially expanded by using a dedi-
cated diffractive optical element (DOE) to yield a rectangular light
shape.

The digital holograms are numerically reconstructed with 2048
× 2048 data points, and the phases are extracted. The phase dif-
ferences between two consecutive instants are calculated to yield
the Doppler phase.35 Since the Doppler phases are speckled due
to speckle decorrelation between the two instants, de-noising is
required. Considering Sec. IV, Doppler phases were processed by
both DL, WFT2F, and DTDWT algorithms. Figure 11(a) shows
the modulo 2π noisy Doppler phase from the digital holographic
process. The useful part of the phase map includes 1006 × 501
data points. Figure 11(b) shows the phase map processed from the
WFT2F algorithms, and Fig. 11(c) exhibits the phase map processed
from the DL approach. In Fig. 11(d), the phase map processed from
the DTDWT algorithm is shown. As can be seen, the DTDWT algo-
rithm generates phase dislocations in Fig. 11(d), whereas this is not
the case for the other algorithms. It appears that the DTDWT is
not adapted to such phase maps. The computation time for the
DL approach is around 230 s, whereas it is around 300 s for the
WFT2F.

In order to appraise the difference between the WFT2F and
the DL processing, the phase difference between the results from
Figs. 11(b) and 11(c) was calculated and is shown in Fig. 12(a). In
Fig. 12(a), the difference is mainly around 0 rad and may reach
1.5 rad for few localized data points. The reason for that is not
clearly explained. Figure 12(b) shows the histogram of the phase
difference. The histogram looks like the Gaussian curve with zero
mean, and the standard deviation is found at 0.107 rad. We can
conclude that the phase difference is acceptable. Of course, since
the ground truth is not available with real experimental data, one
cannot get the error map for both algorithms. However, consid-
ering Fig. 9, the PV of the DL is better than that of the WFT2F.

FIG. 12. (a) Phase difference between
the results from Figs. 11(b) and 11(c) and
(b) histogram of the phase difference in
(a).
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Therefore, probably, this is a consequence for the particular fringe
pattern in Fig. 11(a) to yield the 1.5 rad phase difference between
the two methods. Note also that the WFT2F is constrained by the
width of the analyzing window (20 pixels) and probably this does
not allow the WFT2F to correctly process high spatially transient
phase variations, such as in Fig. 11(a). This could be ameliorated by
decreasing the window size, but at the cost of increasing the stan-
dard deviation of the phase error. Finally, the compromise for the
correct parameters and/or suitable algorithm is not so trivial and
could be considered in the perspective of the expected application.
As an example, in the field of vibroacoustics, for the problem of force
identification,36 the inverse problem is required to process data from
full-field measurements, as provided in this section. The discussion
related to the required overall quality and accuracy of the measured
input data remains opened and needs to be deeply investigated in the
future.

From Figs. 11 and 12, we can conclude that the DL, trained on
the database with realistic speckle noise, exhibits high efficiency and
is state-of-the-art, when de-noising phase data that were not in the
learning database.

VI. CONCLUSION

This paper demonstrates that a state-of-the-art deep-learning-
based algorithm trained to de-noise phase maps from digital holo-
graphic interferometry can be obtained when training the network
with realistic noisy phase data. To do this, faithful speckle noise
conditions, having non-Gaussian statistics and non-stationary prop-
erty, being amplitude-dependent, and exhibiting spatial correlation
length, must be simulated. As a result, training a network with data
including simply added stationary Gaussian noise does not provide
a robust de-noiser. In order to achieve the state-of-the-art de-noiser,
the deep neural network was trained with a database constituted
with 40 noisy phase maps, including various orientations and fringe
densities. With three iterations, the performance obtained with the
proposed approach yields comparable standard deviation to the 2D
windowed Fourier transform algorithm and better peak-to-valley.
The computation time of the proposed approach is smaller than that
of the 2D windowed Fourier transform, especially for experimen-
tal noisy phase data. Processing of experimental data from wide-
field digital holographic vibrometry at a 100 kHz frame rate yielded
promising results. Future works concern reducing the computation
time, for example, by moving to the Tensorflow software environ-
ment, and deep investigation of the architecture could be carried out
by testing other network configurations, for example, when reducing
the number of layers. Finally, the overall quality and accuracy of the
processed data must be investigated to determine which phase error
could be tolerated in the related metrology problems.
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