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Active structures can adapt to varying environmental conditions and functional requirements by 

changing their shapes and properties, which makes them suitable for applications in changing 

environments as found in aerospace and automotive. Of special interest are light and sti� structures 

with shape morphing capabilities, which is naturally contradictory. Existing concepts in literature can be 

limited to a single, non-reversible actuation and are di�cult to design due to the inherent complexity 

of large-scale lattices with many elements and complex target deformations. Here, we show how 

3D-printed active materials can be combined with an e�cient computational framework to design 

large-scale lattice structures that can change their shape between an initial state and a target state. The 

reversible deformation is controlled by a single actuation input and heating of the structure. Numerical 

and experimental results show the generality of the proposed method and the applicability to di�erent 

problems such as morphing airfoils.

Introduction

�e concept of shape morphing is abundantly found in nature, 

from adaptive leaves of plants [1] to morphing wings of insects 

and birds [2, 3], and likewise imitated by engineers and scien-

tists to create structures that can adapt to di�erent operating 

conditions. In general, these active structures react to changing 

environmental conditions and change their shape and proper-

ties to meet new functional requirements. �is is o�en enabled 

using active materials, which can change their properties in 

response to external stimuli such as heat, moisture, and light 

[4]. �e recent popularity of active materials in engineering 

and science is partially owed to the possibility of 3D printing 

these materials, combining their exceptional properties with 

the inherent geometric and topological complexity of advanced 

3D-printed structures. Among others, this combination con-

stitutes the �eld of 4D printing [5], where temporally chang-

ing objects and structures are explored that can ful�l di�erent 

tasks such as autonomous cargo delivery [6], self-assembly [7, 

8], and locomotion [9]. In contrast to conventional morphing 

structures, which o�en require complex assemblies of many 

individual parts, 4D-printed structures can be fabricated 

monolithically where functional components such as compli-

ant hinges and active elements are directly integrated. �is 

reduces the overall number of parts, assembly time and mainte-

nance requirements, as, for example, no lubrication is required 

for compliant hinges. �is makes active structures especially 

interesting to industries where these factors are important, such 

as aerospace and automotive [10, 11]. However, the develop-

ment of these structures is still limited by a lack of e�cient 

computational design methods, since many examples found in 

literature are designed by hand and thus are limited by engi-

neers’ imagination and experience. Additionally, shape mor-

phing structures are o�en restricted to planar 2D structures 

or are made of compliant materials that do not possess any 

advanced load-carrying capabilities. To make them attractive 

for real-life applications, for example in morphing airfoils and 

car panels, active, shape-morphing structures must be simulta-

neously rigid, load-carrying and compliant, which is naturally 
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contradictory. Finally, some 4D-printed structures are designed 

for one-way usage and “re-programming” a�er actuation can be 

di�cult, especially for structures with many individual actua-

tors and complex deformation patterns.

Here, we combine the advantages of 3D-printed active 

materials and advanced computational design and modelling to 

design lightweight lattice structures that can morph between an 

initial state and a target state in a reversible way. �is is achieved 

by exploiting the thermomechanical properties of two di�erent 

materials, which have the same sti�ness at room temperature but 

di�erent sti�nesses at higher temperatures. By optimizing the 

material distribution in a prede�ned ground structure, sti�ness 

gradients emerge at higher temperatures and enable global shape 

morphing, which can be controlled by a single input actuation 

displacement. All deformations are based on the reversible 

shape-memory e�ect of the materials, which leaves the initial 

topology always intact and ensures that the structures remain 

mechanically sound.

Background

Materials

�e basis of many active structures that are activated through 

their materials is a combination of multiple active materials 

with di�erent mechanical and thermal properties, where for 

example the sti�ness and strength vary over several orders 

of magnitude [4]. Modern additive manufacturing processes 

enable the simultaneous deposition of multiple materials at the 

microscale, which enables the fabrication of composite mate-

rials with tailored properties [9, 12]. Similar to classic com-

posite materials, the interaction between the di�erent com-

ponents can yield unique properties that cannot be achieved 

by the constituent materials individually. A class of materi-

als that is frequently found in literature on active structures 

are shape-memory polymers (SMPs) [13]. SMPs are available 

for many 3D printing processes such as material jetting [14], 

stereolithography [15], and fused deposition modeling [16]. 

�e mechanical properties of SMPs are directly linked to their 

respective glass transition temperature (Tg). Below the Tg, the 

polymer is in its “glassy” state, where it is normally relatively 

sti� and brittle. Above the Tg, the material is in a viscous or 

“rubbery” state and the sti�ness of the material decreases. In 

practice, the transition temperature is mostly not a discrete 

temperature but a temperature range in which the properties of 

the materials change. When a SMP is deformed in its rubbery 

state, the deformations can be �xed by cooling the material 

below the Tg. �is process is o�en called “programming” as 

the material is programmed from one initial shape into a new 

shape. In contrast to many other materials, SMPs have the abil-

ity to remember the initial shape and recover it on re-heating 

above the Tg. �e deformations and strains during this reversi-

ble programming and recovery cycle can be relatively large, but 

in general do not damage the material itself. Hence, the shape 

memory e�ect can be used to store and release deformation 

energy in the materials, which then can be used as actuators or 

active elements in shape-morphing structures [14]. While tra-

ditional SMPs require an initial programming step before they 

can be actuated, strategies exist to overcome the limitations 

of the one-way actuation. �is involves polymer laminates of 

multiple materials [17, 18], exploiting multi-shape memory 

e�ects of materials with a large transition temperature range 

[19], and combining materials with di�erent stimuli such as 

heat and moisture [20, 21]. While all these strategies involve 

additional materials and geometric control, a true reversible 

shape memory e�ect is found for example in liquid crystal 

elastomers (LCEs) [22]. However, as these structures are cur-

rently still very expensive, di�cult to fabricate, and the shape 

memory e�ect can be unstable [23], they are unsuitable for 

the fabrication of active structures at a larger scale, as shown 

in this work.

Shape‑morphing structures

The usage of different materials with distinct geometrical 

designs enables the actuation at different temperatures for 

sequential actuation, which can be used to design multi-state 

structures [24] and autonomously manoeuvring systems [6]. 

�e drawback of these structures is, however, that the actua-

tors have to be programmed manually before actuation, which 

makes the process non-reversible and infeasible for more com-

plex structures with hundreds or thousands of active parts. Such 

structures require the support of computational tools, which 

can help to design structures with complex deformation pat-

terns and shapes at a large scale. However, active structures rely 

on the interrelation of micromechanical and macromechani-

cal e�ects, which have to be modelled with su�cient accuracy 

to generate viable results. �is can involve complex nonlinear 

material models [25] or prestresses [26], which makes it com-

putationally expensive to solve larger problems. More studies 

focus solely on the optimization of shape-morphing structures 

without active materials. Common techniques involve the opti-

mization of geometric parameters of lattices [27], the mapping 

of locally deformed, precomputed patterns to achieve global 

deformations [28] or multi-stage approaches where topology 

optimization and mapping strategies are combined [29]. How-

ever, these shape transformations are purely elastic and cannot 

be �xed permanently. Weeger et al. propose an approach where 

lightweight lattice structures and active materials are combined 

to design structures that can be programmed into complex 3D 

shapes [30]. Even though the target shapes can be �xed and 

the programmed deformations are reversible, the structures 



Article

© The Author(s) 2021, corrected publication 2021 

 
 

Jo
u

rn
al

 o
f 

M
at

er
ia

ls
 R

es
ea

rc
h

  
 

V
o

lu
m

e 
3

6
  

 
Is

su
e 

1
8

 
 

Se
p

te
m

b
er

 2
0

2
1

 
 

w
w

w
.m

rs
.o

rg
/j

m
r

3644

Article

are, in general, compliant in both states due to the use of both 

rigid and compliant materials, which makes this combination 

less feasible for applications where load-carrying structures are 

required.

In this work, we combine the advantages of selected SMPs 

and their distinct thermo-mechanical properties, lattice struc-

tures, and advanced computational methods to efficiently 

design 3D-printed structures that can reversibly change their 

shape from an initial con�guration to a second target shape by 

a simple input actuation while remaining structurally intact. 

We start by investigating the thermo-mechanical properties 

of the materials used in this work, from which we derive the 

actuation concept of the structures. We then derive an optimi-

zation problem formulation and show how it can be applied 

to di�erent example structures that are 3D printed and tested 

experimentally.

Results

Shape morphing cycle

In contrast to shape morphing structures where individual ele-

ments or bars have to be actuated separately to achieve a pre-

de�ned target shape, we introduce a concept where uniform 

heating activates the structure and enables shape morphing. �e 

concept is based on exploiting the di�erent mechanical proper-

ties at di�erent temperatures of materials that are 3D printed 

with the Objet500 Connex3 3D printer (Stratasys, Eden Prairie, 

MN, USA). �e 3D printer uses the material jetting technol-

ogy and allows for printing multiple materials at the same time. 

Figure 1a shows the Young’s modulus at di�erent temperatures 

of the two materials “VeroWhite+” (VW) and “High Tempera-

ture” (HT). �e values are obtained by tensile tests according 

to the respective ASTM norm [31], conducted on an Instron 

ElectroPuls E3000 mechanical testing machine and an Instron 

3119 environmental chamber.

�e markers indicate the mean value of �ve samples, and 

vertical error bars indicate the standard deviation. At room tem-

perature and up to about 50 °C, both materials VW and HT have 

approximately the same Young’s modulus and decrease almost 

linearly. At higher temperatures, the sti�ness of VW drops, 

while the sti�ness of HT further decreases, almost linearly. Even 

though both materials become relatively compliant, the sti�ness 

of HT remains higher than the sti�ness of VW at temperatures 

up to 80 °C. �is behavior is caused by the two di�erent glass 

transition temperatures of about 55–60 °C (VW) and about 70 

°C (HT).

Instead of achieving a target deformation by recovering a 

pre-programmed state, as o�en seen in literature, we use this 

di�erence in the thermo-mechanical properties of the mate-

rials to introduce local sti�ness gradients in the structures at 

higher temperatures, which cause the target deformations 

under a single actuation input displacement. A similar concept 

was introduced by Weeger et al. for semi-compliant, voxelized 

beam structures [30]. Figure 1b schematically shows a 2D lat-

tice structure where each bar either consists of VW (gray lines) 

or HT (black lines). �e solid black line and the dashed black 

line show two di�erent possible distributions of HT material. 

At room temperature, all bars have the same Young’s modulus 

of about 2100 MPa and the lattice has a homogeneous sti�ness 

distribution. At 80 °C, the sti�ness of the HT bars (black) is 

reduced to about 305 MPa and the sti�ness of the VW bars 

(gray) is reduced to about 8 MPa. Since the HT bars are about 

38 times sti�er than the VW bars, local sti�ness gradients are 

introduced to the structure and the overall mechanical response 

is now mostly governed by the distribution of the sti�er HT 

material. Hence, by controlling the material distribution in the 

Figure 1:  (a) Temperature dependency of the Young’s modulus of the two materials “VeroWhite+” and “High Temperature”. (b) A small 2D lattice 

structure with compliant members (gray) and rigid members (black). Depending on how the rigid members are arranged in the structure, the structure 

can have negative Poisson’s ratio (solid black lines) or positive Poisson’s ratio (dashed black lines) when expanded horizontally. (c) The structure from 

(b) in the deformed state under horizontal expansion for both material distributions. (d) Schematic of a larger lattice structure (gray) with supports 

(left) and input actuation displacement (right). A tailored material distribution inside of the lattice structure can enable complex target deformations 

such as the sine shape at the top and at the bottom. (adapted from Ref. [32]).
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structure, the mechanical properties and the deformation under 

external displacements can be controlled.

In the �rst case, HT material is deposited as indicated by 

the solid black lines and forms a re-entrant cell, which is gener-

ally associated with auxetic behavior [33]. Hence, at high tem-

peratures a horizontal expansion of the structure will result in 

a vertical expansion (Fig. 1c top), the overall Poisson’s ratio of 

the structure is negative ν < 0 . In the second case, HT material 

is deposited as indicated by the dashed black lines and forms a 

diamond cell, which will contract vertically under a horizontal 

expansion with ν > 0 (Fig. 1c bottom). �is simple example 

shows that it is possible to control the overall deformation of 

a structure at high temperatures by assigning the two materi-

als VW and HT to the individual bars. Figure 1d shows sche-

matically how this concept can be implemented in a mechanical 

structure. �e gray region represents a general lattice structure, 

which is �xed at the le� side and which can be mechanically 

deformed by a local input displacement at the right side, for 

example via a pneumatic actuator. �e dash-dotted lines indicate 

the global deformations of the structure at high temperatures, 

which are determined by the exact material distribution in the 

base lattice.

By controlling the input deformation and the temperature 

of the structure, this setup enables reversible shape morphing 

behavior. Figure 2 schematically shows a 2D lattice structure and 

the respective sti�ness distribution during all states of the shape 

morphing cycle. In step one, the structure is at room tempera-

ture (23 °C) and all bars have the same sti�ness, independent 

of the material distribution. In step two, the structure is heated 

up to 80 °C. �e bars that consist of VW, indicated by the gray 

lines, become more compliant than the bars that consist of HT, 

indicated by the black lines.

Next, an input displacement is applied locally to the right 

side of the structure. Due to the heterogeneous sti�ness distribu-

tion, the structure deforms into the desired shape, which is the 

sine shape at the top and at the bottom here. To �x the deforma-

tions, the structure is cooled down to room temperature in step 

4 and the sti�ness in all bars is again the same. Since the overall 

deformations are based on deformations in the members, the 

overall topology of the structure is preserved. Due to the shape 

memory properties of the materials, the applied and �xed strains 

in the bars are reversible, and the original shape can be recov-

ered when the structure is heated once again to 80 °C.

Since di�erent material distributions yield di�erent defor-

mations for given input displacements, it can be di�cult to �nd 

a material distribution for which the structure deforms to meet 

the target shape. For small lattices, intuitive con�gurations such 

as the re-entrant or diamond con�gurations in Fig. 1b might 

yield qualitatively good solutions. However, a computational 

design framework is required to systematically design larger 

scale lattices with more complex deformations while taking 

into account that the optimization problem is nonlinear and 

non-convex. In this work, we develop a two-step computational 

design optimization framework to solve the discrete material 

distribution problem. To make use of gradient-based optimi-

zation techniques for e�ciently solving large-scale problems, 

the discrete problem is relaxed and solved with an interior 

point line search �lter method (IPOPT) as a �rst step using a 

random starting point. As the relaxed problem can yield solu-

tions that are not fully discrete, i.e. some bars with intermediate 

material properties remain, in a second postprocessing step, a 

Genetic Algorithm (GA) is used to �nd fully discrete solutions 

based on the almost discrete solutions from the �rst step. �e 

optimization model and methods are described in detail in 

“Methodology”.

Optimized Structures

To show the applicability to complex 3D problems and the 

generality of the method, Fig. 3 introduces the three example 

structures “2D Sine”, “3D Sine”, and “Airfoil”. �e example “2D 

Sine” in Fig. 3a consists of 6 × 4 square unit cells with 154 bars, 

where each unit cell has the side length L = 17.0 mm and a 

central node in the middle. Hence, the length of the horizontal 

and vertical bars is l = L diagonal bars is l = (
√
2/2) × L . �e 

nT target displacements at the top and at the bottom, indicated 

by the dashed blue lines, are de�ned on in total 10 individual 

Figure 2:  All steps of the shape morphing cycle for the “2D Sine” structure 

(adapted from Ref. [32]). All bars have the same Young’s modulus at room 

temperature (1). At 80 °C, the sti�ness of the members changes due to 

the two di�erent materials used (2). An input displacement is applied 

to the right side of the structure and the distinct material distribution 

causes a predetermined global deformation, for example a sine shape 

here (3). The structure is cooled down, which �xes the deformations. (4) 

The initial shape can be recovered by re-heating the structure due to the 

shape memory properties of the materials.
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nodes and describe mirrored sine curves with an amplitude of 

a = 3.0 mm. �e input actuation is a displacement of all nodes 

at the right side of the structure, indicated by the black arrows. 

�e structure “3D Sine” consists of 4 × 4 × 2 octet-truss unit 

cells with 896 individual bars. All bars are of equal length 

l = 14.1 mm . In contrast to the 2D example, this structure is 

deformed by compressive displacements at the top. �e target 

displacements on the le� side and on the right side describe 

mirrored sine shapes with an amplitude of a = 3.0 mm and are 

de�ned on in total 46 individual nodes. �e structure “Airfoil” 

has the shape of the back half of a NACA 6420 airfoil [34]. �is 

shape is extruded in z-direction and discretized with 18 × 2 × 

8 body-centered cubic unit cells, which results in 3516 bars in 

total. Due to the mapping of the unit cells to the airfoil geometry, 

the bar lengths l  vary between 12.4 mm at the root and 0.7 mm 

at the tip. �e target shape describes a de�ection of the tip of the 

airfoil downwards by a = 10.0 mm, as it could be used for exam-

ple for shape-morphing wings. �e target shape is de�ned by, in 

total, 105 individual nodes at the top and at the bottom of the 

airfoil. A bar radius of r = 0.75 mm is chosen for all structures.

Each example structure is optimized 10 times, due to the 

random starting point, and the arithmetic mean and the stand-

ard deviation for both optimization steps are given in Table 1. 

For all three example structures, the best solution a�er both 

steps is selected out of the 10 optimization runs, fabricated and 

experimentally tested. It can be observed that the solution of the 

relaxed problem a�er the �rst optimization step achieves lower 

objective function values for all three examples than a�er the 

postprocessing step, as the restriction on purely discrete values 

in the postprocessing step further constrains the design space. 

On the le� side of Fig. 4, the best optimized solution for each 

example is shown in the deformed state. �e deformations are 

computed by a linear-elastic, truss FE analysis with material 

properties at 80 °C. �e colors of the bars indicate the material 

distribution, where light gray represents VW material and dark 

gray indicates HT material. �e transparent blue dashed lines 

and the transparent blue planes indicate the prede�ned target 

displacements, respectively. In general, the target shapes are 

matched by the optimized structures well. However, the absolute 

values of the objective function of the three examples a�er the 

postprocessing step are signi�cantly di�erent, as summarized 

in Table 1.

�is stems from the de�nition of the objective function f  , 

i.e. the sum of the squared error over all target nodes. Larger 

structures with more target nodes such as the “Airfoil” more 

likely have larger objective function values than smaller struc-

tures with fewer target nodes. To make these values compara-

ble, we compute the “mean error” of the optimization at every 

node via eopt,mean =

√

f /nT  , with the best objective function 

value a�er the postprocessing step f  and the number of target 

displacements nT . �is metric can be interpreted as the mean 

error at every target node, i.e. the mean distance between the 

deformed shape predicted by the simulation and the target 

shape, evaluated at all target nodes of the optimized structure. 

�e corresponding values are found in Table 1 and show that 

the optimization mean error at all nodes is between 0.12 and 

0.39mm , which is the same order of magnitude for all examples.

To experimentally validate the feasibility of our approach, 

the selected structures are 3D printed on a Stratasys Objet500 

Connex3 printer with the default options of the digital material 

mode. �e structures “2D Sine” and “3D Sine” are heated up to 

80 °C in an Instron 3119 environmental chamber. �e actuation 

Figure 3:  Lattices and optimization problem setup of three example 

structures with boundary conditions, input displacements (arrows), and 

target displacements (blue dashed lines/blue surfaces). (a) “2D Sine”, (b) 

“3D Sine”, (c) “Airfoil”.
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displacement is applied to the structure “2D Sine” by an Instron 

ElectroPuls E3000 mechanical testing machine. Solid material 

is added to the le� and to the right of the structure, where the 

tensile grippers of the testing machine are attached. �e struc-

ture “3D Sine” is deformed in the same testing machine using 

compression plates. Since the structure “Airfoil” is too big to �t 

in the environmental chamber, the structure is mounted to a 

rig, immersed in a 400 mm × 400 mm × 400 mm glass container 

�lled with 80 °C hot water, and actuated manually with a metal 

rod. On the right side of Fig. 4, the fabricated structures are 

shown in the deformed state at 80 °C. Both fabricated materials 

VW and HT have the same color and cannot be distinguished 

in the 3D-printed structures. �e target shapes are indicated by 

transparent blue dashed lines, respectively. In Fig. 4a, the full 

deformed structure as computed by the FE analysis is addition-

ally shown on top of the fabricated structure with transparent 

blue lines. For better comparability, the fabricated structures 

in Fig. 4b and c are shown in the front view. In Fig. 4c, the 

thin solid green line indicates the initial shape of the “Airfoil” 

structure.

�e deviations between the experimentally deformed struc-

tures and the numerically predicted shapes at the target nodes 

are determined with the image processing so�ware ImageJ [35]. 

For the 3D structures, the experimental error is measured at 

all visible nodes in the front view. �e mean error at the tar-

get nodes eexp,mean is reported in Fig. 4 on the right side below 

the images and in Tab. 1. Even though the simulated structures 

match the target shapes with almost no visible deviations, small 

deviations on the millimeter scale are visible between the target 

shapes and the fabricated structures. �e mean error is smaller 

than 0.6 mm for the examples “3D Sine” and “Airfoil”, but it is 

signi�cantly larger for the structure “2D Sine” with 1.28 mm. 

Further it can be observed that individual beams buckle, which 

does not occur in the linear-elastic truss FE simulation.

The material distribution in the structure “2D Sine” is 

almost symmetric with respect to the horizontal symmetry line. 

�e more rigid HT material, which dominates the structural 

behavior, forms a re-entrant shaped cell in the le� part of the 

structure and causes the structure to expand vertically due to its 

auxetic behavior. In the right part of the structure, HT material 

is found at the top and bottom, which are connected to the actu-

ated nodes on the right side by diagonal lines of HT material. 

Like this, these regions of the structure are “pulled” towards the 

center and the structure contracts. Between the le� side and 

the right side of the structure, a vertical line of HT material 

prevents large vertical displacements of the top and bottom. �e 

material distributions in Fig. 4b and c are more complex and 

geometric patterns that are related to the deformation behavior 

of the structures as in Fig. 4a are not directly visible anymore.

Figure 5 shows the convergence behavior of the three opti-

mization runs during both optimization steps of the structures 

in Fig. 4 and the corresponding computation times. All com-

putations are carried out on a commercially available Dell XPS 

15 9500 notebook with an Intel Core i7-10750H processor. �e 

computation times are in the order of magnitude of seconds to 

minutes, and the computation time increases with the complex-

ity of the problem. Oscillations at low objective function val-

ues, as seen for example in the black “Airfoil” line, occur as the 

algorithm tries to �nd mechanically valid con�gurations while 

simultaneously reducing the objective function. �e objective 

function values increase between the end of the �rst and the 

beginning of the second step as the remaining intermediate val-

ues are discretized. �is e�ect is most noticeable in the “Airfoil” 

example as its objective function is generally higher than for the 

other examples.

To experimentally show the reversibility of the programmed 

deformations, the structure “3D Sine” is cooled down for about 1 

minute a�er its deformation at 80 °C by removing the environ-

mental chamber. Next, the upper compression plate, which was 

used to apply the input displacements, is moved back up to the 

initial position. �e structure is now in a deformed, stable state 

where both materials have again the same Young’s modulus of 

about 2100 MPa. To recover the initial shape, the environmental 

chamber is reinstalled, heated up to 80 °C, and the recovery of 

the structure is visually recorded. Figure 6 shows the recovery of 

the “3D sine” structure at 80 °C. �e structure is initially �xed in 

TABLE 1:  Statistical results of ten 

consecutive optimization runs for 

each example.

�e table presents the number of variables and the number of target displacements for each example, mean and 
standard deviation (SD) values of the objective function a�er the two optimization steps (gradient-based optimi-
zation with IPOPT and Postprocessing), as well as the best value that occurred. �e values eopt,mean and eexp,mean 
indicate the mean error between the target shape and the actual simulated or experimentally obtained shape at 
every target node, respectively.

No. of variables nT

IPOPT, fr  (mm2)

Postprocessing, f 

 (mm2)

eopt,mean (mm) eexp,mean (mm)Mean SD Best Mean SD Best

2D Sine 154 10 0.40 0.07 0.35 0.47 0.19 0.15 0.12 1.28

3D Sine 896 46 2.55 0.82 1.83 1.87 0.77 1.25 0.16 0.54

Airfoil 3516 105 9.30 8.31 3.10 42.36 23.30 15.79 0.39 0.36
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the deformed shape and stable at room temperature. Upon heat-

ing up to 80 °C, the structure slowly recovers its initial shape, 

which is reached a�er about 6 min.

To investigate the mechanical behavior of structures in the 

deformed state, the structure “3D Sine” is mechanically tested at 

room temperature in both the initial state and in the deformed 

state, respectively. One structure in each state is compressed 

vertically until failure in the Instron ElectroPuls E3000 test-

ing machine with a testing speed of 2.5 mm/min. �e load and 

displacement data are recorded. Figure 7 shows the load carry-

ing capacities of the “3D Sine” structure in the initial state (solid 

black line) and in the deformed state (dashed black line) at room 

temperature. In its initial state, the structure can carry a maxi-

mum compressive load of about 1250 N, while in the deformed 

state the maximum load is reduced by about 62% to about 470 

N. �e maximum displacement before failure however increases 

from about 2.6 mm to about 4.4 mm. While the load-displace-

ment curve is theoretically linear at the beginning, some slack is 

Figure 4:  Optimized structures in the deformed state, as predicted by the FE analysis (left) and fabricated structures (right). Black members represent 

the sti�er HT material and gray members represent the more compliant VW material. Blue dashed lines and blue surfaces indicate the target shapes. 

The structures are the solutions with the best objective function value f after 10 consecutive optimization runs, respectively. Further, the optimization 

mean error eopt,mean and experimental mean error eexp,mean are shown. (a) “2D Sine”. Blue lines in the right image show the numerically predicted 

deformed shape of all bars. (b) “3D Sine”, (c) “Airfoil”. The solid green line indicates the undeformed shape (scale bar 1 cm).
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observed here as not all parts at the top and bottom of the lattice 

are immediately touching the compression plates of the testing 

machine due to small fabrication inaccuracies. �e blue solid 

and blue dashed lines indicate the sti�ness of the structure in 

the initial and in the deformed state as predicted by the linear-

elastic, truss FE simulation. It can be observed that the sti�ness 

is almost the same, which indicates that the reduction in sti�-

ness observed in the experiments does not stem from the shape 

change but rather from the buckling of the individual struts.

Discussion

�e results in Fig. 4 and Table 1 show that the proposed concept 

for reversible shape morphing and the optimization framework 

can accurately produce structures that deform according to the 

de�ned target displacements and boundary conditions. With 

mean errors smaller than 0.4 mm, the deviation between the 

simulated, optimized structure and the target shape is orders of 

magnitude smaller than the size of the structures. Further, the 

mean errors between the fabricated structures and the target 

shape, which are between 0.36 and 1.28 mm, are also orders 

of magnitude lower than the overall structural size. In general, 

this increase of the error between optimization and experiment 

shows that the fabrication and testing inaccuracies have a larger 

in�uence on the �nal shape of the fabricated structures than the 

computational error. �is includes mostly printing inaccuracies 

such as micro-defects, imperfections in applying the boundary 

conditions such as non-homogeneous clamping, and inaccura-

cies in setting and measuring the environmental temperature. 

�e especially high error values of the "2D Sine", however, can 

mostly be explained by the speci�cs of the 2D model. As the 

structure in the experiment is not supported in the z-direction, 

it can warp out of plane. �is out-of-plane warping is observed 

during the experiment and reduces the in-plane deformations, 

respectively. As such, the largest errors are seen in the "2D Sine" 

example in the middle and in the le� part of the structure, as 

the struts that are supposed to move "towards the outside" warp 

out of plane. Without any support in the z-direction, out-of-

plane warping can be caused already by small fabrication inac-

curacies or inaccuracies in setting up the experiment. As this 

is not a problem in 3D structures, the errors are signi�cantly 

lower. Hence, improving the fabrication and testing methods 

would have the biggest e�ect on improving the overall accuracy 

of the approach right now, which is, however, limited by the cur-

rently available technologies to print multiple active materials 

simultaneously.

�e example “2D Sine” shows that the algorithm can �nd 

solutions with patterns that resemble shapes such as the re-

entrant cell, which are intuitively expected in regions with nega-

tive Poisson’s ratio. �e symmetry of the problem is re�ected 

by the symmetry of the solution, even though a fully symmet-

ric solution is not obtained. With increasing complexity of the 

examples “3D Sine” and “Airfoil”, no distinct patterns and no 

symmetric material distributions are directly visible anymore. 

�is behavior is expected due to randomness introduced by the 

random starting points and the stochastic postprocessing step. 

Hence, �nding a symmetric global optimum is not guaranteed.

�e in�uence of the starting point on the quality of the solu-

tion can be estimated by comparing the mean and the SD of the 

objective function during the IPOPT optimization in Table 1. 

For the examples “2D Sine” and “3D Sine”, the optimization 

yields repeatedly “good” solutions, indicated by the relatively 

low SD. �e in�uence of the starting point is small. �e relatively 

large SD of the “Airfoil” example indicates that the quality of the 

solutions strongly varies for the ten optimization runs. Hence, 

the starting point strongly a�ects the results and must be taken 

into account to generate “good” designs, for example by running 

multiple optimizations.

Figure 5:  Convergence behavior of the three examples “2D Sine”, “3D 

Sine”, and “Airfoil” shown in Fig. 4 during both optimization steps, and 

the corresponding computation times.

Figure 6:  Recovery of the initial shape of the “3D Sine” structure by re-heating it up to 80 °C (scale bar 1 cm).
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�e two-step optimization approach allows for e�ciently 

solving problems with large numbers of variables. Figure 5 

shows that IPOPT converges to a valid solution for all three 

examples in under 3 min computing time, and the postprocess-

ing step takes less than 5 min for the most complex “Airfoil” 

example. Since the postprocessing step is computationally 

expensive compared to the IPOPT optimization step, we evalu-

ate its usefulness by solving the “Airfoil” example as the larg-

est example shown in this work with the stochastic GA only, 

i.e. from a random starting point without the �rst IPOPT step. 

Table 2 shows the mean objective function of 10 optimization 

runs and the mean computation times of the postprocessing 

step and the solution obtained by only using the GA. �e mean 

objective function of using only the GA is more than three times 

worse than the mean objective function of the postprocessing 

step. Since the same settings are used, the computation time per 

iteration is about the same. �e overall mean computation time 

of only using the GA however is about 1.5 min lower. �is shows 

that the GA converges quicker to a local minimum, which, how-

ever, is worse than the solutions found with a better starting 

point. To show the computational cost of �nding solutions simi-

lar to the postprocessing step by only using the GA, we increase 

the population size from 150 to 500. With this setting, the mean 

objective function value can be reduced to 55.91, which is simi-

lar to the postprocessing step, but the mean computational time 

increases to more than 16 min. Hence, while using only stochas-

tic optimization methods, as also shown in literature [32], can be 

feasible for smaller problems such as the 2D sine, gradient-based 

methods or a combination of both as proposed in this work 

increase the computational e�ciency and the accuracy of the 

solutions for larger problems with many variables.

�e FE discretization, which the optimization is based on, 

models the bars of the structures as pin-jointed trusses. �is 

simpli�cation assumes that loads are only transmitted as tensile 

and compressive loads and no bending moments occur. As the 

3D-printed structures are printed without pin joints, the bars are 

fused together at the nodes and the bars can deform in bend-

ing. �is behavior would be in general better captured by beam 

models. However, by limiting the choice of ground structures to 

stretch-dominated ground structures, the truss model can still 

be accurate. Stretch-dominated structures are mostly loaded in 

tension and compression, i.e. the individual bars do not have 

to transfer any bending moments due to the redundancy of 

bars. Hence, a truss model can describe the structures with suf-

�cient accuracy, which is con�rmed in this case by the overall 

good agreement between the simulation and the experiments. 

Another characteristic of stretch-dominated structures is that 

they are statically indeterminate, i.e. they have redundant bars 

[36]. Choosing an overdetermined topology gives the optimi-

zation algorithm the possibility to form “substructures” with 

di�erent Poisson’s ratios by assigning di�erent materials. In 

other words, the patterns that govern the deformation at high 

temperatures such as the re-entrant cell must be “contained” in 

the original ground structure. Consequently, our approach is 

applicable to all ground structures that are statically determinate 

or overdetermined. �is is highlighted by the di�erent choice of 

ground structures among the three examples in this work, i.e. 

the 2D square unit cell with a central node, the 3D octet-truss, 

and the 3D body-centered cubic cell, which are all widely found 

in literature and are hence chosen as representative cells for this 

work. Further, the proposed methodology is readily applicable 

to other types of lattices such as functionally graded structures 

where the bar thickness varies throughout the structures or dif-

ferent unit cell types, as long as the underlying truss morphology 

is statically determinate or overdetermined.

Another e�ect that can be observed in the experiments, 

especially in the structures “2D Sine” and “3D Sine”, is the 

buckling of individual bars. As the simulation and the optimi-

zation are based on linear-elastic truss elements, local buckling 

is generally not modelled and must be considered separately, for 

example by Euler buckling constraints [37]. By comparing the 

experiments with the simulated structures, it can be seen that 

only bars that consist of the compliant VW material buckle. At 

80 °C, the Young’s modulus of HT is about 36 times higher than 

the Young’s modulus of VW. Hence, the structural response dur-

ing the actuation is mostly governed by the sti�er HT members 

and the in�uence of the compliant VW members is quite small. 

�e e�ect of the additional reduction in sti�ness of the already 

compliant members due to the buckling is hence even smaller 

and can be neglected in the numerical model.

The usage of shape memory polymers allows for deform-

ing the structures temporarily, fixing the deformation, and 

finally recovering the original shape. As some of the compliant 

bars buckle during the deformation, these bars are fixed in the 

buckled shape. Even though the overall topology, i.e. how the 

Figure 7:  Experimentally determined mechanical behavior of the “3D 

Sine” structure in the initial state (solid black line) and in the deformed 

state (dashed black line), as well as the linear-elastic sti�ness in the initial 

state (solid blue line) and in the deformed state (dashed blue line) as 

predicted by the FE simulation.
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bars are connected with each other, does not change, the load-

carrying capacity of the structures is influenced by the buckled 

bars. The buckled bars do not carry as much load as straight 

bars, which makes the structure in the deformed shape less 

stiff. However, Fig. 7 shows that the deformed structure is still 

able to carry a significant amount of load before failure, which 

can be sufficient depending on the application of the struc-

ture. To improve the load-carrying capacity of the deformed 

structure, a buckling constraint on the normal stress in a bar 

σN can prevent buckling of the bars during the shape trans-

formation. The critical buckling stress is computed as Euler’s 

critical stress [37] σcr = (π2
EeIe/((0.5le)

2
Ae)), ∀e = 1 . . .Nb , 

with the Young’s modulus E , the area moment of inertia I , the 

length of a bar l  , and the cross-section area of a bar A . As a 

buckling constraint in general reduces the design space, we 

show the effect of a buckling constraint on the shape mor-

phing problem on the example of the “3D Sine” structure. 

Figure 8 shows the optimization mean error of the “3D Sine” 

example with a buckling constraint for different bar radii 

(blue markers). Each marker represents the mean value of ten 

optimization runs and the error bars indicate the standard 

deviation. It can be observed that for larger radii r ≥ 1.75mm , 

mean errors of about 0.3 mm and below are achieved, which 

is similar to the values achieved without buckling constraint 

(black markers). For smaller radii r < 1.75 mm, the mean error 

increases up to about 2.0 mm. No valid solution can be found 

for r = 0.6 mm and r = 0.75 mm as the bars are too slender and 

the prescribed target shape cannot be obtained without buck-

ling. Hence, buckling constraints can help to prevent buckling 

of members during the shape transformation, which increases 

the load-carrying capabilities in the deformed state. However, 

when the bars are too slender, target deformations cannot be 

achieved at all or only with increasing the shape error.

A limitation of the current approach is the heating that is 

required to enable the deformation of the structures. While 

heating a full structure evenly is feasible in an experimental 

setup, for example in an environmental chamber or in a water 

tank, it is difficult to achieve under real-life conditions. A 

possible solution to this can be to limit the number of bars 

that have to be heated to smaller regions, which then can be 

heated for example by heating wires. This does not require 

any conceptual changes in the optimization, which makes the 

whole design framework more versatile.

Another limitation is the assumption of linear elasticity, 

which limits the magnitude of the achievable target shapes to 

small deformations. However, it enables the efficient set up 

of the gradient-based optimization algorithm and makes the 

method fast and feasible also for large problems with many 

bars, compared to a nonlinear approach. Hence, the range 

of deformation is, in the current state of research, a trade-off 

between efficient modelling and large displacements.

The advantage of our approach compared to other 

approaches from literature, where individual actuators must 

be manually programmed for a one-way deformation, lies in 

the simplified actuation via a single input displacement and 

the reversibility of the deformation. The optimization setup 

described in “Methodology” ensures that the deformation is 

evenly distributed over the whole structure and the original 

cells remain structurally intact and the efficient optimization 

problem formulation makes the approach applicable to large-

scale structures with at least 3,500 design variables.

Conclusions

In summary, we introduce a novel concept to computationally 

design lattice structures that can actively change their shape in 

a reversible way. In contrast to conventional, rigid lattice struc-

tures, these structures can temporarily transform from their 

initial shape to a de�ned target shape and back. �is is achieved 

by the combination of two di�erent active 3D-printed mate-

rials, which have the same sti�ness at room temperature but 

TABLE 2:  Mean objective function value and mean computation time 

of ten optimization runs for the “Airfoil” example of the postprocessing 

step.

For comparison, the same problem is solved only with the GA with ran-

dom starting points and the same settings, and only with the GA with 

random starting points and an increased population size of 500.

Postprocessing GA only

GA only—increased 

population size

Mean f 

 (mm2)

Mean 

comp. 

time (s)

Mean f 

 (mm2)

Mean 

comp. 

time (s)

Mean f 

 (mm2)

Mean 

comp. time 

(s)

42.36 252.32 136.75 170.99 55.91 988.36

Figure 8:  Optimization mean error of “3D” sine structure with (blue 

markers) and without (black markers) buckling constraint for di�erent 

bar radii.



Article

© The Author(s) 2021, corrected publication 2021 

 
 

Jo
u

rn
al

 o
f 

M
at

er
ia

ls
 R

es
ea

rc
h

  
 

V
o

lu
m

e 
3

6
  

 
Is

su
e 

1
8

 
 

Se
p

te
m

b
er

 2
0

2
1

 
 

w
w

w
.m

rs
.o

rg
/j

m
r

3652

a di�erent sti�ness at higher temperatures, and a single, input 

displacement that controls the global shape of the structures. 

A gradient-based optimization framework allows for the e�-

cient computational design of large active lattices with 3’500 

individual bars. We show that both 2D and 3D structures can 

be computationally designed, fabricated, and experimentally 

deformed to achieve the target shapes. Due to the generality of 

our approach, it can readily be applied to other ground struc-

ture types and combinations of boundary conditions and actua-

tion patterns. �is makes the approach suitable for many types 

of applications in aeronautics and automotive, where distinct 

mechanical properties and shapes for multiple operational con-

ditions are required, for example in active airfoils and shape 

morphing car panels.

Methodology

Finding a material distribution that yields a speci�c target shape 

for prescribed input displacements at 80 °C can be translated 

to solving a discrete optimization problem. Figure 3A shows 

the general optimization problem setup based on a 2D lattice 

structure. A lattice structure in the design domain � is described 

by the positions of the nodes x , how these nodes are connected 

by e = 1 . . .Nb bars of the length le , the cross-section area Ae of 

each bar, and the material of each bar, represented by the respec-

tive Young’s modulus Ee . To support the structure and to prevent 

any rigid body modes, a set of Dirichlet boundary conditions 

is applied. In this example, all nodes on the le� side are �xed 

in the x-direction and in the y-direction, and all nodes on the 

right side are �xed in the y-direction. A prescribed input dis-

placement up is applied to all nodes on the boundary ∂�p ⊂ � , 

which consists of all nodes on the right side in this example. 

This prescribed input displacement represents the external 

deformation, for example applied by a pneumatic actuator. �e 

nT target displacements ũT represent a sine-wave with an ampli-

tude of a = 3mm and are de�ned on the boundary ∂�T ⊂ � , 

which includes in total 10 nodes at the top and at the bottom 

in this example. Since the optimization problem is a problem 

of �nding a discrete material distribution, the design variables 

are the Young’s moduli Ee ∈ {EVW,EHT} of the bars. Each bar 

can either be made from VW with EVW = 8.5MPa or from HT 

with EHT = 305 MPa . �is model represents the deformation 

of the structure at a temperature of 80 °C. To avoid only local 

deformations at large stresses and strains with premature mate-

rial failure, a constraint on the maximum strain εmax is added. 

Since the failure stress of HT at 80 °C is much higher than the 

failure stress of VW, but the failure strain of both materials is 

approximately εmax = 0.2 , a strain constraint is more feasible 

than a stress constraint for this problem. In summary, the opti-

mization problem can be formulated as follows.

(1)min
E

f (E) =

nT
∑

j=1

(

uT,j(E) − ũT,j
)2

where Ku = f  is the �nite element (FE) equation [38] with the 

sti�ness matrix K , the displacements u , and the loads f  , and the 

design variable vector E =

[

E1,E2, . . . ,ENb

]

 . For simplicity, all 

bars are modelled as linear-elastic truss elements. �e objective 

function measures the distance between the target displace-

ments ũT and the actual displacements computed by the �nite 

element analysis uT , which are evaluated at nT degrees of free-

dom on the boundary ∂�T.

�e number of design variables and the number of strain 

constraints equals the number of bars in the structure, which 

can quickly become very large for more complex problems or 

for 3D structures. Previous work shows that solving this type of 

problem with discrete stochastic solvers such as the Mesh Adap-

tive Direct Search algorithm (MADS) is only feasible for less 

than about 200 individual bar [32]. More e�cient techniques for 

solving large-scale optimization problems such as mathematical 

programming mostly require continuous problem formulations 

and rely on gradient information. Hence, we relax our problem 

by making the design variables Ee continuous, with the two dis-

crete values of the Young’s modulus of VW and of HT as the 

lower bound ( Elb = EVW ) and the upper bound ( Eub = EHT ), 

respectively. To guide the optimization towards discrete solu-

tions, a quadratic penalization term, ϕ , is added to the objective 

function:

which is zero for Ee = Elb and Ee = Eub , and has the value pmax 

for Ee = (Elb + Eub)/2 . In combination with the bounds, the 

penalization term penalizes all values that are not equal to Elb 

or Eub . Similar to the penalization in material interpolations 

schemes such as SIMP, a continuation scheme is used to gradu-

ally guide the algorithm to “good” solutions and avoid premature 

local optima [39]. �e penalization factor pmax is zero initially 

and is increased twice by 0.01, if the objective function value 

remains below a threshold f < fp = (nT × a)(100) for 50 itera-

tions. �is heuristic adaptation scheme ensures that the penali-

zation is proportional to the magnitude of the target displace-

ments a and the number of speci�ed target displacements nT for 

each problem, i.e. the problem size and the deformation mag-

nitude. �e parameters for the adaptation scheme are obtained 

heuristically for these examples and may need to be tuned for 

other problems with di�erent problem sizes and objective func-

tions. �e adaptation scheme is well tuned when the penalty 

(2)s.t. εe ≤ εmax ∀e = 1 . . .Nb

(3)with Ee ∈ {EVW ,EHT } ∀e = 1 . . .Nb

(4)Ku = f

(5)

ϕ(E) =

Nb
∑

e=1

−
pmax

(

Eub−Elb
2

)2
×

(

Ee −
Eub − Elb

2

)2

+ pmax
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value ϕ is close to zero at the end of the optimization and the 

design variables are close to the bounds, i.e. they are driven to 

the discrete values.

To avoid costly evaluation of the FE equation and to com-

pute the gradients of the optimization problems e�ciently, the FE 

equation is disaggregated into the static equilibrium equation, the 

elastic compatibility equation and the constitutive law:

with the equilibrium matrix B , the member forces t , the external 

loads f  , the bar elongations ǫ , the axial strain in the bars ε , and 

stresses in the bars σ . Note that this formulation is only valid 

for a truss-based FE discretization. Any point in the solution 

space that is a solution to these three equations is automatically a 

valid solution to the original FE equation. With this, the relaxed 

optimization problem can be reformulated as [40]:

∀e = 1 . . .Nb . In this formulation, Eqs. (6)–(8) are combined 

into Eqs. (10) and (11). Equation (12) represents the strain 

constraint. The non-negative, normalized member forces 

q+

t,e + q−

t,e = qt,e : = te/le and the displacements u are directly 

treated as design variables, which avoids the costly inversion 

of the sti�ness matrix K . �e matrices P and Ce are used for an 

e�cient implementation of the equilibrium matrix B . A detailed 

description of the full optimization problem as well as the gra-

dients with respect to the design variables can be found in the 

Supplementary Information (SI). �e optimization problem is 

solved using IPOPT, a state-of-the-art interior point line search 

�lter method for solving large-scale, nonlinear, constrained, 

bounded optimization problems [41] and the MATLAB inter-

face of the OPTI Toolbox [42].

Even though the relaxed optimization model penalizes 

intermediate design variable values, i.e. intermediate Young’s 

(6)Bt = f

(7)B
T
u = ǫ

(8)σ = Eε

(9)min
E,q+

t ,q
−
t ,u

fr =

nT
∑

j=1

(

uT,j − ũT,j
)2

+ ϕ(E)

(10)s.t.

(Nb)∑

(e=1)

(q+

(t,e) + q−

(t,e))PCex = f

(11)
Ae

le
Eex

T
CeP

T
u =

(

q+

t,e + q−

t,e

)

l2e

(12)

(

q+
t,e + q−

t,e

)

Eeεmax

−
Ae

le
≤ 0

(13)with Ee ∈ [EVW,EHT]

moduli, it does not ensure that all design variables are discrete 

at the end of the optimization, which can be the case when 

the solver converges to a local minimum. Hence, to ensure a 

discrete material distribution that can be fabricated using the 

chosen 3D printing material set, a “postprocessing” step is 

required. One possibility for the postprocessing step can be to 

apply a projection scheme where, for example, all values closer 

to the lower bound or the upper bound are set equal to the 

respective bounds. If the penalty term in the initial relaxed opti-

mization problem is tuned well as described previously, only 

few design variables are a�ected by the projection. However, 

especially for small problems with fewer design variables the 

quality of the solution can be a�ected signi�cantly. A possi-

bility to simultaneously ensure a discrete material distribution 

and consider the quality of the solution is to use a stochastic 

optimization method as a postprocessing step, with the solution 

from the initial IPOPT optimization as a starting point. Since 

the stochastic optimization starts from an “almost discrete” 

solution, the complexity of the problem is already signi�cantly 

reduced compared to a full discrete optimization, as for example 

described in literature [32]. �is makes it numerically cheaper 

than a full discrete optimization, but more accurate than a sim-

ple projection. Here, the MATLAB Genetic Algorithm (GA) 

is chosen for the postprocessing step since it can handle dis-

crete, large-scale optimization problems. Hence, in the post-

processing step, the discrete problem described by Eqs. (1)–(4) 

is solved directly starting from the solution from the relaxed 

optimization problem described by Eqs. (9)–(13). All bar mate-

rials remain design variables but can now only take on discrete 

values and all intermediate values are projected to the closest 

discrete value. While this introduces more randomness to the 

optimization, the general quality of the solution is preserved as 

the solution from the �rst step with a low objective function is 

used as a starting point. Hence, the random variations in the 

postprocessing step help to identify similar con�gurations that 

might have better objective function values than the projected 

solution a�er the �rst step. �e �nite element equation in Eq. 

(4) is directly solved by an inhouse truss FEM implementation 

written in MATLAB. �e standard MATLAB GA options are 

used, except for the maximum number of generations and the 

population size, which are both set to 150.

In summary, every optimization run consists of two steps: 

(1) solving the relaxed optimization problem with IPOTP, (2) 

postprocessing the solution from step 1 by solving the dis-

crete optimization problem with a GA. Since the optimization 

problem is nonlinear and non-convex, the solution of step 1 

depends on the starting point and finding a global optimum is 

not guaranteed. The GA in step 2 further introduces a random 

component to the problem. To estimate the reliability of our 

optimization approach, each example problem is solved 10 

times and the arithmetic mean and the standard deviation for 
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both steps are reported in Table 1. Step 1 of the optimization 

framework is solved with random starting points such that all 

design variables lie within the bounds. For all three example 

structures, the best solution after both steps is selected out 

of the 10 optimization runs, fabricated and experimentally 

tested.
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