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Protein crystals have catalytic and materials applications and are
central to efforts in structural biology and therapeutic develop-
ment. Designing predetermined crystal structures can be subtle
given the complexity of proteins and the noncovalent interactions
that govern crystallization. De novo protein design provides an
approach to engineer highly complex nanoscale molecular struc-
tures, and often the positions of atoms can be programmed with
sub-Å precision. Herein, a computational approach is presented for
the design of proteins that self-assemble in three dimensions to
yield macroscopic crystals. A three-helix coiled-coil protein is de-
signed de novo to form a polar, layered, three-dimensional crystal
having the P6 space group, which has a “honeycomb-like” structure
and hexameric channels that span the crystal. The approach in-
volves: (i) creating an ensemble of crystalline structures consistent
with the targeted symmetry; (ii) characterizing this ensemble to
identify “designable” structures from minima in the sequence-
structure energy landscape and designing sequences for these
structures; (iii) experimentally characterizing candidate proteins.
A 2.1 Å resolution X-ray crystal structure of one such designed
protein exhibits sub-Å agreement [backbone root mean square
deviation (rmsd)] with the computational model of the crystal.
This approach to crystal design has potential applications to the de
novo design of nanostructuredmaterials and to themodification of
natural proteins to facilitate X-ray crystallographic analysis.

biomaterials ∣ computational protein design ∣ crystal engineering ∣ protein
crystallization ∣ self-assembly

Molecular design provides powerful tools for exploring how
molecular properties dictate macroscopic structure and

function. One of the most precise forms of self-organization,
crystallization achieves orientation and symmetry across many
length scales and can be leveraged to engineer materials with
well-defined molecular order (1). In addition to their central role
in structure determination, molecular crystals have many appli-
cations, including nanoparticle templating (2, 3), nonlinear opti-
cal devices (4), molecular scaffolding (5), and porous frameworks
(6). A predictive understanding of how to achieve self-assembled
macroscale structure and desired properties remains challenging,
however, particularly when large, conformationally flexible mole-
cules are employed.

Small synthetic molecules have been designed that display com-
plementary functional groups in a manner consistent with a chosen
crystal structure. Intermolecular contacts are often patterned using
strong, directional interactions (e.g., hydrogen bonding, metal-
coordination, and electrostatic interactions) (7). The constituent
molecules, however, are typically small and synthetic, thus limiting
size, shape, and functionality. Hence, simultaneously achieving
functional properties and the presentation of complementary
intermolecular interactions that confer a targeted crystal structure
can be difficult. Commonly, weak intermolecular forces stabilize
crystalline ordering, and as a result, quantitative, predictive ap-
proaches to crystal design are challenging even with small mole-
cules (7, 8). In addition, within most crystals, molecules align in a
nonpolar fashion (9), but polar crystalline ordering is desired for
many applications, e.g., nonlinear optical materials (6).

Crystals of proteins and other biomacromolecules are widely
studied, and they play a crucial role in structural biology, where
realization of diffraction-quality crystals is often the bottleneck
of structural genomics efforts (10, 11). Protein and biopolymer
crystals also have wide applicability to catalysis, therapeutic for-
mulation, and biomaterials (12). However, the space group and
local crystalline structure of biopolymer crystals are most often
not at the control of the researcher and are only identified after
extensive screening and optimization of conditions that yield a
diffraction-quality crystal. To facilitate crystallization, variations
are often introduced into proteins, with the goals of improving
solubility (13), reducing conformational variability of amino acid
side chains (14, 15), creating synthetic, high-symmetry oligomers
(16, 17), and making use of known motifs at protein interfaces,
e.g., an interhelical leucine zipper (18). Alternatively, ab initio
protein crystal design has the potential to alleviate difficulties as-
sociated with protein crystallization and structure determination.

The size, flexibility, and complexity of proteins impede the
design of sequences that form a particular crystal lattice. In some
cases, intermolecular interactions can be programmed using
structures and rules gathered from natural systems. Biopolymer
crystals of predetermined structure have been designed using
DNA (19). Nanometer scale nanohedra and filaments have been
prespecified using heterodimers of known self-associating protein
domains (20). The structures and functions of these previously
studied self-assembled systems are limited, however, to those
achievable with DNA hybridization or preexisting protein do-
mains. Much greater versatility in structure and functionality
is accessible via the de novo design of protein-protein interfaces
within a targeted crystal structure. Such interfaces, stabilized by
noncovalent interactions, could be designed into a wide variety of
structures via careful selection of sequence and a given crystalline
lattice.

The design of proteins that self-assemble in three-dimensions
would enable the creation of crystals having predetermined
molecular structures. Such a technology has many potential ap-
plications, and the current investigation targeted protein crystals
containing aqueous channels that might allow future positioning
of cofactors and guest molecules. For many optical applications
(e.g., nonlinear optics), it is also important to create “polar” ar-
rays that specify the unidirectional orientation of chromophores.
In this work, a layered, porous P6 space group (Fig. 1A) offers
desirable features: (i) high symmetry, which can facilitate data
collection and structure determination using X-ray crystallogra-
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phy, (ii) tubular solvent channels extending through the crystal,
and (iii) polarity, i.e., large-scale parallel orientation of the pro-
teins. Moreover, the P6 space group is one of the less common
(2), occurring in only 0.1% of known protein crystal structures
(21). Thus, achieving a designed crystal with P6 ordering is a strin-
gent test of the approach.

Computational protein design continues to advance (22–31),
and herein a strategy for designing a predetermined protein crys-
tal structure is presented. A three-helix coiled-coil protein was
designed de novo to form a polar, layered three-dimensional
crystal having the P6 space group. Candidate proteins were iden-
tified from local energy minima on a sequence-structure energy
landscape. X-ray crystallographic studies revealed that one such
designed protein is in subangstrom (C

α
rmsd < 0.70 Å) agree-

ment with the computationally designed model.

Results and Discussion

Computational Design. In many applications of protein design,
designability of a structure is made accessible by using structures
from naturally occurring proteins (24, 27, 32, 33), but here both
the structure of the protein as well as its crystalline ordering are
specified de novo. A trimeric coiled-coil protein is designed to
fold into a stable unit that then further assembles into a crystalline
structure. Related hierarchical strategies have been employed to
design proteins and their higher order assemblies (34, 35). The
design of proteins for a chosen crystalline structure is divided into
(i) identification of the constituent protein, (ii) determination of a
set of physically accessible, three-dimensional, crystalline arrays of
the protein backbone, (iii) identification of candidate crystalline
structures within this set, (iv) design of sequences for these struc-
tures, and (v) experimental synthesis, screening for crystallization
conditions, and structure elucidation.

The target protein was a mathematically created (idealized)
homotrimeric parallel coiled-coil protein having C3 symmetry,
a superhelical pitch of 120 Å, and (initially) 27 residues per helix
(36). Similar structures have been observed in prototypical three-
stranded coiled coils (37–39). The 8 interior (a and d heptad)
positions of each helix contained well-packed Val and Leu resi-
dues (39). At the remaining exterior positions, all amino acids
except cysteine and proline were considered in the design of crys-
talline ordering.

Within a crystal of P6 symmetry, many symmetry-related con-
figurations involving the multiple copies of the protein are pos-
sible. Choosing a high-symmetry space group reduces the number
of degrees of freedom D available to the protein. In general,
protein units within P6 have D ¼ 5 (40), but here D is reduced
to D ¼ 2 when generating the crystalline configurations: (i) The
C3 axis of the protein is chosen to coincide with a C3 axis in the
crystal (Fig. 1A), and (ii) the length of the c-unit cell vector is
fixed at c ¼ 40.7 Å to achieve backbone helical hydrogen bond-
ing between helix termini (Fig. 1B). Each helix’s approximately
28 residue equivalents displace the N terminus approximately
120° (one-third turn) about the protein’s superhelical C3 axis re-
lative to the C terminus, resulting in a pseudocontiguous super
helix and hydrophobic core. Complementary hydrogen bonding
and hydrophobic interactions are specified at the interlayer inter-
face. Candidate crystalline arrays consistent with P6 were gener-
ated by varying intralayer degrees of freedom R and θ. R is the
distance between neighboring proteins (a ¼ b ¼ 3

1∕2R). θ is the
angle of rotation of each protein about its superhelical C3 axis
(Fig. 1A), and this rotation maintains the C2 axis between nearest
neighbors. N-terminal acetylated proteins were used to character-
ize crystalline arrays of structures energetically. All sequence
design calculations were performed in the context of the local
3-D crystalline array.

In a first attempt, a minimum energy crystalline configuration
was identified based upon backbone interactions on the protein.
“Minimal side chain” calculations were used where Gly was
modeled at each of the protein’s exterior positions. A grid search
was performed over R and θ (15 Å < R < 22 Å, increment
ΔR ¼ 0.2 Å ; 0 < θ < 60°, increment Δθ ¼ 5°, 520 structures),
which identified the lowest energy configuration (R ¼ 19.0 Å,
θ ¼ 0.0°) [AMBER (41)]. Subsequently, a sequence was compu-
tationally designed using this structure. In the local crystalline
environment (42), the exterior residues of each helix (19∕27)
were computationally designed consistent with the periodic sym-
metry (42, 43).

Experimental Characterization of Protein P6-a. A single low-energy
sequence for the identified structure, P6-a, was selected, synthe-
sized and formed diffraction-quality crystals overnight at room
temperature using a standard crystal screen. P6-a crystallized in
the apolar P321 space group, and the structure was solved to
2.9 Å resolution. The crystal contained columnar, hexagonal
pores resembling the target, but neighboring proteins were anti-
parallel (Fig. 2A). A model of the P6-a sequence in the observed
P321 crystalline array was built that contains the most probable
side-chain conformations. For the crystallographic structure and
this model, the computed interaction energy per protein within
the P321 structure was above that of the P6 structure, i.e., the
calculation did not discern P321 as the preferred crystalline struc-
ture. The observed frequency of P321, however, is more than
three times the frequency of P6 (21, 40). In addition, P321 can
accommodate deviations from the planar layering present in P6.
The formation of P321 by this protein may be kinetically and
entropically more facile than that of P6. Furthermore, the anti-
parallel packing involves an extended right-handed “glycine zip-
per” motif (GX3GX3A) (44), which is similar to the GX3Gmotif
but is found in both parallel and antiparallel orientations (45, 46).

Fig. 1. (A) One layer of the P6 crystal viewed along the unit cell c-axis. Pro-
tein (open circle) comprises three identical helices (small filled circles). R is the
intralayer distance between neighboring proteins. θ is the rotation angle
about the protein’s superhelical axis. CN symmetric rotation axes (N-sided
polygons) and C2 axes (ovals) indicated. (B) Two adjacent layers of the P6
crystal and helical hydrogen bonding at the interlayer interface.
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Sequence-Structure Energy Landscape. Given the subtlety of engi-
neering proteins consistent with the targeted polar crystal, the
scope of the design was broadened to characterize a wide range
of structures and sequences concomitantly, i.e., to survey the se-
quence-structure designability landscape of proteins consistent
with P6 symmetry. The protein was shortened to 26 residues
(28 counting the N-terminal acetyl and the C-terminal amide
(CO-NH2) groups as residues) (39), in order to permit a one-
amide (1.5 Å rise/residue) gap between helix termini that ame-
liorates possible steric interactions and allows facile readjustment
of the individual coiled-coil proteins upon crystallization. A
higher resolution sampling of the sequence-structure energy
landscape was undertaken (15 Å < R < 22 Å, ΔR ¼ 0.1 Å;
0 < θ < 120°, Δθ ¼ 0.5°; 19,200 structures) to allow greater pos-
sibility for identifying proteins specific for P6 symmetry. R and θ

values, where the backbone atoms overlap, were discounted. In
the context of a protein’s nearest neighbors within each crystal-
line configuration, the site-specific probabilities of the 18 allowed
amino acids, their side-chain conformations, and the weighted
average energy over these sequence-rotamer states EðR; θÞ were
estimated computationally (30, 31, 47). Effective solvation energy
functions were not used (31), and no constraint was placed on the
net charge of the protein. A symmetry assumption was applied,
where equivalent residues on all helices had the same identities
and same rotamer states (42). This resulted in variation of only 18
unique, exterior residues. EðR; θÞ captures the contributions of
predominantly low-energy sequences (31, 48), and it yields a
sequence-structure energy landscape (Fig. 3). Minima identify
candidate crystalline structures that potentially support such low-
energy sequences. In arriving at specific sequences for given R

and θ, the calculations proceeded iteratively. With each iteration,
the most probable amino acid was selected at sites where its
probability was at least twice the next most probable. In the final
iteration, a helix propensity (49) constraint was imposed and
chosen to have a value consistent with parallel homotrimeric
coiled-coil proteins of similar size. The final sequence contained
the most probable amino acids at the remaining variable residues.

Experimental Sampling of the Landscape. Four low-energy se-
quences (P6-b, P6-c, P6-d, P6-e; Fig. 3C), which sample distinct
energy landscape minima (Fig. 3A) and possess sequence proper-
ties consistent with coiled-coil proteins, were selected for synth-
esis and purification. Proteins P6-c and P6-d formed crystals
overnight, which grew to a size of approximately 0.2 mm in one
week at room temperature; Proteins P6-b and P6-e did not crys-
tallize using the same screens and conditions. The P6-c crystals
did not diffract well enough for structure determination. Analysis
of X-ray diffraction data from the P6-d crystal obtained using an
in-house diffractometer revealed a high-resolution (2.1 Å) struc-
ture consistent with the targeted P6 crystalline lattice (Fig. 4). In
solution, P6-d increased in helical content with increasing peptide

concentration and was highly helical near concentrations used for
crystallization, consistent with the folding of the trimeric protein
in solution and subsequent crystallization.

Comparison Between the Model and Crystallographic Structures. The
P6-d proteins are oriented in the targeted all-parallel polar
arrangement with R ¼ 18.4 Å, in agreement with the template
model (R ¼ 18.8 Å). Interestingly, the crystal structure of pro-
tein P6-d has four helices (ABCD) in the asymmetric unit, which
differ mostly in side-chain conformations, yielding two distinct
protein structures: P6-d.1, comprising helices A, B, and C within
the asymmetric unit and P6-d.2, a C3 symmetric protein com-
prising only helix D. The two protein structures are nearly iden-
tical with a backbone rmsd ¼ 0.45 Å. The backbone structures of
P6-d are in excellent agreement with the computational template
[Cαrmsd ¼ 0.40 Å (P6-d.2) and 0.61 Å (P6-d.1)]. Close agree-
ment is also observed when a pair of dimers comprising adjacent
proteins in the crystal are aligned and compared to the computa-
tional template. A pair of laterally neighboring proteins (P6-d.1—
P6-d.2) has backbone rmsd ¼ 0.64 Å, and an axially neighboring
pair (P6-d.1—P6-d.1) has backbone rmsd ¼ 0.70 Å (Fig. 3B). A
comparison of peptides within the asymmetric unit to their coor-
dinates in the model yields rmsd ¼ 1.3 Å (all resolvable atoms)
and rmsd ¼ 0.68 Å (backbone only) (Fig. 5A).

Structural Characterization. Although the energy landscape strat-
egy allows many possible interprotein separations and contact-
mediating residues, in the P6-d crystal, backbone van der Waals
contacts are present at the intralayer point of closest approach
between proteins (6.4 Å between alpha helical axes). At this inter-
face, the design yields a parallel GX3G motif, often observed at
interhelical contacts (45, 46, 50, 51). As discussed above, P6-a
has a related antiparallel GX3GX3A motif, which may be ex-
pected because the single template crystalline structure was iden-

Fig. 3. (A) Sequence-structure energy landscape as a function of R and θ,
E � ¼ ðE − ER¼∞Þ∕Emim − ER¼∞j where E is an internal energy over sequences
and side-chain conformations for each structure, and Emin is the minimum
of E. White region is disallowed due to backbone van der Waals overlap.
Synthesized sequences are indicated. (B) Crystallographic (cyan) and compu-
tational model (magenta) structures (Cα atoms) of four neighboring proteins
within the P6-d crystal; RMSD for all backbone heavy atoms is 0.73 Å. Cα
atoms of Gly residues are highlighted as spheres. (C) Sequences of designed
proteins. The segment at the closest point of approach between the neigh-
boring proteins is underlined. The GX3Gmotif is displaced one heptad nearer
the C terminus in P6-d than P6-a. Interior residues are gray; “ace” denotes
acetylated N terminus.

Fig. 2. (A) Crystallographic structure of P6-a has P321 symmetry; neighbor-
ing proteins are antiparallel. (B) P6-a model (R ¼ 19.0 Å and θ ¼ 0.0°). Gly
residues indicated as spheres. Arrows are directed from N to C terminus.
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tified using a model having a glycine exterior. P6-b, P6-c, and
P6-e do not have this motif. Glycine and small amino acids have
been suggested to promote crystallization through the reduction
of surface entropy (8, 14, 52–54), and the presence of GX3G
motifs at each protein-protein interface is consistent with a tightly
packed crystal. Furthermore the volume per molecular weight
(Matthew’s coefficient) (55) Vm ¼ 1.99 Å3

∕Da is considerably

lower than that typically observed for protein crystals (hVmi ¼
2.68 Å3

∕Da, 1.5 Å3
∕Da < Vm < 5 Å3

∕Da) (21). The solvent
content (36%) is less than that observed for typical protein
crystals (51%), hexagonal protein crystals (57%), and protein
crystals with four polypeptide chains in the asymmetric unit
(51%) (21, 55, 56).

Backbone and side-chain interactions observed in the crystal
structure are consistent with the parallel protein-protein orienta-
tion (Fig. 5 B and C). The C-terminal location of the GX3G
motif in P6-d imposes asymmetry along the helix favoring parallel
orientations, whereas in P6-a, this motif is near the midpoint of
the protein (G10X3G14), and approximately 180° rotation about
this point of contact permits antiparallel packing (Fig. 2 A and B).
The large residue (Tyr1) at the N terminus of P6-a may also con-
tribute to destabilization of the parallel configuration. Charged
side-chains often have high conformational entropy, and they
are believed to disrupt crystal-packing interfaces (8, 52, 53, 57,
58). These residues are frequently mutated to induce crystallo-
graphic order (54, 59). Lys, in particular, appears infrequently
at such interfaces (52, 53). Nevertheless, the P6-d structure
provides evidence that ionizable residues such as Lys, Arg and
Asp can form well-defined, complementary interactions in a
designed, high-density crystal (Fig. 5B).

The P6-d structure suggests that well-defined crystal contacts
likely require low conformational entropy amino acids to drive
crystallization, e.g. GX3G motif, augmented by complementary
side-chain interactions (54, 59). Compared to P6-d, the models
of P6-b, P6-c and P6-e have larger interprotein separations,
R ¼ 19.9 Å, 20.2 Å, and 19.1 Å, respectively, and do not contain
the “small-X3-small” motif. Larger residues may be incorporated
at the crystal contact positions, which may decrease the propen-
sity toward crystalline ordering. In the model of P6-e, the point of
closest approach is at the C terminus and the complementary
backbone-backbone contact area is necessarily reduced com-
pared to P6-d.

Conclusion. P6-d forms the first de novo designed protein crystal.
The high-symmetry, high-density P6 structure possesses an un-
common polar arrangement throughout (6, 9), providing a route
to controlled supramolecular parallel alignment of proteins (1,
6). De novo protein crystal design presents unique challenges.
The high degree of self-assembly required to achieve a targeted
crystal structure can also lead to aggregation and poor solubility.
The probabilistic computational protein design methodology,
however, provides a unique view of the sequence-structure energy
landscape compatible with a chosen crystal lattice. Candidate

Fig. 4. (A) One layer of P6-d model crystalline structure. (B) Resolvable elec-
tron density of P6-d crystal: omit map (2Fo-Fc) contoured at 2σ.

Fig. 5. Computational model (magenta) and crystal structure (cyan). (A) Helix C having an all atom RMSD of 1.0 Å. Val and Leu side chains are not rendered for
clarity. Flexible Arg11 exhibits no electron density. (B) Helices C and D involved in interprotein crystal contact. Cα atoms of Gly17 and Gly21 (spheres). Designed
complementary electrostatic interactions, Asp6-Lys10 and Glu13-Lys14 span the gap between the helices. (C) Hydrogen bonding across the interlayer interface.
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sequences and structures, which need not be nearby in either
structure or sequence space, can be identified using an “aerial
view” of the sequence-structure energy landscape, increasing the
likelihood of identifying a protein that forms the targeted crystal
structure. Computational protein crystal design can be of great
utility to structural biology and genomics, where protein crystal-
lization is essential to obtain high-resolution structures (10, 11).
Partial (low-resolution) structural information or comparative
models may be used in building model crystals and designing
crystal contacts, potentially resulting in sequences with improved
crystal quality and higher resolution structural information.
Efforts in crystal design can further our understanding of the
effects of mutation and modifying crystallization conditions. Tar-
geting high-symmetry space groups and reducing crystal solvent
content can improve the quality of X-ray diffraction data and
simplify structure determination. Given the wide array of func-
tionalities and cofactors that can be incorporated into proteins,
targeted protein crystal design can also provide a vehicle to ex-
plore new protein-based materials and nanostructures.

Materials and Methods
Computational Design. The structure of the protein and the crystalline
configurations were generated by applying the appropriate symmetry
operations (translations and rotations) consistent with the C3 symmetry of
the protein and the P6 space group. R is related to the unit cell parameters
a ¼ b ¼

ffiffiffi

3
p

R, and the distance between the centers of mass of two interfa-
cing proteins in adjacent layers is dictated by the c unit cell parameter. The
rotational orientation between two neighboring intralayer proteins (θ) is
defined in the plane perpendicular to the C3 axis of a protein. Due to the
protein’s C3 symmetry, only the range 0° ≤ θ ≤ 120° is unique. The angle θ

is varied by rotating the proteins about their C3 axes such that the C2 sym-
metry axis between adjacent proteins (and P6 symmetry) was retained. Var-
iation of R and θ yields an ensemble of candidate crystalline structures.
Structures with overlapping atoms or other high-energy interactions were
filtered using AMBER (41) or CHARMM27 (60, 61) potentials, e.g., structures
with R < 18.0 Å possess overlapping backbone atoms. In arriving at the se-
quence-structure energy landscape (Fig. 3A), a statistical thermodynamic
method for calculating site-specific probabilities of the amino acids and
the average energy over sequences was applied (30, 31). The method uses

the AMBER energy function (41) and a discrete rotamer library (62). Iterative
calculations, wherein the most probable amino acids are specified after each
iteration, are used to identify specific sequences within minima on the
sequence energy landscape.

Crystal Screening and Structural Determination. For initial crystal screening
peptides, P6-b, P6-d, and P6-e were ordered from Genscript (60 mg scale,
desalt purity). To obtain larger quantities, sequences P6-a, P6-c, P6-d, and
P6-e were synthesized (100 μmol scale) via solid phase peptide synthesis,
using 9-fluorenylmethoxycarbonyl (FMOC), chemistry and upon resin clea-
vage purified by reverse-phase high-performance liquid chromatography
(HPLC). Crystals of P6-a and P6-d were grown at room temperature using
the hanging drop vapor diffusion method and flash frozen in liquid nitro-
gen prior to data collection. Multiple crystals of peptide P6-a were obtained
with a peptide concentration of 10 mg∕mL with reservoir solution (0.01 M
cobalt (II) chloride hexahydrate, 0.1 M MES monohydrate pH 6.5, 1.8 M am-
monium sulfate). A single crystal of peptide P6-dwas obtainedwith a peptide
concentration of 7.2 mg∕mLwith reservoir solution (0.17 M ammonium acet-
ate, 0.085M tri-sodium citrate dihydrate pH 5.6, 25.5% vol∕vol PEG 4000,
15% vol∕vol glycerol). X-ray diffraction data were collected using a Rigaku
R-Axis IV image plate detector equipped with a Cu (K

α
) radiation source, and

the structures were solved by molecular replacement. For protein P6-a, a
poly-alanine model generated from coordinates of a single helix from a
similar protein (PDB ID code 1COI) (38), was used as a search model. The re-
finement strategy converged the Rwork∕Rfree ¼ 0.175∕0.216. For protein P6-d,
four helices from the computational design model served as the initial search
ensemble and were used concurrently. The refinement strategy converged
Rwork∕Rfree ¼ 0.148∕0.205.
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