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Abstract
Antibodies are used extensively in diagnostics and as therapeutic agents. Achieving high-affinity
binding is important for expanding detection limits, extending dissociation half-times, decreasing
drug dosages, and increasing drug efficacy. However, antibody affinity maturation in vivo often fails
to produce antibody drugs of the targeted potency1, making further affinity maturation in vitro by
directed evolution or computational design necessary. Here we present an iterative computational
design procedure that focuses on electrostatic binding contributions and single mutants. By
combining multiple designed mutations, a 10-fold affinity improvement to 52 pM was engineered
into the anti-EGFR drug cetuximab (Erbitux), and a 140-fold improvement in affinity to 30 pM was
obtained for the anti-lysozyme model antibody D44.1. The generality of the methods were further
demonstrated through identification of known affinity-enhancing mutations in the therapeutic
antibody bevacizumab (Avastin) and the model anti-fluorescein antibody 4-4-20. These results
demonstrate novel computational capabilities for enhancing and accelerating the development of
protein reagents and therapeutics.

Computational design depends critically on two capabilities: accurate energetic evaluation and
thorough conformational search. Previous work has addressed many problems related to the
design of improved protein-protein binding affinity, such as the design of stable protein
folds2-4, binding pockets for peptides and small molecules5-7, altered protein-protein
specificity8-12, and altered enzymatic activity13-15. The design of improved antigen-binding
affinity has met with limited success, however16-19. Challenges for protein-protein affinity
design include conformational change upon binding, interfacial trapped water molecules, polar
and charged side chains, and the trade-off of protein-solvent with protein-protein interactions
from the unbound to bound state. Fine free energy discrimination for redesign from nanomolar
to picomolar affinities is a particular challenge.
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A robust design strategy should both produce a considerable fraction of designs that are
successful when tested experimentally, and yield substantial improvements across multiple
systems. Though there are potentially many mutations that confer improved binding affinity
for a particular interaction, calculations need only identify a subset to be successful. Our
approach utilizes thorough optimization techniques that exhaustively rank-order the best
solutions in a discretized search space. Although some of these solutions are expected to be
improved designs, others will be unsuccessful but may be useful in learning about deficiencies
in the energy functions, search procedures, or other methodology.

First we attempted to redesign the model antibody D1.3 for improved binding to its antigen,
hen egg-white lysozyme. Single mutations at each of 60 complementarity determining region
(CDR) positions to the 20 common side chains, excluding proline and cysteine, were designed
using a physics-based energy function and a hierarchical search procedure. (Physics-based
refers to an energy function constructed from and parameterized by theoretical and
experimental models of the underlying physical interactions; by contrast, knowledge-based
refers to potentials statistically derived from observational data, which often takes the form of
structure databases.) A striking feature was that predictions for improved binding were
dominated by mutations to large amino acids (Supplementary Fig. 1 online), many of which
exhibited improved van der Waals packing interactions that outweighed disfavored net
Poisson-Boltzmann continuum electrostatic solvation and interaction. Our confidence in these
designs was low because many had unsatisfied hydrogen bonding, or a predicted packing
improvement of a magnitude uncharacteristically large for a single amino-acid substitution.
Nevertheless, 17 single mutations, most with calculated improved total binding free energy,
were selected for experimental binding affinity measurement. Only three mutations improved
affinity (Supplementary Table 1 online), with 2.4-fold improvement for the best single mutant
(Supplementary Fig. 2 online). We found that the calculated electrostatic term of binding was
a better predictor for improvement than the total calculated binding free energy, that
improvements from mutations to larger amino acids were mostly not realized, and that avoiding
potentially destabilizing mutations was important. This led to two questions: Could
electrostatics-based predictions alone be used to design binding affinity improvements? Is there
a physics-based explanation for the seemingly inaccurate calculated packing improvements?

In our second attempt, we used only the electrostatic term of the computed binding free energy
to predict improvements in affinity, but kept the original design procedure and full energy
function for side-chain conformational search. Since there were few computed opportunities
for improving D1.3 based on electrostatics, new antibodies were chosen to explore both the
new method and the possibility that D1.3 is anomalous.

Our second target for redesign was the antibody D44.1. It binds lysozyme, facilitating
experiments, but its epitope is different from that of D1.3. In addition, D44.1 has low nanomolar
affinity, maintaining the challenge of nanomolar-to-picomolar affinity maturation. Single
mutations were designed at all D44.1 CDR positions, and then mutations were ranked by the
electrostatic binding free energy term. In contrast to the D1.3 design, there were many
computed opportunities for electrostatic improvement. We measured experimental binding
affinity for the nine largest-magnitude predictions, choosing no more than two mutations per
position. Six of the nine mutants bind tighter than wild type, and the best mutation, L92 Asn-
to-Ala, exhibits 8-fold improvement (Table 1A, Fig. 1A). In addition, following the original
design procedure, two mutations predicted to increase packing interactions were tested; as
expected, neither mutation led to an improvement in affinity (Table 1A).

The successful D44.1 single mutations were combined and tested experimentally. The six
favorable mutations span five positions, where L32 and L92 are the only positions in direct
contact with each other in the wild-type crystal structure. Contrary to prediction, this double
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mutant is not as improved as the L92 single mutant alone. The mutations at the other three
positions are additive with L92, yielding a quadruple mutant with 43-pM affinity, 100-fold
improved over wild type (Table 1A, Fig. 1A). Figure 1B-D displays the designed interactions.
Measurements of dissociation and association rate constants for D44.1 and the high-affinity
quadruple mutant revealed that both kinetic steps were improved, including a 23-fold slower
off-rate (Table 1B). Each ratio of koff to kon is in agreement with the independently measured
Kd. Increasing ionic strength from 167 mM to 1.67 M screens the designed quadruple-mutant
interaction by approximately 4-fold, in agreement with calculation (+0.9 kcal/mol), whereas
the wild type is marginally improved at high salt, in contrast to calculation (+0.3 kcal/mol;
Table 1B).

Two sets of calculations were made in an attempt to further improve the high-affinity D44.1
quadruple mutant. First, single mutations were designed based on the predicted structure of
the quadruple mutant. These calculations reiterated many predictions seen in the original D44.1
design that had been lower-ranked and not tested experimentally, as well as predictions for
mutating position L32, which neighbors the L92 Asn-to-Ala mutation and was found
experimentally to not be additive. Second, double mutations were designed at all 93 pairs of
contacting positions, and triple mutations were designed at positions H32, H98, and H100,
based on cooperative packing at these positions. The double- and triple-mutant designs were
filtered for favorable, cooperative predictions, requiring the double or triple mutation to exceed
each single mutation and their energetic sum. Four single mutations, three double mutations,
and one triple mutation were selected for experimental testing in the quadruple-mutant context
(Supplementary Table 2 online). Only the H35+H99 double mutant was improved relative to
the quadruple mutant, at 30-nM affinity, 140-fold improved over wild type (Table 1C, Figure
1A). Measurement of the individual H35 and H99 mutations revealed high cooperativity (Table
1C), consistent with the predicted salt-bridge and hydrogen-bond rearrangements (Fig. 1F-G).
The diminished success rate of this subsequent design round may be due to smaller magnitude
predictions, antibody destabilization, or design in a modeled rather than experimentally-
determined structure.

Next, we applied our electrostatics-based methods to the anti-cancer therapeutic antibody
cetuximab (Erbitux), which binds epidermal growth factor receptor (EGFR) to block ligand
binding20. Calculations revealed nine positions with opportunities for affinity-enhancing single
mutations based on improved electrostatics. The five mutations of largest magnitude of
predicted affinity improvement were selected for experimental testing in the single-chain
antibody format, with one mutation per position, and no two positions in close proximity. The
EGFR extracellular domain (EGFR-ECD) mutant used in the assays contains a point mutation
that likely interferes with the H56 mutation. Three of the other four mutants bind EGFR tighter
than does cetuximab; these three mutations were combined to produce a triple mutant with 10-
fold overall improvement, from 490 pM to 52 pM (Table 1D, Fig. 2).

The transferability and utility of these electrostatics-based methods were further demonstrated
by designs for which published data validates the predictions. One of our test cases was the
antibody 4-4-20, which binds its small-molecule hapten, fluorescein, with 1.2 nM affinity, and
was previously engineered using directed evolution to yield the antibody 4M5.3 with over
1,000-fold affinity improvement and 14 mutations21. Our designed single mutations in 4-4-20
revealed opportunities for improvement based on computed electrostatics at nine positions.
Two of the predicted mutations, H31 Asp-to-His and H101 Ser-to-Ala, have already been
shown to improve binding affinity as single mutations in 4M5.322. Interestingly, the design
missed the H102 Tyr-to-Ser mutation in 4M5.3 due to the rigid backbone constraint. Another
test case was bevacizumab (Avastin), a therapeutic antibody that binds vascular endothelial
growth factor (VEGF)23, where we found five positions suitable for electrostatics-based
improvement. The mutation H28 Thr-to-Asp and mutations at H31 and H101 are found in a
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published high-affinity variant of bevacizumab24. Our other electrostatics-based predictions
in both test systems remain to be tested.

The single mutations designed and experimentally validated in this work lead to enhanced
binding affinity through one of two electrostatic mechanisms. In one mechanism, the removal
of a poorly-satisfied polar group, a polar residue calculated to lose more free energy from
desolvation than is recovered by interaction is mutated to a hydrophobic residue. These
mutations account for the majority of improved energetics. In a second mechanism, the addition
of a charged residue, net charge is changed to increase electrostatic interaction, often at the
periphery of the antibody-antigen interface where desolvation is minimal. Unlike previous
work using electrostatics to guide design25, 26, these methods explicitly model the mutation,
calculate a binding free energy relative to wild type, include positions that are partially or fully
buried upon binding, and avoid opportunities where the mutation is predicted to destabilize the
mutant protein.

The modeled structures result from optimization with the full energy function, yet the van der
Waals and nonpolar solvation energies are then discarded to predict improvement based on
only the net electrostatic term. A potential problem is that different/wrong van der Waals
parameters would produce altered equilibrium distances and hence altered electrostatic
energies, particularly for short-range interactions. The specific mutations predicted and tested
here may be less susceptible to this potential problem because they involve the calculation of
solvation and medium-range electrostatic energies, which are not especially sensitive to precise
atom locations. The energy for substitution of an unsatisfied polar group is dominated by its
desolvation penalty, and the addition of a charged group at the interface periphery is not
sensitive to precise side-chain placement. However, designs involving the introduction of a
new short-range electrostatic contact, such as a new hydrogen bond, could be susceptible to
this potential problem. Further work is necessary, but it could be that the energetic terms are
actually appropriate for identifying low-energy structures for any sequence, but not for
comparing energetics between sequences. Indeed, we think that the packing and nonpolar
interactions are not balanced in some situations for accurate comparison of one amino acid to
another, as described next.

We investigated the underlying physical model to address the seemingly inaccurate calculated
packing interactions. The majority of problematic designs were at the binding site periphery,
where mutation to a larger amino acid was predicted to be favorable due to increased
intermolecular van der Waals interactions. In some cases, hydrogen-bonding groups were
buried, but the unfavorable electrostatic term was outweighed by improved packing. In
principle, a larger amino acid at the interface periphery will exhibit increased protein-protein
interactions in the bound-state, counteracted by increased protein-water interactions in the
unbound-state. However, these offseting energetics are calculated asymmetrically, with an
atomistic Lennard-Jones potential for the protein-protein interactions, and a simple solvent-
accessible surface area (SASA) nonpolar term for the protein-water interactions. The protein-
water nonpolar interaction should be a function of the detailed geometry, including volume
effects, as well as the particular protein atom types present. We implemented and parameterized
an atomically-detailed nonpolar term based on work by Levy and co-workers (Supplementary
Fig. 3 online)27, and found that it reduced the magnitude of favorable prediction for many of
the counterintuitive designs to larger side chains (Supplementary Fig. 4 online). In addition,
unbound-state conformational search attenuated predictions for larger side chains by
introducing an energetic cost to adopt the binding conformation (data not shown). Nevertheless,
some incorrect predictions remain, and future work should address this issue.

This work presents a computational alternative to directed evolution for affinity maturation.
Directed evolution is adept at accumulating successive, additive mutations, but (with the
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exception of large-scale shuffling) is less well suited for selecting variants whose encoding
DNA is further from wild type. Experimental libraries generated using error-prone PCR
generally do not cover all single amino-acid mutations, let alone all pairs or greater
combinations of mutations, as 13 of the 19 possible single mutations require more than one
base pair change, on average. Some classes of mutation require two base pair changes - for
example, mutation to either negatively-charged residue from any codon of 10 of the 18
candidate side chains. Of the 12 single mutations found to improve D1.3, D44.1, or cetuximab,
10 required two base pair changes and would therefore have been substantially more difficult
to identify by a method that relies on error-prone PCR. Also, the H35+H99 cooperative double
mutation required concerted amino-acid mutation and three total base-pair changes.
Computation has the capability to search a vastly larger space than accessible to either in vivo
maturation or experimental selection techniques, potentially discovering larger and more
beneficial evolutionary steps.

Our results present several design lessons. We find that computed electrostatics alone is a better
predictor for improved binding than is computed total free energy. Electrostatics-based
predictions yielded fewer false positives, more true positives, and a greater than 60% success
rate for single mutations from wild type (Fig. 3). Predictions based on improved total free
energy were dominated by mutations to larger amino acids that did not experimentally improve
affinity; incorporation of improved nonpolar hydration models may improve accuracy of
predicted packing changes28-30. We find that designing single and double mutations allows
for in-depth conformational search and avoids having any particular design flaw spoiling all
results. In addition, avoiding destabilizing mutations based on calculated folding stability was
important. Crystal structure resolution did not have a substantial effect, as the D44.1 and
cetuximab structures are of 2.5- and 2.8-Å resolution, respectively, whereas the D1.3 structure
is 1.8-Å resolution. Calculations in D1.3 showed few opportunities for electrostatics-based
improvement, and accumulated evidence indicates that D1.3 is the anomaly, possibly because
of the combination of the many large side chains and buried water molecules at the antibody-
antigen interface.

Our results demonstrate novel capabilities for improving protein binding affinity using
computational design. Maturation of the model system D44.1 by 140-fold to 30 pM, maturation
of the therapeutic antibody cetuximab by 10-fold to 52 pM, and identification of known
mutations in 4-4-20 and bevacizumab together indicate that our method is a noteworthy
advance for antibody design and should be effective for other antibodies and protein
interactions. Computational design holds the promise of far greater exploration of sequence
space than possible experimentally, enabling rapid and inexpensive protein improvement.

Methods
Computational design

The design approach used a two-stage hierarchical procedure. First, conformational search was
simplified by assuming a rigid protein backbone and allowing only discrete side chain rotamers.
The physics-based energy function is pairwise-decomposable, permitting application of dead-
end elimination and A* search algorithms. For each protein sequence, we found its global
minimum energy conformation (GMEC), and if this energy was within a cut-off of the wild-
type GMEC energy, then a continued list of lowest-energy structures was found. Second, we
reevaluated the lowest-energy structures of each sequence using more accurate, yet more more
computationally-demanding models, including Poisson-Boltzmann continuum electrostatics,
continuum solvent van der Waals, unbound-state side-chain conformation search, and
minimization. Structures were reranked based on these latter calculations. Binding energy was
initially predicted from the bound-state conformation and a rigid binding model. The unbound
state search, when applied, approximated flexible binding and estimated a deformation penalty
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that offset binding. Changes to protein fold stability were approximated from the energetic
difference between the folded state and isolated model compounds. Detailed computational
methods are provided in Supplementary Methods online.

Experiments
The single-chain format of antibodies were displayed on the surface of yeast. Binding affinities
were measured by incubating different vessels of antibody-displaying cells with varying
antigen concentration. Secondary reagents were used to detect antibody-antigen complexes,
and analyzed with flow cytometry. Detailed exerimental methods are provided in
Supplementary Methods online.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Designed high-affinity mutations in D44.1. (A) Experimental binding affinities, from left to
right: 140-fold hex, 100-fold quad, L92 Asn-to-Ala, H58 Thr-to-Asp, H57 Ser-to-Val, H28
Thr-to-Asp, wild type. For each variant, different symbol shapes distinguish independent
measurements. (B to D) Predicted structures for single mutations; green ribbon: lysozyme
backbone; magenta ribbon: antibody backbone; atom color: design; grey: wild type. (B) L92
Asn-to-Ala. (C) H57 Ser-to-Val, top; H58 Thr-to-Asp, bottom. (D) H28 Thr-to-Asp. (E) Wild
type in region of double mutation. The top-center arginine is from lysozyme and all other
residues are from the antibody. (F) Designed double mutation: H99 Gly-to-Asp, H35 Glu-to-
Ser. The Asp is predicted to displace a crystallographic water molecule.
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Figure 2.
Designed high-affinity cetuximab mutant. Experimental binding affinity titrations as displayed
for cetuximab (triangles) and 10-fold improved triple-mutant (squares).
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Figure 3.
Comparison of calculated and experimental binding free energies. Free energies are in kcal/
mol relative to wild type, with the y=x line included to aid interpretation. diamonds: D1.3
mutants; filled triangles: D44.1 single mutants; open triangles: D44.1 combination mutants;
filled squares: cetuximab single mutants; open squares: cetuximab combination mutants;
asterisks: 4-4-20 mutants. (A) Calculated total free energy. (B) Calculated electrostatic free
energy term.
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