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Abstract  

Thermally activated delayed fluorescence (TADF) offers the premise for all-organic light emitting 

diodes with quantum efficiencies competing those of transition metal-based phosphorescent 

devices. While computational efforts have so far largely focused on gas-phase calculations of singlet 

and triplet excitation energies, the design of TADF materials requires multiple methodological 

developments targeting among others a quantitative description of electronic excitation energetics, 

fully accounting for environmental electrostatics and molecular conformational effects, the accurate 

assessment of the quantum-mechanical interactions that trigger the elementary electronic processes 

involved in TADF, as well as a robust picture for the dynamics of these fundamental processes. In this 

perspective, we describe some recent progress along those lines and highlight the main challenges 

ahead for modeling, which we hope will be useful to the whole TADF community.   
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Organic light-emitting diodes (OLEDs) have emerged as a mature technology, reaching commercial 

applications in lighting and full-color displays. Delayed emission with characteristic spectra coinciding 

with prompt fluorescence but differing in the emission lifetimes has been observed in eosin solutions 

and has since been known as E-type fluorescence1. This is also referred to as Thermally Activated 

Delayed Fluorescence (TADF), a process that offers the premise to boost internal quantum efficiency 

(IQE) of electroluminescence beyond the 25% spin statistical limit. The demonstration of TADF in 

OLEDs has shifted the material design paradigm from phosphors containing rare and expensive 

transition metals towards all-organic compounds with reduced singlet-triplet exchange interactions. 

 

Figure 1: (a) Chemical structures of some relevant host materials: Bis[2-(diphenylphosphino)phenyl] 

ether oxide (DPEPO), N,N′-Bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine, (NPD) and 1,3-Di(9H-

carbazol-9-yl)benzene, 9,9′-(1,3-Phenylene)bis-9H-carbazole (mCP). Chemical structure of the 

carbazole (Cz) group. (b) Minimal sketch of a TADF-doped OLED, where electron and hole conducting 

layers serve also as hole and blocking layers, respectively, and as exciton blocking layer. Dark blue 

and red lines indicate typical levels for electron affinities and ionization potentials. This perspective 

focuses only on the emissive layer, where electron and holes recombine to form an exciton. The layer 

is constituted of a hole and electron conducting matrix (host), containing a few percent of TADF 

emitters (guest). The ideal host should possess EA (IP) values lower (higher) than the emitter. (c) 

Chemcial structures of emitters discussed in the text: phenoxazine-2,5-diphenyl-1,3,4-oxadiazole 

(PXZ-OXD), 4,5-di (9H-carbazol-9-yl) phthalonitrile (2CzPN), N,N-diphenyl-4-(9-phenylnaphtho-[2,3-

c][1,2,5]-thiadiazol-4-yl)aniline (TPA-NZP), 2,4,5,6-Tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN), 

3-(9,9-dimethylacridin-10(9H)-yl)-9H-xanthen-9-one (ACRXTN) and Cyclic (alkyl)(amino)carbene 

ligands copper-carbazole (CMA2). 
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TADF emission is triggered by Reverse InterSystem Crossing (RISC) from the non-radiative triplet 

‘reservoir’ states to radiative singlet states2, a process that is facilitated by a small energy splitting 

�EST between the lowest singlet (S1) and triplet (T1) excited states, and possibly assisted by the 

manifold of higher-lying triplet states (Tn, see Figure 2)3–5. Hence, both prompt (from the lowest 

singlet) and delayed (from upconverted triplets) fluorescence decay channels add up in converting 

into light potentially all electrically generated excitons, irrespective of spin. The most common design 

strategy of TADF emitters consists in partitioning hole and electron densities over different spatial 

regions via electron donating (D) and accepting (A) units, often connected in a twisted conformation, 

hence reducing exchange interactions splitting singlets from triplets6–9. In actual cases, the excited 

states involved in TADF often turn out to be hybrid mixtures of charge transfer (CT) and local 

excitation (LE) diabatic states, with the amount of mixing prompted by vibronic coupling10,11. We 

refer the interested reader to a recently published review12 for a critical discussion of the chemical 

design rules that have emerged so far through the fruitful interplay between theoretical and 

experimental chemists. Despite some progress has been achieved, molecular design has largely relied 

on the calculation of excitation energies from the optimized ground-state geometry using time-

dependent density functional theory (TD-DFT), either for isolated molecules or assuming a 

continuum embedding (as for instance described using polarizable continuum models, PCM)13–15. The 

sole criterion for the selection of potential candidates for TADF is then the calculated exchange gap, 

∆���, vertical or adiabatically, between the lowest singlet and triplet excitations. Besides raising a 

number of important technical questions regarding the accuracy of the predictions, this simplified 

view of the TADF mechanism might considerably bias the engineering rules, as it neglects potentially 

important effects such as the specifics of intramolecular conformation and intermolecular (host-

guest) interactions on spin conversion dynamics in the solid state. This perspective aims at bringing a 

comprehensive view on the modeling of TADF emitters and at highlighting the challenges ahead. For 

being predictive, we argue that TADF-oriented computational models should include in an integrated 

framework10: 

1)� An accurate description of the singlet and triplet excited-state manifolds in terms of their 

relative energy and detailed nature, including coupling to relevant vibrational degrees of 

freedom; 

2)� A reliable evaluation of spin-orbit and hyperfine couplings mediating (reverse) singlet-triplet 

intersystem crossing; 

3)� A proper embedding scheme to account for both structural and electrostatic effects in the 

emitting layer; 
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4)� A solver for excited-state dynamics that includes electron-phonon and spin-mixing 

interactions on an equal footing. 

In the following, the needed methodologies to reach these ambitious targets are critically 

reviewed and discussed, going all the way from a quantum-chemical description of the molecular 

TADF building blocks to the simulation of the corresponding solid-state materials using combined 

quantum-classical methods. 

 

Figure 2 : Illustration of the electronic states involved in TADF, i.e.  ground (GS), singlet (S0) and 

triplet (T0, Tn) excited states along an effective vibrational coordinate. The elementary steps leading 

to prompt (PF) and delayed (DF) fluorescence are illustrated as arrows. Low-quanta vibrational 

wavefunctions, which promote reverse intersystem crossing (RISC) and reverse internal conversion 

(RIC), are also shown. 
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Generally speaking, the set of molecules acting as hosts or emitters share a common feature, that is, 

a relatively large size compared to those molecules constituting the datasets used for historically 

benchmarking ab initio methods16–18. We focus here on modern variants of ab initio theories for 

excited states, particularly for calculating vertical transition energies to the lowest excited-state of 

singlet and triplet spin symmetry, Ω(S1) and Ω(T1) respectively, also applicable to the whole manifold 

of Sn an Tn states. Although in principle superior to all other amenable approaches, due to the 

unfavorable scaling with system size (N) of the family of methods based on iterative coupled-cluster 

(CC) equations (), their application to TADF compounds have been severely limited and only recently 

some examples applying the hierarchy of CC-based methods to small molecules have appeared19. 

Actually, for CC-based methods, the hierarchy is CC2 (N5) < CCSD (N6) < CC3 (N7) < CCSDT (N8), 

concerning both computational scaling with system size (N) and expected accuracy. Note also that 

CC2 (CC3) is an approximation to CCSD (CCSDT) that has been developed with the prediction of 

excited-state energies as the main focus, and that all these variants are based on linear-response 

theory. On the other hand, EOM-CCSD (N6) is based on a slightly different theoretical frame, though 

it leads to similar excitation energies (yet different transition dipole moments).  

The accuracy of the methods is very high, e.g. CCSDT excitation energies are within a few tens of meV 

w.r.t. FCI, but they are only amenable to very small molecules, hence not applicable for most TADF 

chromophores. Yet, simplified versions of second-order wavefunction methods, and thus with a 

reduced formal scaling of O(N
5
) with respect to both canonical equations and higher-order methods 

such as CCSDT, are available. We mention, among them, linear-response CC2 and ADC(2) as emerging 

cost-effective and accurate methods20. Note that in the case of CC2, due to the fact that the full 

expression for double amplitudes is retained only at first-order, the method behaves better for single 

excitations and tends to overestimate excitations energies for doubly excited states. The ADC(2) 

method suffers from the same inherent limitation for double excitations, and the corresponding 

ADC(3) is too costly for routine calculations, although it leads to reliable benchmarks. However, the 

extended ADC(2)-x version provides an overall improvement for the description of excited states with 

double-excitation character. An interesting compromise between accuracy and computational cost is 

provided by the spin-component-scaling (SCS-)CC2 method, through the introduction of scaling 

factors to the same-spin and opposite-spin contributions of the second-order correlation energy, 

leading thereby a better performance for excited states21. There are other methods that allow, by 

construction, n- or multi-electron excitations, that is by promoting up to n electrons into an active 

window of m molecular orbitals, as in RAS- or CASSCF/CASPT2 methods. However, computational 

limitations preclude the use of large (n,m) active spaces ideally including all relevant π and π* 

orbitals. We finally mention many-body Green’s function methods such as the GW plus Bethe-
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Salpeter equation (BSE) formalisms, also explored recently within this context with some success22,23. 

We shall, however, remark that full BSE suffers the issue of triplet instability, much as TD-DFT does24 

(see below).  

As other possible caveats for these calculations, we here mention: (i) the very costly calculation of 

excited-state geometries and adiabatic values for Ω(S1) and Ω(T1), which are important figures when 

dealing with light emission; and (ii) the marked dependence (i.e. slow convergence) with basis sets 

size expected for these methods and the possible need to include diffuse functions. This has 

historically prompted the use of more cost-effective methods, despite the fact that the 

computational efforts needed for ab initio calculations can be reduced by using resolution-of-the-

identity25,26, or density-fitting techniques27. To conclude, so far, wavefunction-based methods are not 

routinely used for TADF applications and TD-DFT is usually preferred. However, they offer a robust 

framework to tackle challenging issues, such as assessing the contribution to RISC of higher-lying 

singlet and triplet excited states26 or modeling multiple resonance effects28,29. 

Due to the need to handle large molecular sizes and to achieve a good trade-off between accuracy, 

scaling, and feasibility of the calculations for the fast screening of compounds, (Time-Dependent) 

Density Functional Theory, (TD-)DFT methods are by far the most employed computational tools in 

the TADF community. However, contrarily to what was initially thought, the reliability of the results 

depends not only on the functional choice for the time-dependent part, but also on the whole 

computational protocol employed including geometrical and basis sets issues, as well as on the 

chemical nature of the target molecule. We focus next on excited-state properties of emitters, for 

which a relatively wide body of information is available from the recent literature. 

Earlier calculations combined the use of the B3LYP functional with a moderate basis set such as 6-

31G* to obtain ground-state geometries and dissect the spatial shape and energy location of the 

frontier molecular orbitals30,31. When applied to the calculation of vertical transition energies to the 

lowest excited state of singlet and triplet spin symmetry and their difference dubbed as ∆���
� , the 

results were found to critically depend on the weight, or proportion, of the exact-like exchange 

introduced into the hybrid functional (typically ranging from 5 to 40%, namely 20% for the widely 

used B3LYP model)32. Note that any general protocol should give accurate excitation energies for the 

lowest singlet and triplet excited states, without relying on any error cancellation and without 

limiting the focus to the magnitude of ∆���
�  as unique target. Namely, a system- and state-dependent 

procedure should be avoided, as extension to excited states beyond S1 and T1 might be problematic. 

Since organic molecules are known to benefit from higher-than-defaults (e.g. default values for 
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B3LYP and PBE0 are 20% and 25% respectively) weights of the exact-like exchange, other functionals 

like M06-2X have also been used with some success up to now33.  

A major breakthrough was found after imposing the Tamm-Dancoff approximation (TDA) for the 

solution of the full TD-DFT equation34, which improves the accuracy of routine calculations. This is 

especially true for T1 states where TDA cures for the triplet instability problem and, as a result, yields 

improved ∆���
� , values. Note that the Thomas-Reiche-Kuhn sum rule for oscillator strengths (i.e. the 

sum of all oscillator strengths from a particular state to all other equals the number of electrons in 

the system) is no longer fulfilled with TDA-DFT, as it happened with CIS too. That violation can lead to 

inaccurate oscillator strength distribution, and thus precludes a state-by-state quantitative 

comparison of oscillator strength values between theories fulfilling (i.e. TD-HF and TD-DFT) or 

violating the rule. The PBE0 functional was also applied with some correction for dispersion, i.e. 

D3(BJ), intended mostly to provide more accurate ground- and excited-state geometries after 

including non-covalent (intramolecular) effects, and used with large basis sets, i.e. def2-TZVP, to 

estimate Ω(S1) and Ω(T1) energies at the (nearly) complete basis set limit. However, while accuracy 

reaching 0.1-0.2 eV can be achieved for ∆���
�  values13, studies using this computational protocol have 

not yet been extended beyond S1 and T1 states, and thus further efforts are still needed in this 

direction. 

Another strategy is provided by range-separated hybrid functionals, i.e. CAM-B3LYP or ωB97X as 

paradigmatic examples, in which the range-separation parameter may be fine-tuned for each 

compound14,35, as well as for isolated or host-embedded emitters. In these range-separation models, 

the electron-electron interaction is split into two contributions, short- and long-range, treating each 

one at a different theoretical level (short-range often with a semi-local GGA exchange functional and 

long-range with exact-like exchange to obtain the desired correct asymptotic behavior). The first 

mention in literature was due to A. Savin et al. in 1997,36 but for the coupling of multiconfigurational 

ab initio with DFT methods, with probably the first application to GGA exchange functionals by K. 

Hirao et al. in 2001,37 and popularized later by N.C. Handy et al. with the CAM-B3LYP method.38 Since 

the tuning of the ω parameter aims at accurately reproducing one-electron attachment/detachment 

energies, it also naturally leads to accurate HOMO-LUMO gaps and corresponding excited-state 

energies (relying heavily on that energy difference, to first order). However, more work is still needed 

to confirm the accuracy of these methods for higher-lying singlets and triplets.  

S1 and T1 optimized excited-state geometries are now routinely computed from linear-response 

TD(A)-DFT. However, different options such as the use of UKS (for T1) or ROKS (for S1 and T1 states) 

exist39. Still, we stress that mixing different levels of theory such as TD(A)-DFT (for S1) and UKS (for T1) 
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can lead, in some instances, to spurious negative values of �EST
14,40. The fast screening of TADF 

molecules would also benefit of low-cost TD-DFT based methods, such as e.g. sTDA-DFT or sTDA-

xTB41. It would also be desirable to extend these methods beyond one-electron effects. The use of a 

(D)-like correction introduced by double-hybrid methods, namely a MP2-like term added non self-

consistently to the standard TD-DFT treatment, or the coupling of DFT with MRCI (DFT/MRCI), are 

among the envisioned possibilities, although the price to pay is a higher formal scaling, O(N
5
) in the 

case of double-hybrid functionals. While double-hybrid models appear robust for Ω(S1) values, the 

lack of implementations for the calculation of the corresponding Ω(T1) values has precluded so far 

the evaluation of ∆���
�  42. DFT/MRCI has been recently extended to deal with higher-order 

excitations in multichromophoric systems43, opening new possibilities for exploring light-emission 

mechanisms for which both singlet and triplet states are of importance, as well as their possible 

modulation by environmental effects44. 

The need for quantifying the nature of the excited states involved in the TADF process has led to the 

development of a set of metrics able namely to gauge the CT versus LE character of the excitations, 

which is critically entangled with the molecular geometry and its fluctuations around 

equilibrium10,43,45. The existing metrics can be classified into two groups, those based on molecular 

orbitals, be them KS or NTO, and those based on density differences. Note that the metrics are 

intended to be: (i) generally applicable, in the sense that they can be applied to any of the desired 

singlet or triplet excited states; and (ii) easily transferable, with the results not expected to heavily 

depend on the functional and/or basis set choice. However, the use of relaxed and unrelaxed density 

might introduce some difference from a quantitative standpoint46 as it was recently disclosed. 

Table 1 summarizes the observables developed so far and their typical values for the limiting cases of 

pure CT and LE. As regards the first category of tools, the metrics Λ roughly measures the overlap 

between a pair of occupied (i) and virtual (a) orbitals involved in the ground-to-excited state 

transition47,48; other approaches, such as Δr49,50, aim at giving an effective hole-electron separation 

during the excitation. On the other hand, for density-based descriptors, the DCT index is based on the 

barycenters of densities associated with an electronic transition51, while ΦS refers to the overlap 

between the attachment/detachment densities, that is, the electron density removed/rearranged 

during the excitation52. In some cases, due to a spurious behavior of density functionals for CT states, 

low-lying but unreal (intruder) CT states can appear, which can be also identified and discarded on 

the basis of the evaluation of intermolecular electrostatic interactions, e.g. by the MAC metrics53. 

Despite the appearance of a few topological metrics in the last years, there is also convincing 

evidence that these are highly correlated, as recently shown for a large sample of molecules 
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displaying CT excitations,54 which should facilitate comparison between different existing or future 

studies. 

 

Table 1. Summary of the metrics most used and their limiting values in the case of pure CT and LE 

excitations. 

� � Distinction between the �
nature of excited-states�

Metrics� Description� CT� LE�

Λia� Overlap between the ia pair of the norms of molecular 
orbitals�
�

Λ ~ 0� Λ ~ 1�

Δr� Coefficient-weighted hole-electron distance �
between a set of orbital centroids�

Δr > 2 Å� Δr < 2 Å�

DCT�

�

Distance between barycenters of density variations�
(average between the corresponding barycenters)�

t - DCT > 1.6 Å� t - DCT < 1.6 
Å�

ΦS� Normalized overlap between attachment/detachment 
densities�

�

ΦS ~ 0� ΦS ~ 1�

 

Metrics based exclusively on orbitals raise some concern. For instance, many-electron excited states 

might involve multiple pairs of orbitals, thus casting doubt on the meaning of the Λ value. Another 

example is the case of a symmetric D-A-D triad, where the hole and electron centroids can spuriously 

occupy similar spatial positions, hence leading to a vanishing value of Δr, despite a strong CT excited-

state character. DCT and ΦS overcome these limitations and appear as more universal metrics55.  

Interestingly, the use of these metrics has clearly evidenced that the excited states involved in the 

TADF process are neither full CT or LE, as abusively claimed when discussing the photophysics of 

TADF emitters3,5 , but most often feature a rather mixed CT-LE character7,10,56 (see Figure 3a). The 

amount of CT-LE mixing is controlled by the magnitude of the D-A electronic coupling, which is in 

turn governed by structural parameters (such as the torsion angle between the two moieties)7,10. 

While the S1 excited state often displays a large CT character (small ΦS
7 and large �r13, see Figure 3a), 

especially in conformations with near orthogonal D and A moieties6, this is less true for the T1 excited 

state. This arises from exchange interactions that stabilize localized triplets more than their singlet 

counterparts, thereby prompting a more intimate LE-CT mixing in the triplet manifold7,57.  

From a practical point of view, the metrics presented in table 1 have been applied as a tool to 

rationalize the �EST and oscillator strength values in TADF compounds. Especially, it has been 

evidenced that the nature of T1 is the limiting factor in order to minimize �EST. The nature of T1 can 
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be directly probed experimentally by extracting the Zero-Field Splitting (ZFS) parameters from 

Electron Spin Resonance (ESR) spectroscopy studies. The dominant dipole-dipole component to the 

ZFS parameters is indeed inversely proportional to the third power of the interspin distance58. The 

larger the CT character of the triplet excited state, the larger the effective electron-hole radius and 

spin-spin distance and the lower the ZFS parameter value. From a computational point of view, the 

ZFS parameter can be evaluated through unrestricted DFT calculations using EPR-II and EP-III basis 

sets that are optimized for the computation of hyperfine coupling constants59. Interestingly, a recent 

study of carbazolyl-dicyanobenzene based TADF emitters (2CzPN and 4CzIPN) has demonstrated that 

ZFS (as calculated at the UKS level) and ΦS (obtained from TDA-DFT) values go in par, offering the 

possibility to confront experimental and theoretical metrics of the triplet excitations60
 (see Figure 3b). 

As for singlet excitations, calculated oscillator strengths have been shown to correlate very well to 

�r11 and overlap metrics such as Λia
61 and ΦS

7.  

Finally, we mention that only some of the metrics above can be calculated with common quantum 

chemistry codes, while others require post-processing after the TD(A)-DFT run. More automated 

procedures, and further benchmarking, are definitively needed, as well as their integration in large-

scale computational codes. 

 

Figure 3: (a) Hole and electron densities calculated in the attachment/detachment formalism for T1 

and S1 excited states for 2CzPN. (b) Absolute value of the T1 Zero-Field splitting parameter as a 

function of the overlap between the hole and electron densities φS and the distance between the 

hole and electron densities centroids �r, as calculated in the attachment/detachment formalism for 

2CzPN T1 excited state. Reprinted and adapted with permission from reference10. Copyright 2017 by 

the American Physical Society 

 

Non-radiative processes are playing a key role in determining the internal quantum efficiency of 

TADF-based devices. On the one hand, reverse intersystem crossing (RISC) and reverse internal 
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conversion (RIC) are promoting the upconversion from the triplet to the singlet excited-state 

manifold. On the other hand, ISC favors the generation of triplets that could subsequently be 

recycled to S1 or, because of their long lifetime, could decay through triplet-triplet or triplet-polaron 

annihilation, processes giving rise to device efficiency roll-off at high luminance. Of course, also non-

radiative decays to the ground state from both the lowest singlet and triplet states are competing 

pathways reducing IQE. In the following, we distinguish between spin-conserving, namely (R)IC, 

triplet-triplet and triplet-polaron annihilation, and spin-non-conserving processes, namely ISC and 

RISC. Conformational effects on light emission and ISC and RISC are discussed thoroughly below.  

Spin-orbit is a relativistic effect that is responsible for mixing orbital and spin degrees of freedom, 

thus allowing electronic states of different multiplicities to couple. Spin-orbit coupling naturally arises 

from the one-electron Dirac equation. Even though being of a fundamental interest, it cannot be 

solved exactly when considering large many-electron systems such as TADF molecules. Practical 

applications thus rely on perturbative approaches to non-relativistic electronic structure calculations. 

Among the most commonly reported approaches, we distinguish the zero-order relativistic 

approximation (ZORA) from the full Breit-Pauli Hamiltonian (including relativistic mass corrections 

and spin-orbit effects) and its mean-field approximation that are implemented in a number of 

softwares based on CASSCF62, TD-DFT and DFT-MRCI43 excited-state descriptions. The interest in spin-

orbit coupling calculations in the field of OLEDs dates back from the emergence of phosphorescent 

emitters containing heavy metal centers allowing for rapid ISC from S1 to T1 and radiative decay from 

T1 to the ground state (usually in the microsecond timescale regime). Because of the presence of 

these heavy atoms, spin-orbit coupling is usually large in phosphorescent emitters allowing for strong 

mixing between singlet and triplet excited states, while it is relatively weak (on the order of tenths or 

hundredths of meV) for TADF emitters made only of light elements. Still, the RISC mechanism is 

expected to be mainly driven by spin-orbit coupling with a small contribution of hyperfine coupling, 

as evidenced by electron paramagnetic resonance measurements9. This is further supported by 

transient electron spin resonance (TrESR) on 2CzPN and 4CzIPN carbazolyl-dicyanobenzene based 

TADF emitters, for which the observed absorption and emission patterns are characteristic of a spin-

orbit-driven ISC mechanism. Up to now, a systematic comparison between the different software 

and models has not been carried out yet, although it was shown that the full Breit-Pauli model and 

its mean field approximation lead to very similar spin-orbit coupling matrix elements for organic 

dyes63. Already in the 60s, Mostafa El-Sayed64 highlighted the fact that spin-orbit coupling is 

vanishing when (R)ISC takes place between excited states with identical π-π* character. This is 

because the change in spin angular momentum must be compensated by a corresponding change in 

angular orbital momentum so that total angular momentum is conserved. As a result, only excited 
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states with different spatial wavefunctions couple through spin-orbit coupling. A textbook example is 

benzophenone that sustains n-π* and π-π*  electronic excitations coupled through large spin-orbit 

matrix elements65. Recently, this concept was put in practice in the context of TADF materials by 

associating the magnitude of the spin-orbit coupling to the difference in the nature of these excited 

states calculated based on the difference of normalized overlap between attachment/detachment 

densities, �ΦS, between S1 and T1.. �ΦS was calculated on molecular conformations taken from an 

amorphous morphology of pure films of 2CzPN and 4CzIPN. Spin-orbit matrix elements are found to 

correlate approximately linearly with �ΦS, becoming vanishingly small for �ΦS=0, namely in the case 

where S1 and T1 are nearly degenerate (�EST~0) and exhibit both a strong and identical CT character, 

in line with the El-Sayed rules. Interestingly, because of its overall larger �ΦS offset, spin-orbit 

coupling is larger for 2CzPN than for 4CzIPN (see Figure 4b). Most importantly, we note that in the 

case of the carbazole derivatives studied in 7 spin-orbit coupling and �EST have antagonistic evolution, 

such as a trade-off has to be found in order to maximize the rate of RISC (see Figure 4a). 

Most importantly, we note that spin-orbit coupling and �EST have antagonistic evolution, such as a 

trade-off has to be found in order to maximize the rate of RISC (see Figure 3a). 

 

Figure 4: Spin-orbit coupling as a function of a) �EST and b) �ΦS in 2CzPN (blue data) and 4CzIPN (red 

data), as sampled from a realistic amorphous morphology simulated with molecular dynamics. The 

approximately linear correlation between VSOC and �ΦS follows from the El Sayed rules, while the 

relationship between VSOC and �EST highlights the need for a trade-off between different parameters 

for the optimization of TADF performances. Reprinted with permission from reference10. Copyright 

2017 by the American Physical Society. 

 

Two different internal conversion mechanisms with contrasting effects are considered here. On the 

one hand, the reverse IC in the triplet manifold of excited states which is a thermally-activated 

process, is expected to assist RISC by promoting the formation of higher-lying triplet excited states, 

from which the conversion to the singlet manifold might occur more efficiently because it is 
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associated with a larger exergonic character. This interconversion channel is expected to compete 

with the direct conversion from T1 to S1 and features smaller activation energies66. On the other 

hand, non-radiative recombination to the ground state should take place mainly from S1 and 

contribute as the main monomolecular pathway to molecular excitation loss. Even though the two IC 

processes described above involve excited states of different spin multiplicities, the initial and final 

states are in both cases coupled through non-adiabatic couplings. The rate of internal conversion has 

been calculated in triphenylamine-thiadiazole molecule using a Fermi Golden rule formalism and 

considering non-adiabatic couplings for all relevant vibrational normal modes67. This approach, 

however, breaks down in the case internal conversion occurs at conical intersections, points of 

degeneracy between electronic states acting as dynamic funnels for radiationless transitions68,69.  

In an OLED device, at high current, i.e. high hole and electron densities, triplets start accumulating in 

the device. Bimolecular processes such as triplet-triplet or triplet-polaron annihilation might occur, 

leading to an undesired roll-off behavior70. So far, no mechanistic picture has been proposed for 

these processes in the context of TADF materials. Triplet-triplet annihilation can proceed either via a 

virtual CT state or through a two-electron exchange mechanism, similarly to its reverse process, 

singlet fission71. The first attempts to include both processes in a device-like Kinetic Monte Carlo 

simulation have been based on phenomenological grounds considering that triplet-triplet (triplet-

polaron) annihilation takes place when two triplet excitations (a triplet excitation and a charge) 

occupy neighboring sites72. Assessing annihilation rates from first principles remains very challenging 

since these processes involve the transient formation of high-lying electronic excitations with 

multiple-excitation character, the description of which demands highly correlated quantum-chemical 

methods often difficult to handle for large-size TADF emitters. A further challenge is that, since 

annihilation is a bimolecular process, its theoretical investigation requires the knowledge of the 

microscopic arrangement of emitters, so a further layer of calculations, as detailed in the next 

paragraphs. 

With respect to the gas phase or implicit solvent calculations described so far, a step further towards 

the realistic modeling of TADF materials consists in taking into account explicitly the presence of 

surrounding host molecules. This is possible via a simple two-step multiscale scheme, by first 

employing classical (i.e. molecular mechanics) force fields and Molecular Dynamics (MD) or Monte 

Carlo (MC) simulations to produce a realistic guess of the emitting layer morphology (see Figure 1 for 

a simplified scheme of a multilayer OLED architecture),73 and then performing electronic structure 

calculations on single molecules or clusters extracted from the simulated trajectories. This approach 

is considerably more expensive than a pure quantum mechanical-(QM-)based study, but its higher 
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computational cost is compensated by the number of additional important effects occurring in real 

devices that can be accounted for, namely: i) sampling of many molecular geometries with a 

probability of occurrence depending on temperature (Boltzmann-weighted); ii) conformational 

changes and freezing induced by the solid matrix; and iii) inclusion of polarization and electrostatic 

effects. Besides, simulations predict the orientation distribution of the emitters and, more generally, 

provide the molecular positions of carriers and emitters, which are fundamental ingredients for 

device modeling, and in particular for kinetic simulations of electronic processes.74  

Note that emitting layers are typically (meta)stable, disordered or partially ordered glasses, and host 

and emitter molecules themselves (Figure 1) have characteristic of organic glass-formers, being often 

constituted of a few, nonlinear rigid aromatic units interconnected by single rotatable bonds, 

allowing thus for a relatively large number of stable conformations. There are at least three routes to 

simulate amorphous morphologies of emissive layers, all of them essentially out of thermodynamic 

equilibrium. The simplest scheme starts with an NPT-ensemble MD simulation at temperatures and 

pressure high enough to obtain a fluid mixture of the desired composition, and subsequently cools 

the sample at room temperature and equilibrates it until average volume and total energy appear 

stable in time.10,75 A second, more costly approach imitates solvent annealing process, by starting 

from a concentrated solution of the target materials equilibrated at ambient conditions, from which 

molecules of solvent are progressively removed until a dry film is obtained. More recently, MD or MC 

simulations in which molecules are progressively inserted in the system and landed on a substrate, a 

scheme pioneered by some of us for the vapor deposition of organic crystalline semiconductors,76,77 

have gained increasing popularity in the OLED research field.78–81 The origin of this trend is two-fold: 

on the one hand, real TADF-based active layers are in fact prepared most often by co-deposition of 

(at least) one host semiconductor and a guest TADF emitter,82 and on the other hand, since these 

films are amorphous, it is difficult to validate the simulation results versus experimental structural 

data, and it is tempting to believe that mimicking the experimental process could improve the quality 

of the predictions. Indeed, one of the open questions in the field is how important is the simulation 

procedure in determining the final morphology, and in turn how does it influence the calculated 

electronic properties. Experimentally, there is a large body of evidence suggesting that vapor-

deposited systems are in general more stable and dense than spin-coated ones prepared by solvent 

evaporation82 or freezing from the liquid phase;83 however the exact shape of the potential energy 

landscape (see scheme in Figure 5a for a pure material) not only does depend on the chemical nature 

of the host-guest system but also on their relative concentration.  
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A further important result has recently emerged both from experiments78,84,85 and simulations:78–81 

vapor deposited glasses can be to some extent orientationally anisotropic or, in other words, the 

orientation of the emitters in the active layer is not completely random. Since the specific orientation 

of emitter transition dipoles can strongly impact the outcoupling efficiency,86,87 it would be desirable 

to employ computer simulations in designing materials and setups apt at precisely controlling the 

orientation of the dyes, and then the direction of emitted light, in order to maximize the light output. 

The insurgence of anisotropy has been attributed to multiple factors, ranging from van der Waals 

interactions to dipole-dipole interactions and kinetic effects. These may be again system-dependent, 

but regardless of specific effects, it appears clear that a critical role is played by the orientation of the 

molecules at the growing interface with vacuum, as depicted in Figure 5b. Unfortunately, the current 

lack of knowledge about the relationship between all the simulation parameters (e.g. models, rates, 

temperatures, times, etc.) and the morphology obtained, so far does not allow to establish how 

general are the above-mentioned effects and to which extent they could be applicable to 

experimental results. Therefore, more systematic studies in this direction are urgent. 

 

Figure 5: a) Schematic representation of the potential energy landscape of a glass forming system. TA 

is the temperature where non-Arrhenius dynamics are first observed in the liquid. Upon cooling at a 

constant rate, a temperature is reached at which molecular motions freeze and a glass is formed 

(glass transition temperature Tg). Aging slightly below Tg allows some equilibration and lowers the 

potential energy. For some systems, much lower energies can be reached by physical vapor 

deposition with respect to aging or slow cooling. b) Possible origin of anisotropic molecular packing 

in vapor-deposited glasses of a rod-like molecule for which the free surface of the equilibrium liquid 

is anisotropic.78,88 The substrate temperature Tsub determines the depth to which structure at the 

surface can equilibrate during deposition. The lowest portion of the growing film becomes trapped 

by further deposition. Also the interface with the solid substrate can be in principle anisotropic. 

Reprinted from reference83, with the permission of AIP Publishing.  

 

(a)� (b)�

Page 15 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry Letters

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



16 
 

Another, maybe unavoidable, problem in comparing simulations and experiments is the enormous 

gap between the time scales accessible to simulations (microseconds) and the ones employed in the 

lab (minutes, hours). This difference might shift the balance between kinetic and thermodynamic 

effects, and may hamper the successful application of computer simulations to systems in which this 

balance is delicate. Concerning instead length scales, the mismatch between reality and atomistic 

models is much narrower, hundreds of nanometers versus tens or so. To reach the device scale, 

coarse-grained models can be employed,78,89 with the main disadvantage of some extra effort for the 

parameterization and complicated backmapping schemes to revert to the fully atomistic morphology, 

needed for electronic structure calculations. United-atom force fields can be an effective 

compromise, since the reduced number of centers allows a CPU time speed-up of about one order of 

magnitude90 and the backmapping to a full atom model is straightforward. Focusing on full-atom 

models, there is a raising awareness that the use of classical force field geometries for QM 

calculations may lead to uncontrolled approximations and systematic errors in the evaluation of 

electronic properties, e.g. S0 and T1 energies. 10,75 In order to minimize this source of error, it would 

be beneficial to employ, in future studies, non-transferable force fields specifically tailored for 

reproducing not only the QM optimized geometry, but also the vibrational frequencies in the 

electronic state of interest.91 

Radiative emission cross-sections, also quantified through the oscillator strength, are often very 

small in TADF molecules with close to orthogonal donor and acceptor moieties in their ground- or 

excited-state optimized geometries (see Figure 6b). Unless counterbalanced by specific 

intramolecular interactions such as hydrogen-bonds,61 most TADF molecules usually feature a 

twisted equilibrium conformation, which inevitably leads to a small overlap between the frontier π-

conjugated orbitals of the donor and acceptor moieties. Fortunately, in TADF emitters based on D 

and A moieties connected through single bond, soft torsional modes are easily activated, generating 

a large spectrum of conformations at room temperature4,7 (see Figure 6a). These display significantly 

different absorption/emission energies and associated �EST values as the nature of the lowest singlet 

and triplet excited states (as probed through ΦS) varies in time and space (see Figures 6c and 6d). 

Thermal excitation of these soft vibrational modes also results in broad and unstructured absorption 

and emission spectra. Thermal motion around the twisted equilibrium structures has a positive 

impact on luminescence, as it allows to sample conformations with larger overlap between the 

electron and hole wavefunctions, i.e. also larger oscillator strengths and radiative decay rates.20 In 

this case, emission of the TADF materials appears as a vibrationally-assisted process strongly coupled 

to soft (low-frequency) torsional modes.7 
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Also the RISC process, as claimed by Monkman and coworkers,3 can be seen as a spin-vibronic 

mechanism where spin mixing is dynamically gated by conformational fluctuations triggered by low-

energy torsional modes. The influence of torsional modes on excited-state dynamics is two-fold: (i) it 

brings excited states of the same spin multiplicity closer to each other, enhancing non-adiabatic 

coupling between the lowest singlet (triplet) excited states;92 (ii) it affects dynamically the nature of 

the singlet and triplet excited states involved in the TADF process in a way that the thermally-

averaged spin-orbit coupling is enhanced compared to its value at the equilibrium geometry.67,92 The 

role of vibrations on TADF dynamics can be modeled using different formalisms, either based on non-

adiabatic molecular dynamics, such as mixed quantum-classical surface hopping methods93 or full 

quantum wavepacket propagation simulations,94 or relying on rate expressions derived from time-

dependent second-order perturbation theory (Fermi Golden Rule).67,92 These approaches usually 

include a set of preselected intramolecular vibrational modes for which the frequencies and 

displacements (electron-phonon couplings) are computed from first-principles. Alternatively, one can 

resort to MD simulations that allow sampling all vibrational modes classically, being intra- or inter-

molecular in origin, at once. In the case of low-frequency vibrations, classical and quantum 

approximations yield similar results for thermally averaged spin-orbit coupling and �EST values.95 The 

reorganization energy associated with high-frequency vibrations, i.e. mostly bond stretching, can be 

obtained from ground- and excited-state geometry optimization of the isolated molecules. These 

modes steer temperature-independent quantum tunneling effects and can be easily incorporated 

into rate expressions for ISC and RISC. For instance, by a careful analysis of the time evolution of the 

dihedral angles in 2CzPN and 4CzIPN, a characteristic time scale of about 1 ps has been inferred. This 

is fast compared to RISC, hence a large portion of the dihedral angles distribution is explored by the 

molecule before upconversion takes place, which confirms the truly dynamic nature of the RISC 

process. Considering thermally-averaged spin-orbit coupling and �EST for the specific case of 4CzIPN, 

(R)ISC rates calculated within the semi-classical Marcus theory were found to be in excellent 

agreement with experimental data.10  

To close this discussion, we would like to briefly refer to studies pointing to the role of ‘hard’ modes. 

For instance, it has been shown that the displacement along a C=0 stretching mode on the donor 

moiety of a xanthone-acridine D-A complex is able to bring in near resonance triplet 3CT and 3LE 

states, from which efficient RISC to 1CT proceeds.96 Similarly, highly correlated wavefunction based 

calculations in carbene-metal-amide complexes suggest that the dynamic red shift observed 

experimentally is associated with changes in the carbon-nitrogen bond length and metal-carbon-

nitrogen bond angle within the carbene-metal-amide three-center core. Very interestingly, these 

changes reduce �EST, while keeping unaffected the spin-orbit coupling and emission transition dipole 
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moment from the singlet excited state, at odds with the initially proposed rotationally-assisted 

upconversion mechanism. 45  

 

Figure 6: (a) Torsional energy profiles calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with 

the PCM module for solvent (toluene) for PXZ-OXD. (b) Variation of �EST and and oscillator strength 

(O.S) as a function of the D-A torsion angle. (c) Time evolution of the ΦS(S1) and ΦS(T1) from 

electronic structure calculations performed along a molecular dynamics trajectory for 2CzPN. (d) 

Time evolution of the �EST for 2CzPN. Vertical dashed lines highlight that �EST is the largest (smallest) 

when the difference in ΦS(S1) and ΦS(T1) is the largest (the smallest). Reproduced from Ref.7 with 

permission from The Royal Society of Chemistry. Reprinted and adapted with permission from 

reference10. Copyrights 2017 by the American Physical Society. 

 

Environmental effects are known to have a major impact on molecular excitations of charge transfer 

character, yet the implications on �EST in TADF emitters has started to be appreciated only recently. 

The role of the environment is particularly subtle and important in systems where singlet and triplet 

excitations of CT and/or LE character are all close in energy and compete, while the energy window 

interesting for applications is of few tens of meV. Viable computational strategies consist in QM/MM 

approaches, where the TADF emitter (QM system) is embedded in a classical medium that can be 
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described either with PCM or with discrete schemes of atomistic resolutions. Both approaches have 

advantages and limitations that we briefly discuss in the following. 

In this context, Brédas and coworkers systematically employed the PCM in their TD-DFT 

investigations of singlet-triplet splitting and spin-orbit matrix elements for different TADF 

molecules.14,56 Sun et al. specifically addressed the effect of the dielectric constant (ε) on the nature 

of the excited states and on the single-triplet splitting by using optimally tuned range-separated 

hybrid functionals, whose range separation parameter ω was optimized for each value of ε.97 These 

calculations highlighted the role of the medium polarizability in stabilizing electronic configurations 

with large CT character, in turn affecting the CT-LE hybridization in singlet and triplet excitations. For 

instance, dipolar D-A molecules such as TXO-TPA and TXO-PhCz, which in the gas phase are 

prescribed to feature large �EST (ca. 0.5 eV) as a result of the large LE character of T1, become 

interesting for TADF applications in a typical organic matrix with ε~3. Indeed the medium polarization 

leads to excitations with large CT character and nearly non-overlapping hole and electron clouds and 

�EST below 0.1 eV.97 Marian et al.
44 proposed a reinterpretation of the emission observed for 

carbene-metal-amide in both solution and film based on a combination of DFT/MRCI and PCM. 

Especially, they showed that solvent reorganization has to be taken into account when computing 

the delayed fluorescence spectrum, while it is not required when discussing prompt fluorescence 

occurring at early-timescale. Practically speaking, one needs to consider the relaxed density matrix of 

the excited state to calculate the solvent reaction field. Delayed fluorescence appears to be red-

shifted in comparison the prompt one in agreement with experiment. However, in glassy films, such 

a treatment is not needed because the medium reorientation is sterically hindered so that delayed 

fluorescence appears to be blue-shifted compared to solution. Along the same line, Penfold et al. 
75

 

have highlighted through a combination of MD and TD-DFT calculations that a blue shift in the 

delayed emission of D-A TADF emitters in films at the longest timescale does not result from host 

reorganization, and thus on specific host-guest interaction, but rather from a distribution of CT states 

with different emission energies. The prompt fluorescence is essentially governed by the higher-

energy CT states that exhibit the largest hole-electron wavefunction overlap and therefore also 

oscillator strength. As for the delayed fluorescence, the early part of the signal appears to be red-

shifted in comparison to the prompt fluorescence since RISC occurs first through the lower-energy CT 

states that minimize �EST. The late delayed fluorescence component then occurs through higher-lying 

but more emissive CT states, thereby rationalizing the blue-shift observed. 

Beyond PCM, atomistic polarizable models aim at describing excitations of molecules in their specific 

environment, usually an amorphous matrix blending the charge transporting material and other 

emitters. Atomistic simulations of such blends are a prerequisite for these approaches, which also 
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allow for the sampling over a statistical collection of molecule-environment configurations. Our 

group adopted this route to study environmental effects in carbazolyl-dicyanobenzene based TADF 

emitters, 2CzPN and 4CzIPN, employing atomistic microelectrostatic models parameterized from first 

principles.10 These calculations showed that the medium polarization, modeled with mutually 

interacting anisotropic polarizabilities, reacts differently to states of different CT character (see 

Figure 7a). For instance, 2CzPN shows a singlet excitation S1 that has larger CT character than the 

triplet T1, and thus a larger electrical dipole, resulting in a stronger stabilization of the former by the 

environment polarization, finally leading to a reduction in �EST (see Figure 7b). This provides a 

general mechanism through which the embedding medium compensates for large �EST established at 

the molecular level, leading in some cases to negative �EST values. In addition, atomistic models do 

also account for the fact that molecules are distorted in real morphologies and experience the 

inhomogeneous electrostatic potential of the neighborhood. These phenomena affect the energies 

of the excited states within both the singlet and the triplet manifold of states, leading to 

inhomogeneous broadening in the solid matrix and to broad distributions of �EST values. Such a 

disorder can also break the symmetry of the molecule (e.g. localizing the hole of a CT excitation on a 

given D carbazole unit) and, most interestingly, have a dynamic nature, i.e. lead to a modulation in 

time of the nature of the relevant states (CT-LE hybridization) and of the �EST.10 

 

 

Figure 7: (a) Polarization energy distributions associated to S1 and T1 excited states. (b) Distributions 

of �EST. Red and blue lines correspond to TDA-PBE0 results in the vacuum and accounting for local 

dielectric effects, respectively. All data provided in this Figure refer to 2CzPN. Reprinted and adapted 

with permission from reference 10. Copyright 2017 by the American Physical Society. 
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In summary, predictive modeling of TADF emitters requires an integrated multiscale approach able to 

capture the energetics and the dynamics of electronic excitations in realistic morphologies of OLEDs 

emitting layers. In combination with state-of-the-art experimental investigations (optical 

spectroscopy and device characterization), computational studies have already shed light on some 

key features of TADF, including: 

-� The excited states involved in TADF often feature mixed CT and LE character. 

-� The host influences �EST through conformational and dielectric effects. 

-� RISC and light emission are dynamic processes assisted by intramolecular vibrations. 

While some of the items above remain open to discussion, as they are likely material-specific, they 

also prompt new questions and challenges that need to be addressed when designing the next 

generation of TADF emitters. For instance, can one tune the nature of the excited states involved in 

the TADF process in order to speedup RISC? Can one take advantage of environmental effects to 

design molecules with negative �EST? Can we expand the modeling approaches in order to account 

for all the mono- and bi-molecular radiative and non-radiative processes taking place in TADF-based 

OLEDs and identify host-guest combinations that would minimize annihilation and maximize pure 

and color-tunable light emission?  

Clearly the answer to these questions can only be obtained in the scope of a multifaceted theoretical 

framework, where molecular and material properties are conjointly addressed and optimized. More 

specifically, we would like to end this perspective with modeling challenges inspired by a few 

selected opportunities from recent experimental investigations: 

-� Hyperfluorescent OLEDs.98 Here, TADF molecules act mostly as assistant dopants that drive 

the excitations towards a dye with narrow-line singlet emission. To further improve what is 

referred to as the 4th generation OLEDs, a microscopic picture for the diffusion of singlet and 

triplet excitations relevant to TADF is definitively needed. This would require going beyond 

the widely used Förster model for weakly dipole-allowed CT singlets and including both 

exchange and superexchange interactions for triplets.99–101   

-� Highly emissive TADF emitters. Architectures sustaining multi-resonance effects28,102,103 have 

the potential to solve the conundrum of large singlet radiative decay rates despite small 

exchange energies. A proper description of the singlet and triplet excitations in these 

molecules calls for the inclusion of high-order electronic correlation effects, difficult to 

capture using conventional TD-DFT methods. 

-� Exciplexes. Despite considerable efforts to establish them as viable technology for OLED 

applications, exciplexes, namely emissive D-A intermolecular CT states, have been 
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investigated in only very few computational studies.104,105 This is surely related to the 

weakness of intermolecular interactions in organics resulting in the large configurational 

space explored by the D and A molecules that can adopt multiple relative orientations. 

Besides sampling issues, another timely question relates to the quantum-mechanical effect 

driving RISC in exciplexes, with scenarios based on either spin-orbit or hyperfine field 

couplings proposed in the literature.104,106 Note that recent studies of crystalline 

multichromophoric materials, composed on a mixed stack of 1:1 D-A molecules, are 

particularly interesting in this context, too.107,108 

As a last note, we would like to stress that, as highlighted in this perspective, modeling of TADF is a 

complex endeavor and we warn the community about the potential pitfalls of ‘black box’ calculations 

using standard approaches. While these might provide a useful first screening, we believe that the 

field of computational modeling has now reached a maturity level that allows for a truly first-

principles description of TADF emitters and hope this perspective will guide modelers and 

experimentalists on finding their way to best practices in TADF.   
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PULL QUOTES 

 

(i)� Can we predict the nature of the excited states and tune the primary chemical structure of 

TADF emitters in order to maximize the efficiency of upconversion and light emission in 

TADF-based OLEDs? 

 

(ii)� How important is the simulation procedure in determining the final morphology, and in turn 

how does it influence the calculated electronic properties? 

 

(iii)�How can we design in silico TADF emitters that yield the right orientation in the solid-state 

matrix to maximize light outcoupling? 
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(iv)�How much torsional dynamics is affected by the host-guest interaction? How does it affect 

the efficiency of TADF? 

 

(v)� Polarization medium effects are stabilizing CT states with respect to LE states. Could we 

possibly target the right combination of host and guest in order to get negative �EST? 

 
(vi)�Should we freeze-out the motion of triplet excitations in TADF materials in order to reduce 

annihilation processes? 
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ACRONYMS 

OLED:   Organic Light Emitting Diode 

TADF:  Thermally Activated Delayed Fluorescence 

IQE:  Internal Quantum Efficiency 

Tn:  n-th triplet excited state 

Sn:  n-th singlet excited state 

(R)ISC:   (Reverse) InterSystem Crossing 

D:  Electron donating moiety/unit 

A:  Electron accepting moiety/unit 

CT:  Charge Transfer 

LE:  Local Excitation 

DFT:   Density Functional Theory 

TD-DFT: Time-Dependent Density Functional Theory 

PCM:  polarizable continuum models^ 

∆���
� :  vertical exchange gap/vertical singlet-triplet energy gap 

Ω(S1):  Lowest singlet excited state energy 

Ω(T1):  Lowest triplet excited state energy 

CCSDT:   Coupled-Cluster with Single, Double, and (iterative) Triple substitutions 

CC3:  Third-Order Approximate Coupled-Cluster 

EOM-CCSD: Equation-Of-Motion Coupled-Cluster with Single and Double substitutions 

FCI:  Full Configuration Interactions 

CC2:  Second-Order Approximate Coupled-Cluster 

ADC(2):  Algebraic Diagrammatic Construction at second-order 

ADC(3):  Algebraic Diagrammatic Construction at third-order 

ADC(2)-x: eXtended Algebraic Diagrammatic Construction at second-order 

RAS:  Restricted Active Space 

CASSCF: Complete Active Space Self-Consistent-Field 

CASPT2: Complete Active Space Perturbation Theory at second-order 

GW+BSE: Green's functions with Bethe-Salpeter Equation 

B3LYP:  Becke three-parameter hybrid Lee-Yang-Parr exchange-correlation functional 

6-31G*: Pople's double-ξ basis set with polarization functions on 2nd row atoms 

M06-2X: Minnesota exchange-correlation functional in its 2006 version 

TDA-DFT: Time-Dependent Density Functional Theory in the Tamm-Dancoff approximation 

CIS:  Configuration Interaction with Single substitutions 
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TD-HF:  Time-Dependent Hartree-Fock 

PBE0:  Perdew-Burke-Ernzerhof one-parameter hybrid exchange-correlation functional 

D3(BJ): Dispersion correction (third-generation) with Becke-Johnson attenuation function 

def2-TZVP: Alhrichs' triple-ξ valence polarization basis set extended with diffuse function 

CAM-B3LYP: Coulomb-attenuating method B3LYP exchange-correlation functional 

ωB97X:  ω-dependent range-separated Becke'97 exchange-correlation functional 

HOMO:  Highest-Occupied Molecular Orbital 

LUMO:   Lowest-Unoccupied Molecular Orbital 

UKS:  Unrestricted Kohn-Sham 

ROKS:  Restricted Open-Shell Kohn-Sham 

sTDA-DFT: Simplified Tamm-Dancoff Time-Dependent Density Functional Theory 

sTDA-xTB: Simplified Tamm-Dancoff Extended Tight-Binding Hamiltonian 

MP2:  Second order Møller–Plesset perturbation method 

MRCI:  Multi-Reference Configuration Interaction 

KS:  Kohn-Sham orbitals 

NTO:  Natural Transition Orbitals 

�EST:  Singlet-triplet energy gap 

ZFS:  Zero-Field Splitting 

ESR:  Electron Spin Resonance 

2CzPN:  4,5-di(9h-carbazol-9-yl)phthalonitrile 

4CzIPN:  1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene 

(R)IC:  (Reverse) Internal Conversion 

MD:  Molecular Dynamics 

MC:   Monte Carlo 

QM:  Quantum mechanical 

S0:  Ground state 

3CT:  Triplet charge transfer state 

3LE:  Triplet local excitation 

ε:  Dielectric constant 

PXZ-OXD : Phenoxazine- 2,5-diphenyl-1,3,4-oxadiazole 

TXO-TPA: 2- [4- (diphenylamino) phenyl] - 10, 10- dioxide-9H - thioxanthen-9- one 
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TXO-PhCz: 2- (9- phenyl- 9H-carbazol-3-yl)-10,10- dioxide-9H-thioxanthen-9- one 
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