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Abstract. The definition of differential privacy has recently emerged
as a leading standard of privacy guarantees for algorithms on statistical
databases. We offer several relaxations of the definition which require
privacy guarantees to hold only against efficient—i.e., computationally-
bounded—adversaries. We establish various relationships among these
notions, and in doing so, we observe their close connection with the the-
ory of pseudodense sets by Reingold et al. [1]. We extend the dense model
theorem of Reingold et al. to demonstrate equivalence between two defi-
nitions (indistinguishability- and simulatability-based) of computational
differential privacy.

Our computational analogues of differential privacy seem to allow
for more accurate constructions than the standard information-theoretic
analogues. In particular, in the context of private approximation of the
distance between two vectors, we present a differentially-private protocol
for computing the approximation, and contrast it with a substantially
more accurate protocol that is only computationally differentially private.

1 Introduction

A curator of a statistical database may promote valuable social purposes in
his operation. At the same time, non-careful procedures for managing access
to the database may expose sensitive information (in potentially subtle ways),
damaging individual contributors and putting the curator at the risk of legal
liability.

The statistics, database, and datamining communities have long understood
that there is a complicated space of possible trade-offs between usability of sta-
tistical databases and secrecy of individual records. A recent line of research in
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privacy in statistical databases is focussed on formalizing and quantifying the
notions of privacy and usability, and developing privacy-preserving analogues
for many types of queries or algorithms one may want to run on a database
(surveyed by Dwork [2]).

The cornerstone of the new approach to privacy is the definition of differen-
tial privacy, which first appeared in [3]. Intuitively, the definition captures the
risk of joining the database, where the risk is measured as the adversary’s suc-
cess in predicting whether a single record is present in the database, given the
rest of the database. The definition gives unconditional guarantees (including
privacy for (small) groups) against a powerful adversary, preserved by sequen-
tial composition, and still allows many types of statistical or machine learning
analyses, as shown in [4,5,6]. We note that the adversary’s gain in success prob-
ability typically tolerated in applications of differential privacy is not zero or
even “cryptographically” small (and cannot be so under any reasonable utility
guarantees [3]).

The standard definition of differential privacy is very strong in that it provides
privacy even against a computationally unbounded adversary. While there has
been substantial success in designing mechanisms that achieve this strong defi-
nition (e.g., [5,6,7,8]), in this paper we suggest that such information-theoretic
privacy may sometimes have a significant price (in utility or complexity). Thus
we propose several computational analogues of differential privacy, where we
only require privacy against a feasible (i.e., polynomial time) adversary.

Immediate benefits of the relaxation include combining pseudo-random gen-
erators with differentially-private mechanisms, or running such mechanisms in
a distributed manner with only computational guarantees of security. More
importantly, computational differentially-private mechanisms may exist for prob-
lems for which standard differentially-private mechanisms are impossible or un-
known. We propose the problem of constructing a two-party protocol with
two-sided guarantees of privacy for approximating the Hamming distance be-
tween two bit-vectors as a candidate for separating the power of computational
and information-theoretic definitions of privacy.

Definition of computational differential privacy. There are two natural
approaches to defining differential privacy with a computational flavor. The first
one, which may be characterized as indistinguishability-based, goes back to the
definition of differential privacy and replaces an unrestricted adversary with a
computationally-bounded one. Doing so, at least in the non-uniform case, does
not expand the class of privacy-preserving algorithms as the new definition can be
shown equivalent to the old one. If instead, we start with the weaker definition of
(ε, δ)-differential privacy [9], which allows some negligible additive distinguishing
advantage, we do obtain a new class of mechanisms that are private under the
new definition, which we call ind-cdp.

The second approach to defining computational differential privacy, which
we naturally call simulation-based or sim-cdp, builds upon the definition of
differential privacy and its properties. It asserts that the view of the adversary
can be simulated given access to a differentially-private function of the database
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(and thus the simulation is differentially private). The simulated view must be
computationally indistinguishable from the real mechanism’s transcript.

Given these two equally compelling definitional approaches it is quite natural
to consider their relative power. We show that both definitions are closed under
sequential composition and provide privacy for (small) groups of records. We
thus switch to study the relationship between these definitions. One can easily
demonstrate that sim-cdp implies ind-cdp. The converse of this statement,
however, is an intriguing question that we leave open in this work. Instead, in
the main technical contribution of this paper we establish equivalence between a
weaker (though still natural) simulation-based definition (called sim∀∃-cdp) and
ind-cdp (Section 3). We also generalize our definition to interactive mechanisms,
where we uncover one more definition, called sim+-cdp. A summary of our
results relating various definitions of privacy is presented in Figure 1.

ind-cdp sim∀∃-cdp sim-cdp sim+-cdp

Theorem 1

Theorem 3

immediate Theorem 4

Theorem 4

Fig. 1. Relations between definitions of computational differential privacy

Our approach to proving equivalence between ind-cdp and sim∀∃-cdp estab-
lishes a surprising connection between computational differential privacy and
“pseudodense sets” studied by Reingold et al. [1], who were in turn motivated
by the work of Green, Tao, and Ziegler in additive combinatorics [10,11] (closely
related notions were previously studied by [12]). In fact, ind-cdp can be stated
in terms of pseudodensity of the mechanism’s distribution over adjacent datasets,
and sim-cdp is equivalent to existence of models that are dense for all adjacent
pairs, to use the language of [1]. We extend the Dense Model Theorem of [1] to
account for the symmetry of the definitions of differential privacy.

As mentioned above, we also construct protocols achieving computational
differential privacy that seem to admit significantly better accuracy than any
information-theoretically private protocols. Our main example is a private ap-
proximation of the Hamming distance between two vectors in a two-party setting.
We propose three protocols for this problem: one protocol with information-
theoretic differential privacy guarantees and multiplicative approximation error,
and two protocols handling the semi-honest and malicious cases achieving com-
putational differential privacy (specifically sim-cdp) and with error independent
of the size of the input (it only depends on the privacy and security parameters).
Subsequent to our results, this gap in accuracy between information-theoretic
and computational differential privacy was shown to be inherent [13].

Secure vs differentially-private computations. The problem of secure
Hamming distance computation, together with closely related problems of se-
cure scalar product and secure set-intersection cardinality [14,15,16,17,18], may
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benefit from casting them in the differential privacy framework. Indeed, the
standard cryptographic guarantee of letting the parties compute the output of
a function, such as the Hamming distance between two vectors, while hiding
everything else about their inputs may be insufficient to argue security of a se-
quential composition of this protocol when one has to consider the information
leaked through the output of the function. For example, if Alice varies her input
while Bob’s vector stays constant, by observing the output of the protocol Alice
may learn individual values of Bob’s input bits. Differential privacy treatment
addresses the orthogonal question of what is computed rather than how ; in par-
ticular, it may be used to analyze effects of adaptive sequential or concurrent
composition on the adversary’s confidence in predicting any particular bit, even
in the presence of auxiliary information.

2 Definitions

We describe our definitions in this section. We start by introducing some
notation.

Mechanism f . In our definitions, we will be interested in measuring privacy
guarantees provided by randomized mechanisms, denoted f . Mechanism f op-
erates on subsets D of a (potentially infinite) universe U , which we associate
with databases, and outputs a value in the range R. The size of the input D
will be denoted by n. We say that two databases D and D′ are adjacent if their
symmetric difference contains at most one record (i.e., |DΔD′| ≤ 1)1. Further,
the maximum size of the output of f is m.

As we are dealing with computational notion, we will mostly be concerned with
efficient adversaries. Unless specified otherwise, throughout the paper, an effi-
cient adversary is modeled by a family of polynomial-sized circuits {Aκ}κ∈N, or
equivalently, a nonuniform probabilistic polynomial time (ppt) Turing machine.

Parameter κ. A “security” parameter κ controls various quantities in our def-
initions/constructions as follows. The size of the adversary will be polynomial
in κ. The mechanism is parameterized by κ, which lets us consider a family
{fκ}κ∈N, where fκ : D → Rκ. The output size m of f is required to be (at most)
polynomial in κ. We say that a function in κ is negligible if it approaches zero
faster than the reciprocal of any polynomial in κ.

We first recall the standard definition of ε-differential privacy [3]:

Definition 1 (ε-DP privacy). A randomized mechanism f : D → R provides
ε-dp if for all adjacent inputs D, D′ ∈ D (i.e., |DΔD′| ≤ 1) and all subsets
S ⊆ R

Pr[f(D) ∈ S] ≤ eε × Pr[f(D′) ∈ S],

where the probability space is f ’s coin tosses.

1 Δ denotes symmetric difference of two sets and | · | denotes the size when the
argument is a set.
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A closely related notion of (ε, δ)-differential privacy [9] has an additive parameter
that allows the probabilities to diverge when they are both relatively small:

Definition 2 ((ε, δ)-DP privacy). A randomized mechanism f : D → R pro-
vides (ε, δ)-dp if for all adjacent inputs D and D′ and all subsets S ⊆ R

Pr[f(D) ∈ S] ≤ eε × Pr[f(D′) ∈ S] + δ,

where the probability space is f ’s coin tosses.

Our first new definition, εκ-ind-cdp, is an adaptation of ε-differential-privacy
to the computational setting. This adaptation is obtained by considering a ppt
adversary A, and requiring that f “looks differentially private” to every such A.

Definition 3 (IND-CDP privacy). An ensemble {fκ}κ∈N of randomized func-
tions fκ : D → Rκ provides εκ-ind-cdp if there exists a negligible function negl(·)
such that for every nonuniform ppt tm (“distinguisher”) A, every polynomial
p(·), every sufficiently large κ ∈ N, all data sets D, D′ ∈ D of size at most p(κ)
such that |DΔD′| ≤ 1, and every advice string zκ of size at most p(κ), it holds
that

Pr [Aκ(fκ(D)) = 1] ≤ eεκ × Pr [Aκ(fκ(D′)) = 1] + negl(κ),

where we write Aκ(x) for A(1κ, zκ, x) and the probability is taken over the ran-
domness of mechanism fκ and adversary Aκ.

Notice that if the adversary A is allowed unbounded computation time, then the
definition simply says that for any fixed κ the mechanism fκ is (eκ, δκ)-dp for δκ

being negl(κ). The reason we do not consider the computational analogue of εκ-
dp (with δ = 0) is that it ends up being equivalent to information-theoretic ε-dp.
Indeed, for any singleton r ∈ Rκ, we can choose Aκ to be the indicator function
for {r}, implying that Pr[fκ(D) = r] ≤ eεκ Pr[fκ(D′) = r]. This immediately
implies εκ-dp by summing both sides over all r ∈ S for any subset S ⊂ Rκ.

Our second definition, εκ-sim-cdp, is described next. This definition inter-
prets “looks differentially private” differently from our first definition: it says
that f “looks differentially private” if there exists an ε-dp mechanism F (called
simulator) such that F (D) and f(D) are computationally indistinguishable for
every D.

Definition 4 (SIM-CDP privacy). An ensemble {fκ}κ∈N of randomized func-
tions fκ : D → Rκ provides εκ-sim-cdp if there exists an ensemble {Fκ}κ∈N

of εκ-differentially-private mechanisms Fκ : D → Rκ and a negligible function
negl(·), such that for every non-uniform ppt tm A, every polynomial p(·), every
sufficiently large κ ∈ N, every data set D ∈ D of size at most p(κ), and every
advice string zκ of size at most p(κ), it holds that,

|Pr [Aκ(fκ(D)) = 1] − Pr [Aκ(Fκ(D)) = 1]| ≤ negl(κ).

That is, fκ(D) and Fκ(D) are computationally indistinguishable.
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Note that the definition does not require F to be computable in probabilistic
polynomial time; it only has to exist, and be (information theoretically) differ-
entially private.

The definition of sim-cdp requires that there exists a simulator F that acts
in a differentially-private manner on all pairs of adjacent inputs. This suggests
a weakening of the definition, where the order of quantifiers is reversed, i.e.,
instead of requiring a global simulator that works for all pairs of databases, we
require that for any pair of adjacent databases there exists a simulator whose
distributions on these two inputs satisfy the differential privacy condition.

Definition 5 (SIM∀∃-CDP privacy). An ensemble {fκ}κ∈N of randomized
functions fκ : D → Rκ provides εκ-sim∀∃-cdp if for all polynomials p(·), all
sequences {(Dκ, D′

κ)}κ∈N of pairs of datasets such that |Dκ| ≤ p(κ), |D′
κ| ≤ p(κ)

and |DκΔD′
κ| ≤ 1, there exist ensembles {Fκ(Dκ)}κ∈N and {Fκ(D′

κ)}κ∈N, such
that the following two conditions hold:

1. [Fκ is εκ-dp.] For all subsets S ⊂ R:

e−εκ × Pr[Fκ(D′
κ) ∈ S] ≤ Pr[Fκ(Dκ) ∈ S] ≤ eεκ × Pr[Fκ(D′

κ) ∈ S].

2. [fκ(Dκ), fκ(D′
κ) are indistinguishable from Fκ(Dκ), Fκ(D′

κ) respectively.]
For every non-uniform ppt tm A, every polynomial q(·), every sufficiently
large κ ∈ N, and every advice string zκ of size at most q(κ):

|Pr [Aκ(fκ(D)) = 1] − Pr [Aκ(Fκ(D)) = 1]| ≤ negl(κ) for D ∈ {Dκ, D′
κ}

where we write Aκ(x) for A(1κ, zκ, x).

We may also consider an even weaker definition, where the probability
Pr[Fκ(Dκ) ∈ S] is only bounded from above by eε × Pr[Fκ(D′

κ) ∈ S] (and a
second pair of simulators exist for the ordered (D′

κ, Dκ) pair), but as we shall
see in Section 3, it turns out to be equivalent to sim∀∃-cdp.

Robustness of our definitions. Protocols satisfying our definitions retain
their privacy guarantees under sequential composition, and for all but sim∀∃-cdp
we directly prove group privacy (for records); in both cases the privacy param-
eters ε and δ deteriorate linearly with the number of compositions or records,
respectively. Due to space constraints, a detailed exposition is presented in the
full version.Informally, under the definition of group privacy the adversary has
to guess whether two or more elements are simultaneously present or absent in
the database, given the rest of the database. The definition of group privacy is
often applicable when the differentially-private mechanism is preceded by com-
putations that may amplify (up to a constant) the number of records affected
by any individual [19].

Interactive case. For simplicity, current definitions consider only non-
interactive mechanisms. An extension to the interactive case will be presented
in Section 4. As it turns out, a variation of εκ-sim-cdp, called εκ-sim

+-cdp, can
also be defined and proven separate from εκ-sim-cdp (see Section 4).
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3 Relations Among Various Notions of CDP

In this section we establish reductions between the three definitions of com-
putational differential privacy. The first implication, namely, that sim-cdp im-
plies sim∀∃-cdp, which implies ind-cdp, is the easiest (Section 3.1). The proof
that ind-cdp implies sim∀∃-cdp (and thus that the two definitions are equiva-
lent) extends the Dense Model Theorem of [1] and is significantly more involved
(Section 3.2).

3.1 Simulatability Implies Indistinguishability

Theorem 1 (SIM-CDP ⇒ SIM∀∃-CDP ⇒ IND-CDP). If an ensemble
{fκ}κ∈N of randomized functions fκ : D → Rκ provides εκ-sim-cdp, then it also
provides εκ-sim∀∃-cdp; if it provides εκ-sim∀∃-cdp, it also provides εκ-ind-cdp.

Proof. The first implication is by construction, the second follows by a hybrid
argument. The full proof appears in the full version. �	

In the section that follows, we will prove that εκ-ind-cdp ⇒ εκ-sim∀∃-cdp
by giving an extension of the Dense Model Theorem of [1] (which may be of
independent interest).

3.2 Dense Sets and IND-CDP ⇒ SIM∀∃-CDP

First, we define or recall notions of (non-uniform) density, pseudodensity, and
indistinguishability for distributions, closely following [1].

Consider two distributions X and Y defined over R, and a collection A of
randomized predicates A : R → {0, 1}, which may be, for instance, all circuits
of size at most s(κ), where κ is the security parameter.

We say that X is eε-dense in Y if

∀x ∈ R Pr[X = x] ≤ eε · Pr[Y = x].

We define X as δ-indistinguishable from Y with respect to A if

∀A ∈ A |Pr[A(X) = 1] − Pr[A(Y ) = 1]| ≤ δ,

where here and elsewhere in this section we write A(X) for the distribution on
the range of A obtained by applying A to the variable sampled according to X
and the probability space is that of X and A’s coins.

Finally, a “combination” of the two definitions is rather naturally defined as
X being (eε, δ)-pseudodense in Y with respect to A if

∀A ∈ A Pr[A(X) = 1] ≤ eε · Pr[A(Y ) = 1] + δ.

The connections between notions of differential privacy, sim-cdp and ind-cdp
and the above definitions are immediate:
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A randomized mechanism f : D → R is εκ-dp if and only if f(D) is eεκ-dense
in f(D′) for all adjacent pairs D and D′, where the probability space of the
distributions f(D) and f(D′) over R is f ’s randomness.

An ensemble {fκ}κ∈N is εκ-ind-cdp if and only if there is a super-
polynomial function s(κ) = κω(1) such that for all sufficiently large κ, all
adjacent pairs D, D′ ∈ D of size at most s(κ), the distribution fκ(D) is
(eεκ , 1

s(κ) ))-pseudodense in fκ(D′), with respect to the set Aκ of circuits of
size at most s(κ).

Similarly, {fκ}κ∈N is εκ-sim-cdp if there exists an ensemble {Fκ}κ∈N and
a super-polynomial function s(κ) = κω(1) such that all randomized mecha-
nisms Fκ : D → Rκ are εκ-dp and for all sufficiently large κ, all D ∈ D of
size at most s(κ), distributions fκ(D) and Fκ(D) are 1

s(κ) -indistinguishable
for the set Aκ of circuits of size at most s(κ).

It is convenient to consider the two-sided notions of mutually eε-dense and
mutually (eε, δ)-pseudodense sets, where X and Y are eε-dense (resp., (eε, δ)-
pseudodense) in each other. Since the definitions of ind-cdp and sim-cdp are
symmetric in terms of the databases D and D′, all relationships between distri-
butions of f , fκ, and Fκ on D and D′ in the formulations above are, in fact,
mutual.

Reingold et al. [1] showed that pseudodensity is indeed a composition of den-
sity and indistinguishability for some classes of distinguishers. One implication
is immediate: If there are X, Y , and M over R such that M is eε-dense in Y and
X is δ-indistinguishable from M , then X is (eε, δ)-pseudodense in Y (all–with
respect to the same class A of distinguishers). The first claim of the following
theorem establishes the converse (with a caveat that indistinguishability is re-
quired to hold with respect to a class of functions of slightly higher complexity,
as is common in proofs by reduction). The second claim is new to our work, and
is the key to relating ind-cdp and sim∀∃-cdp.

Theorem 2. Let X and Y be distributions over a finite universe R such that
X is (eε, δ)-pseudodense in Y with respect to the family T (A) defined below.

Claim I. There exists a distribution M over R such that M is eε-dense in
Y and X is 4δ-indistinguishable from M with respect to the family A.

Claim II. Furthermore, if Y is eε-dense in X, then it can also be guaranteed
that Y is eε-dense in M (i.e., Y and M are mutually eε-dense).

If A is a family of predicates, we define T (A) as the collection of functions
of the following type:

b(x) =

{
1 if h1(x) + · · · + hk(x) > t;
0 otherwise,

where hi ∈ A∪ Ā, t ∈ N, and k = O(1/δ2 log(eε/4δ))). Ā is the set of negations
of A.
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Proof. Claim I. The proof of Claim I appears in [1], where it is stated for
the case when Y is the uniform distribution (but the proof generalizes to arbi-
trary Y ).

Claim II. Assume towards a contradiction that for any M that is mutually
eε-dense in Y there is a function AM from A that distinguishes it from X with
probability more than μ = 4δ. Note that the same automatically holds for M that
is a convex combination of distributions that are mutually eε-dense in Y , because
the set of such distributions is convex. By the min-max principle of game theory,
or equivalently, duality of linear programming, there exists a convex combination
b̄ of functions from A ∪ Ā that distinguishes any such M from X :

Pr[b̄(X) = 1] > Pr[b̄(M) = 1] + μ. (1)

The function b̄ can be viewed as a distribution over predicates in A∪ Ā.
Arrange elements x of R in the order of decreasing Pr[̄b(x) = 1]. Choose the

set S ⊂ R as the initial part of the list so that Pr[Y ∈ S] = 1/(1 + eε).2

Define YS as follows:

Pr[YS = y] = Pr[Y = y] ·
{

eε if y ∈ S;
e−ε otherwise.

It is easy to verify that YS is a distribution:∑
y∈R

Pr[YS = y] = eε
∑
y∈S

Pr[Y = y] + e−ε
∑
y/∈S

Pr[Y = s]

= eε 1
1 + eε

+ e−ε eε

1 + eε
= 1.

By construction YS and Y are eε-dense in each other, and therefore YS can
be distinguished from X by b̄ with probability at least μ (think of YS as the
“hardest” distribution for b̄ from among those that are mutually eε-dense in Y ).

We make use of the following lemma proved in [20]:

Lemma 1 ([20, Claim 2.3]). Let F : X → [0, 1] be a bounded function, let Z
and W be distributions such that E[F (Z)] ≥ E[F (W )] + μ. Then there is a real
number t ∈ [μ/2, 1] such that

Pr[F (Z) ≥ t] ≥ Pr[F (W ) ≥ t − μ/2] + μ/2.

Applying the lemma to F (x) = Pr[b̄(x) = 1], X and YS , there exists a real t so
that a deterministic function b defined as

b(x) =

⎧⎪⎨
⎪⎩

1 if Pr[b̄(x) = 1] ≥ t + μ/2;
0 if Pr[b̄(x) = 1] ≤ t;
⊥ otherwise,

2 If exact equality cannot be achieved here, we take S to be the largest initial of the
list such that Pr[Y ∈ S] < 1/(1 + eε), and for the next element r of the list, define
Pr[YS = r] ∈ [

Pr[Y = r]e−ε, Pr[Y = r]eε
]

in order to make YS a distribution.
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is such that Pr[b(X) = 1] > Pr[b(YS) �= 0] + μ/2. In other words, classifying
x ∈ R as “X” when b(x) = 1 and “YS” when b(x) = 0 is a good distinguisher
between X and YS (Notice that there is some slack left between b(x) = 1 and
b(x) = 0).

We claim that b(y) = 0 for all y ∈ S. Assume the opposite. By construction
of the set S, b(y) �= 0 for all y ∈ S. Since Y is eε-dense in X (this is the only
time we use this condition), for all y /∈ S it holds that Pr[YS = y] = e−ε Pr[Y =
y] ≤ e−εeε Pr[X = y], i.e., the density of X dominates the density of YS outside
S, including the set where b is zero. Therefore

Pr[b(YS) = 0] =
∑

y/∈S,b(y)=0

Pr[YS = y] ≤
∑

y/∈S,b(y)=0

Pr[X = y] = Pr[b(X) = 0],

which contradicts the fact that Pr[b(X) = 1] > Pr[b(YS) �= 0] + μ/2.
Now we know that b(y) = 0 outside S and we conclude that

Pr[b(Y ) �= 0] = Pr[b(YS) �= 0] · e−ε < (Pr[b(X) = 1] − μ/2) · e−ε.

That is,
Pr[b(X) = 1] > eε · Pr[b(Y ) �= 0] + μ/2. (2)

This would contradict the pseudodensity condition except that b is not part
of the family of functions T (A). The following lemma approximates b with a
function from T (A):

Lemma 2 ([20, Claim 2.4]). Let F : Ω → [0; 1] be a convex combination of
bounded functions from a class G, let Z1, Z2 be two distributions on Ω, and
let α, β > 0. Then there are functions f1, . . . , fk ∈ G (not necessarily distinct)
where k = O(1/α2 · log(1/β)), such that

Pr
[∣∣∣∣F (Zi) −

1
k

(f1(Zi) + · · · + fk(Zi))
∣∣∣∣ > α

]
≤ β for i = 1, 2.

We apply the lemma with parameters α = μ/10, β = e−εμ/10, and F = b̄, we
find an approximation to b with a function b̃ from T (A) with the property that

Pr[b̃(X) = 1] ≥ Pr[b(X) = 1] − e−εμ/10,

Pr[b̃(Y ) = 1] ≤ Pr[b(Y ) �= 0] + e−εμ/10,

Combining these with equation (2) contradicts the pseudodensity of X in Y .
Since we only consider predicates (0-1 functions), the threshold value t can be
taken as an integer. �	

Observe that if Aκ is the set of circuits of size s(κ) for some s(κ) = κω(1) and
we take δ = 1/s(κ), εκ ≤ s(κ), then T (A) consists of circuits of size at most
t(κ) = s(κ)O(1).
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By applying both claims of Theorem 2, we obtain equivalence between the
notions of ind-cdp and sim∀∃-cdp.

Theorem 3. If a family of randomized mechanisms {fκ} : D → Rκ is εκ-ind-
cdp for εκ ∈ O(log κ), it is also εκ-sim∀∃-cdp.

Proof. If {fκ} is εκ-ind-cdp, then there is a super-polynomial function s(κ) =
κω(1) such that for all sufficiently large κ, and D, D′ ∈ D of size at most s(κ)
and |DκΔD′

κ| ≤ 1 the distribution fκ(Dκ) is (eεκ , 1
s(κ) ))-pseudodense in fκ(D′),

with respect to the set Aκ of circuits of size at most s(κ). Let D, D′ be adjacent
data sets of size at most s(κ). The pairs of distributions fκ(D) and fκ(D′),
where fκ(D) is (eε, 1/t(κ))-pseudodense in fκ(D′), are in situation of Claim I
of Theorem 2. Therefore there exists a family of distributions {Fκ(D)}κ∈N such
that (a) Fκ(D) and fκ(D) are 1/t(κ)Ω(1)-indistinguishable for circuits of size
t(κ)Ω(1), and (b) Fκ(D) is eεκ-dense in fκ(D′).

Since, in turn, fκ(D′) is (eεκ , 1/t(κ))-pseudodense in fκ(D), which is indis-
tinguishable from Fκ(D), then fκ(D′) is (eεκ , 1/t(κ)Ω(1))-pseudodense in Fκ(D)
Indeed, for circuits {Aκ} of size t(κ)Ω(1), we have

Pr[Aκ(fκ(D′)) = 1] ≤ eεκ · Pr[Aκ(fκ(D)) = 1] + 1/t(κ) ≤

eεκ ·
(
Pr[Aκ(Fκ(D)) = 1] + 1/t(κ)Ω(1)

)
+ 1/t(κ)

= eεκ · Pr[Aκ(Fκ(D)) = 1] + 1/t(κ)Ω(1),

where the last part uses the conditions εκ = O(log κ) and t(κ) = κω(1).
Thus, we are in the situation of Claim II of Theorem 2 (two distributions,

which are dense and pseudodense in one another). Therefore there exists a
family of distributions {Fκ(D′)}κ∈N, such that they are mutually eεκ-dense in
{Fκ(D)}κ∈N and are 1/s(κ)-indistinguishable from {fκ(D′)}κ∈N by circuits of
size s(κ) for s(κ) =

(
t(κ)Ω(1)

)Ω(1)
= t(κ)Ω(1).

Pictorially the proof of the theorem is represented in Figure 2. �	

fκ(D)fκ(D)fκ(D)

Fκ(D)Fκ(D)

fκ(D′)fκ(D′)fκ(D′)

Fκ(D′)

Claim I−−−−−→ Claim II−−−−−→ ≈ c≈ c ≈ c

Fig. 2. Schematic proof of Theorem 3. X ��� Y means X is pseudodense in Y , X ← Y
means X is dense in Y . Claim I of Theorem 2 is applied to the pair fκ(D) and fκ(D′);
Claim II is applied to the pair Fκ(D) and fκ(D′).
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4 Privacy-Preserving Two-Party Computation

We now extend our definitions to the interactive case. We work in the general
two-party computation setting. A motivating scenario for a two-party “private”
computation involves two hospitals H1, H2 (holding patient records D1, D2) who
would like to compute some statistical function h(D1, D2). Both hospitals are
concerned about the privacy of patient records, and may not be willing or even
legally allowed to share data.

Differentially-private multi-party computation (mpc) was considered by
Beimel et al. [21], who mainly studied the efficiency trade-offs of the following
natural paradigm for differentially-private computation of a function h: design an
ε-dp mechanism ĥ that approximates h and then do secure mpc computation to
obtain ĥ(D1, D2). [21] work only in the semi-honest/honest-majority models as
it allows them to use information-theoretic mpc, which fits well with differential
privacy.

The case of two-party computation (two-pc), however, is somewhat trickier
as information-theoretically secure computation is impossible for generic func-
tionalities [22]. Hence, one must resort to the computational security which in-
terferes with the (standard) information-theoretic notion of differential privacy.

Dwork et al. [9] present a multi-party protocol run on top of a verifiable secret
sharing scheme. Depending on the availability of secret channels, the protocol
may only be secure against a computationally bounded adversary; however, no
definition of computational differential privacy is given.

4.1 Definitions

We will now present our definitions for interactive protocols defined using inter-
active functions [23]. The reason for this choice (instead of interactive Turing
machines) is that the concept of differential privacy is orthogonal to the choice
of the computational model. In addition, many useful privacy mechanisms may
not necessarily be efficiently computable (e.g., noise calibrated to smooth sen-
sitivity [24] or exponential mechanisms [7]). Of course, when considering our
computational definitions, we will require that the function corresponding to
the adversary be implementable using a non-uniform ppt interactive Turing
machine.

Notation. For ensembles {fκ}κ∈N and {gκ}κ∈N of randomized interactive func-
tions fκ, gκ respectively, {〈fκ, gκ〉}κ∈N will denote the ensemble of interactive
protocols defined by them. Further, in an execution 〈fκ, g∗κ〉 with inputs x ∈ D
for the honest party, we will denote the view of the adversary (defined by inter-
active function g∗κ) by VIEWκ,g∗

κ
(x).

Informally, a function ensemble {gκ}κ∈N is said to be an ensemble of effi-
ciently computable randomized interactive functions if every function gκ in the
ensemble can be computed by a (non-uniform) ppt tm (a formal definition can
be found in the full version). We now present our definitions. For an efficiently
computable randomized interactive function gκ, let [gκ] denote the binary string
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representing the interactive (non-uniform) Turing machine (equivalently, circuit)
that implements gκ.

Definition 6. An ensemble {〈fκ(·), gκ(·)〉}κ∈N of interactive protocols, ensures
for {fκ}κ∈N,

– εκ-dp, if for every ensemble {g∗κ}κ∈N of randomized interactive functions,
it holds that the ensemble {VIEWκ,g∗

κ
(x)}κ∈N provides εκ-dp with respect to

x ∈ D.
– εκ-ind-cdp, if for every ensemble {g∗κ}κ∈N of efficiently computable ran-

domized interactive functions, and all sufficiently large κ, it holds that the
ensemble {VIEWκ,g∗

κ
(x)}κ∈N provides εκ-ind-cdp (as per definition 3) with

respect to x ∈ D.
– εκ-sim-cdp, if for every ensemble {g∗κ}κ∈N of efficiently computable random-

ized interactive functions, there exists an ensemble {Fκ}κ∈N of εκ-
differentially-private mechanisms Fκ(·) such that for every x ∈ D, the
probability ensembles {VIEWκ,g∗

κ
(x)}κ∈N and {Fκ(x)}κ∈N

are computationally
indistinguishable.

All three notions are defined symmetrically for the other ensemble {gκ}κ∈N.

A protocol should be “useful” in some sense (analogous to correctness property of
standard two-pc protocols). For example, a two-pc protocol (output denoted
by ĥ(x, y) for inputs x, y) for computing the Hamming distance h(x, y) is (γ, ξ)-
additive-useful [25,21,6] if and only if Pr[|h(x)− ĥ(x)| > γ(κ)] ≤ ξ(κ). We define
and work with a somewhat more general notion, (s, ξ)-usefulness with respect
to a predicate P , which can be found in the full version. We can now define
privacy-preserving two-pc.

Definition 7 (Privacy-preserving two-party computation). An interac-
tive protocol ensemble {〈fκ(·), gκ(·)〉}κ∈N is (s, ξ) εκ-type private two-party
computation protocol for h = (hf , hg) with respect to P if for both fκ, gκ,
the ensemble ensures ε-type and provides (ξ, s)-usefulness for fκ with respect to
predicate P , where type ∈ {dp, ind-cdp, sim-cdp}.

There is rich literature considering notions of security for mpc/two-pc simul-
ation-based security [26,27], super-polynomial simulation [28,29], input indistin-
guishable computation [30], etc. Our notions of private two-pc (definition 7)
can be seen as new notions of “security” where the only concern for the parties is
the privacy of their inputs—here the notion of privacy being (computational) dif-
ferential privacy. As these notions do not demand efficient simulation (note that
even in εκ-ind-cdp, we do not require the “ideal” Fκ is efficiently computable),
they may be easier to achieve; though accuracy may now be the difficult dimen-
sion of this aspect.

We note that although our presentation is only for two-pc, an extension to
mpc is straightforward.

“Ideal/Real” Style Definition of Privacy: ε-SIM+-CDP. We now present
a new definition, εκ-sim

+-cdp, which is of particular interest in the context of
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interactive two-pc (for the non-interactive case, it reduces to εκ-sim-cdp). This
definition is inspired from the “ideal/real” paradigm style definitions used for
defining secure two-pc/mpc (see [31,32]).

Let P1, P2 be two parties, with private inputs a, b respectively, who would like
to compute a function h(a, b). What would be the “ideal” situation for the two
parties? If there were a trusted third party T available, P1, P2 could first fix a
ε-differentially-private mechanism ĥ that would be “useful” for approximating h
according to some metric, and then hand over their inputs a, b to T , who could
then compute ĥ(a, b) with uniformly chosen randomness and provide the output
to both the parties. Clearly, this informally described “ideal process” (which is
literally known as ideal world, in secure mpc literature) provides ε-dp. Thus,
if we had a secure two-pc protocol π that emulates this ideal world for all ppt
adversaries, intuitively π would “look differentially private” to these adversaries.
Moreover, since ĥ is (information-theoretically) differentially private, we can use
any π proven “secure” by simulation and privacy is intuitively maintained even
if the simulation is not efficient.

We now present the formal definition. In what follows, we assume familiarity
with “ideal/real”-paradigm. For a complete and formal description of ideal and
real experiments, we refer the reader to standard texts (e.g., [31,32]). Our def-
inition differs from the standard definition, solely in the sense that the simulator
is not necessarily efficient. Though clear from the definitions, we point out that
we are working with the static corruption model. To maintain consistency with
our notation, our definitions are described via interactive function ensembles.

Definition 8 (SIM+-CDP private two-party computation). An interactive
protocol ensemble {〈fκ(·), gκ(·)〉}κ∈N is (s, ξ) εκ-sim

+-cdp private two-party
computation protocol for h = (hf , hg) with respect to the predicate P if there
exists an εκ-dp randomized mechanism ĥ = (ĥf , ĥg) such that

– Mechanism ĥ provides (s, ξ)-usefulness for h with respect to the predicate P .
– The protocol ensemble {〈fκ(·), gκ(·)〉}κ∈N is a secure two-party computation

protocol ensemble for the randomized functionality ĥ as per the “ideal/real”-
style definition of secure two party computation. (see full version)

Clearly, the definitions of sim-cdp and sim+-cdp are similar in asserting the
existence of simulators whose output is computationally indistinguishable from
the real world’s transcripts. The difference between the definitions is that in the
former the simulator is restricted to being differentially private but otherwise has
unfettered access to the input, while the latter only has access to a differentially-
private output, from which it has to reconstruct the entire view. The proofs of
the following two theorems are provided in the full version.

Theorem 4
1. SIM+-CDP ⇒ SIM-CDP If a protocol ensemble {〈fκ(·), gκ(·)〉}κ∈N satisfies

definition 8, then it also satisfies definition 7 for type=sim-cdp.
2. SIM-CDP �-SIM+-CDP] There exists a protocol ensemble {〈fκ(·), gκ(·)〉}κ∈N

and a function h(·, ·) such that the protocol ensemble {〈fκ(·), gκ(·)〉}κ∈N is a
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(0, 0)-additive-useful private two-party computation protocol for h (computing
h exactly), that provides εκ-sim-cdp but not εκ-sim

+-cdp.

Protocols: Private two-party computation of the Hamming distance.
We now demonstrate the usefulness of our definitions by constructing a sim-
ple and efficient protocol which allows two parties to compute the Hamming
distance between their respective inputs in just two rounds. This protocol will
demonstrate the flexibility that comes with our definitions for designing “pri-
vacy” protocols. Note that our “privacy” definitions makes the problem quite
different from the work on private set intersection protocols (see, for example
[33] and the references therein).

For vectors a, b ∈ {0, 1}n = D define the Hamming distance, denoted h(a, b),
to be the number of positions in which a, b differ (equivalently, the vectors can
be associated with subsets of an n-element universe). Then using additive homo-
morphic encryption and the transformation by [25], we can construct a protocol
private two-pc for approximating h(a, b) more efficient than generic construc-
tions. Due to space constraints, this protocol πh (semi-honest and malicious
versions) along with the proof of following theorem, is presented in full version.

Theorem 5. For every 0 < ε < 1 there exists a γ ∈ O(1) and a constant
ξ (depending only on ε, γ) such that for every a, b ∈ {0, 1}n it holds that the
output ĥ of the protocol πh satisfies the following

Pr[|h∗ − ĥ| ≥ γ] ≤ ξ,

where h∗ = h(a, b) and the probability is taken over the randomness of πh. Fur-
ther, πh provides εκ-sim-cdp.

Note that no protocol which satisfies ε-dp with above accuracy guarantee on
additive error is known so far. For small multiplicative error, however, in the full
version of this paper, we present a protocol, π∗

h, which ensures ε-dp. We also
prove the following theorem there:

Theorem 6. For every 0 < ε, γ, η < 1, there exists δ ∈ Θ(1 − e−γ/2) such that
for every a, b ∈ {0, 1}n satisfying h(a, b) ∈ ω

(
1

ε2δ2 (ln(5n/η))4
)
, it holds that the

output ĥ of the protocol π∗
h satisfies the following

Pr[h∗ ≤ ĥ ≤ (1 + γ)h∗] ≥ 1 − η,

where h∗ = h(a, b) and the probability is taken over the randomness of π∗
h. Fur-

ther, π∗
h provides ε-dp.

The high level idea behind π∗
h is to construct a differentially-private version

of the communication-efficient KOR algorithm based on sketches [34]. This is
done by properly sanitizing the sketches using a standard randomized response
mechanism, which has additive error Θ(

√
n). The two error sources (intrinsic to

KOR and due to randomized response) cannot vanish simultaneously, restricting
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the minimal value of h(a, b) for which π∗
h’s usefulness guarantee hold (its privacy

guarantees are always preserved).
We clarify that although differentially-private protocols compute an approx-

imation to the actual function h, they should not be confused with the funda-
mentally different line of research on “secure approximations” (introduced by
Feigenbaum et al. [35]). Due to space constraints, this discussion, along with
future research directions is deferred to the full version.
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