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We describe an algorithm for discovering regulatory networks 

of gene modules, GRAM (Genetic Regulatory Modules), that

combines information from genome-wide location and

expression data sets. A gene module is defined as a set of

coexpressed genes to which the same set of transcription

factors binds. Unlike previous approaches1–5 that relied

primarily on functional information from expression data, 

the GRAM algorithm explicitly links genes to the factors that

regulate them by incorporating DNA binding data, which

provide direct physical evidence of regulatory interactions. 

We use the GRAM algorithm to describe a genome-wide

regulatory network in Saccharomyces cerevisiae using 

binding information for 106 transcription factors profiled 

in rich medium conditions data from over 500 expression

experiments. We also present a genome-wide location analysis

data set for regulators in yeast cells treated with rapamycin,

and use the GRAM algorithm to provide biological insights into

this regulatory network.

High-throughput biological data sources hold the promise of revolu-

tionizing molecular biology by providing large-scale views of genetic

regulatory networks. Many genome-wide expression data sets are now

readily available, and typical computational analyses have applied

clustering algorithms to expression data to find sets of coexpressed

and potentially coregulated genes1. Recent approaches have used more

sophisticated algorithms; one group of researchers constructed a

probabilistic model that uses expression data to link regulators to reg-

ulated genes2. Their method relies on the assumption that the expres-

sion levels of regulated genes will depend on the expression levels of

regulators, which is a limitation in cases in which the expression level

of the regulator does not change appropriately (e.g., cases of post-tran-

scriptional modification). Other approaches have combined expres-

sion data with additional information, such as shared DNA binding

motifs or Munich Information Center for Protein Sequences (MIPS)

categories3–5, but the use of these data sources provides essentially only

functional or indirect evidence of genetic regulatory interactions.

These methods cannot reliably distinguish among genes that have sim-

ilar expression patterns but are under the control of different regula-

tory networks (see Supplementary Note online for further details).

Large-scale, genome-wide location analysis for DNA-binding regu-

lators offers a second means for identifying regulatory relationships6.

Location analysis identifies physical interactions between regulators

and DNA regions, providing strong direct evidence for genetic regula-

tion. Although helpful, the usefulness of binding information is also

limited, as the presence of the regulator at a promoter region indicates

binding but not function. The regulator may act positively, negatively

or not at all. In addition, as with all microarray-based data sources,

location analysis data contain substantial experimental noise. Because

expression and location analysis data provide complementary infor-

mation, our goal was to develop an efficient computational method

for integrating these data sources. We expected that such an algorithm

could assign groups of genes to regulators more accurately than meth-

ods based on either data source alone.

The GRAM algorithm begins by performing an efficient, exhaustive

search over all possible combinations of transcriptional regulators

indicated by the DNA-binding data with a stringent criterion for

determining binding. Once a set of genes to which a common set of

transcriptional regulators binds is found, the algorithm identifies a

subset of these genes with highly correlated expression, which serves as

a ‘seed’ for a gene module. The algorithm then revisits the binding data

and, using a relaxed binding criterion, seeks to add additional genes to

the module that are similarly expressed and to which the same set of

transcriptional regulators binds. Our algorithm allows genes to belong

to more than one module. (See the Methods section for a complete

description of the GRAM algorithm.)

The GRAM algorithm was applied to genome-wide location data for

106 transcription factors and over 500 expression experiments (details

on the data used are available in Supplementary Table 1 online). We

identified 106 gene modules, containing 655 distinct genes and regu-

lated by 68 of the transcription factors. Figure 1 presents a visualiza-

tion of these results as a graph with edges between gene modules and

regulators.

The gene modules abstraction allowed us to label regulator-module

edges in the graph to indicate whether there is significant evidence 

(P < 0.05) that regulators may be functioning as activators. Because a

gene module provides a link between a set of regulators and the com-

mon expression pattern of a set of genes to which the regulators bind,

we can use the relationship between a regulator’s expression pattern
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and the common expression pattern of genes in a module to infer

whether a regulator acts as an activator. In contrast, the use of genomic

location data alone allows us only to infer the presence of regulators at

promoters, but not to determine the type of interaction. We searched

for activator relationships by examining regulators with expression

profiles that are positively correlated with the expression profiles of

genes in the corresponding modules. Positive correlation indicates that

higher levels of regulator expression correlate with higher levels of

expression of genes in the module and suggests that the transcription

factor positively regulates the expression of genes in the module. We

determined the statistical significance of the activator relationships by

computing correlation coefficients between all transcriptional regula-

tors studied and all gene modules and taking the 5% positive tail of the

distribution of correlation coefficients. Supplementary Table 2 online

presents the 11 activators identified using the method described above.

Ten of these were previously identified in the literature, suggesting that

this analysis produces biologically meaningful results.

Several findings obtained by analysis of the discovered gene modules

suggest that the algorithm identifies biologically relevant groupings of

genes. First, we found that gene modules generally identify groups of

genes that function in a similar biological pathway as defined by the

MIPS functional categorization7 (see Fig. 1 and Supplementary Table 3

online for details). Second, we found the gene modules to be generally

accurate in assigning regulators to sets of genes whose functions are

consistent with the regulators’ known roles. As an example, Gcr1 is a

well-characterized regulator of glucose metabolism8,9; six of the seven

genes identified in the Gcr1 module are enzymes involved in glycolysis

and gluconeogenesis. Additionally, we found that in most cases in

which a gene module is controlled by one or more regulators, there was

previous evidence suggesting that these regulators interact physically or

functionally (see Supplementary Table 4 online). For example, gene

modules identify Hap2-Hap3-Hap4-Hap5, Hap4-Abf1, Ino2-Ino4,

Hir1-Hir2, Mbp1-Swi6 and Swi4-Swi6 interactions. Taken together,

these results provide evidence that the GRAM algorithm identifies not

only biologically related sets of genes, but also relevant factors that are

interacting to control the genes.

Although genome-wide location data alone are potentially useful for

deriving transcriptional regulatory networks, a key feature of the

GRAM algorithm is its ability to compensate for technical limitations

in the location data through the integration of expression data. To

determine binding events in location data, researchers have previously

used a statistical model and chosen a relatively stringent P-value thresh-

old (0.001) with the intention of reducing false positives at the expense

of false negatives6. The GRAM algorithm presents a useful alternative

to using a single P-value threshold to predict binding events, because

our method allows the P-value cutoff to be relaxed if there is sufficient

supporting evidence from expression data. As an example, consider

Hap4, a well-characterized regulator of genes involved in oxidative

phosphorylation and respiration10. The Hap4 modules contain 28

genes that are involved in respiration and show a high degree of coreg-

ulation over the collected expression data sets (Fig. 2). Six of these genes

(PET9, ATP16, KGD2, QCR6, SDH1 and NDI1) would not have been

identified as Hap4 targets using the stringent 0.001 P-value threshold

(P-values range from 0.0011 to 0.0036). Overall, 627 of 1,560 unique

regulator-gene interactions (40%) in the rich medium network discov-

ered by the GRAM algorithm would not have been detected using only

location data and the stringent P-value cutoff.

To further verify the ability of the GRAM algorithm to lower the rate

of false negatives without substantially increasing the rate of false posi-

tives, we performed gene-specific chromatin-immunoprecipitation

(IP) experiments for the factor Stb1 and 36 genes. The profiled genes

were picked randomly from the full set of yeast genes, with representa-

tives selected from four P-value ranges. In these experiments, we found

that Stb1 bound to three additional genes that had P-values between

Figure 1 Rich medium gene modules

network.Visualization of the transcriptional

regulatory network discovered by the GRAM

algorithm as a graph with edges between gene

modules and regulators shows that there are

many groups of connected gene modules and

regulators involved in similar biological processes.

The network consists of 106 modules containing

655 distinct genes regulated by 68 transcription

factors. In most cases in which a gene module 

is controlled by one or more regulators, there 

was previous evidence suggesting that these

regulators interact physically or functionally (see

Supplementary Table 3 online for details). The

directed arrows point from transcription factors 

to the gene modules that they regulate. Blue

arrows indicate discovered activator regulatory

relationships (see Supplementary Table 2 online

and the text for details). Gene modules are

colored according to the MIPS category to 

which a significant number of genes belong

(significance test using the hypergeometric

distribution P < 0.005). Modules containing

many genes with unknown function or an

insignificant number belonging to the same 

MIPS category are colored black. When the gene

modules discovered by the GRAM algorithm were

compared to results generated using location data

alone, the GRAM algorithm yielded almost three

times as many modules significantly enriched for

genes in the same MIPS category.
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0.001 and 0.01 in the genomic location experiments and had thus been

excluded under the stringent cutoff. The GRAM algorithm identified

all three as genes to which Stb1 binds without adding any additional

genes that were not detected in the gene-specific chromatin-IP experi-

ments (see Supplementary Table 5 and Supplementary Methods

online for full details).

We also expected that the gene modules derived by the GRAM algo-

rithm would improve on the biological relevance of gene groupings that

could be inferred from location data only. Because genes that participate

in the same biological pathway often have similar expression patterns,

and genes in a module share not only a common set of transcription

factors but also similar expression patterns, we expected that genes in

modules would be more likely to be functionally related than sets of

genes identified by location data alone. Indeed, we found that gene

modules derived using the GRAM algorithm were almost three times

more likely to show enrichment for genes in the same MIPS functional

category than were sets of genes derived solely from location data.

Similarly, we expected that genes in modules derived by the GRAM

algorithm would be more likely to show independent evidence of

coregulation by the regulators assigned to the module than would sets

of genes obtained using location data alone. One line of evidence for

such an improvement would be enrichment for specific DNA

sequence motifs. We identified 34 transcriptional regulators that bind

to genes in at least one module and have well-characterized DNA

binding motifs in the Transcription Factor (TRANSFAC) database11.

For each of these 34 transcriptional regulators, we constructed two

lists of genes, the first using modules to which the regulator binds

(generated by the GRAM algorithm) and the second using location

data alone (stringent P-value cutoff of 0.001). We then computed from

each list the percentage of genes that contained the appropriate known

motif in the upstream region of DNA. We found that in most cases the

percentage of genes containing the correct motif was higher when we

used modules generated using the GRAM algorithm than when we

used sets of genes generated from location data alone (see Fig. 3 and

Supplementary Table 6).

The use of a very large set of genome-wide location and expression

data allowed us to validate the results of the GRAM algorithm compre-

hensively for the gene modules discussed above through literature

searches, independent chromatin-IP experiments, and analysis for

enrichment for genes in the same MIPS category and for known DNA-

binding motifs. The results of this large-scale validation gave us confi-

dence that the GRAM algorithm would be useful in analyzing new data

sources. Because biological insights are often gained by examining

responses to specialized treatments or environmental conditions, we

were interested in exploring the performance of the GRAM algorithm

on a data set that was smaller and more biologically targeted than the

rich medium data. So, we chose to examine a transcriptional regula-

tory subnetwork involved in the response to Tor kinase signaling.

The Tor proteins are highly conserved and function as critical regu-

lators in the response to nutrient stress12–15. Tor kinase signaling can

be inhibited by the addition of the small macrolide rapamycin, which

mimics nutrient starvation and results in a wide range of physiological

responses including cytoskeleton reorganization, decreased transla-

tion initiation, decreased ribosome biogenesis, amino acid permease

regulation and autophagy16–19. Expression analysis indicates that Tor

signaling also controls transcriptional regulation of metabolic path-

ways involving nitrogen metabolism, glycolysis and the tricarboxylic

acid (TCA) cycle15–17.

The rapamycin response presented an ideal opportunity for applying

the GRAM algorithm to the analysis of a novel transcriptional regula-

tory subnetwork. Previous studies suggest a specific set of regulators that

are likely to function in the transcriptional response to rapamycin15,16.

Also, several publicly available genome-wide expression data sets meas-

uring response after rapamycin treatment are available15,16. More

importantly, the fact that there is little information available about the

transcriptional regulatory network involved and how this transcrip-

tional network may contribute to the overall response to rapamycin

treatment presented an opportunity for new biological insights.

We selected 14 transcriptional regulators that seemed likely to func-

tion in the rapamycin response in S. cerevisiae based on evidence from

Figure 2 The GRAM algorithm integrates genome-wide binding and

expression data and improves on either data source alone. (a) Binding data:

the GRAM algorithm can improve the quality of DNA-binding information

because it uses expression data to avoid a strict statistical significance

threshold. Shown is DNA-binding and expression information for the 

99 genes bound by the regulator Hap4 with a P value < 0.01 using an

earlier statistical model6. The blue-white column on the left indicates

binding P values, and the horizontal yellow line denotes the strict

significance threshold of 0.001. As can be seen, the P values form a

continuum and a strict threshold is unlikely to produce good results. The

blue horizontal lines on the right indicate the 28 genes that were selected

for modules by the GRAM algorithm. As can be seen, 22 (79%) have a 

P value < 0.001, but 6 (21%) have P values above this threshold. The

lower portion of the figure shows together the 28 genes selected by the

GRAM algorithm, and it can be seen that they exhibit coherent expression.

Further, all the selected genes are involved in respiration. Six of these

genes (PET9, ATP16, KGD2, QCR6, SDH1 and NDI1) would not have 

been identified as Hap4 targets using the stringent 0.001 P-value

threshold (P values range from 0.0011 to 0.0036). (b) Expression data: 

the GRAM algorithm can assign different regulators to genes with similar

expression patterns that cannot be distinguished reliably using expression

clustering methods alone. Hierarchical clustering of expression data was

used to obtain the subtree on the left. On the right, the regulators assigned

to genes by the GRAM algorithm are color coded. As can be seen, many

genes with very similar expression patterns are regulated by different

transcription factors.
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the literature, and performed genome-wide location analysis experi-

ments (see Methods and Supplementary Table 7 online for full

details). We ran the GRAM algorithm using the location data for the

14 transcription factors in rapamycin and 22 previously published

expression experiments relevant to rapamycin conditions. We discov-

ered 39 gene modules containing 317 unique genes and regulated by

13 transcription factors (see Fig. 4 and Supplementary Table 8 online).

The GRAM algorithm added 192 pairs of gene-regulator interactions

that would not have been identified with a strict P value (0.001) in the

location analysis experiments. Because genome-wide binding experi-

ments for the rapamycin regulatory network have not been performed

before, it was not possible to verify these interactions comprehensively

using literature searches.

As with the rich medium gene modules network, the rapamycin reg-

ulatory network discovered by the GRAM algorithm had many fea-

tures that were consistent with expectations from the literature.

Twenty-three of the gene modules were found to contain a significant

number of genes (P < 0.05) belonging to a single MIPS category. There

were a total of nine categories, all corresponding to biological

responses associated with rapamycin treatment12–14. We also found

that, in general, regulators were assigned to genes that reflect functions

described in previously published results.

In addition to identifying established regulatory interactions, analy-

sis of the rapamycin gene modules suggested several unexpected inter-

actions in which regulators typically assigned to a particular biological

response also appear to bind genes acting in different biological path-

ways. Below we give several examples of such regulatory interactions.

These findings suggest models of transcriptional regulation of the

rapamycin response that can be validated in further, more directed

studies. A first example of an unexpected regulatory interaction

involves the factors Msn2 and Msn4, which are generally regarded as

stress response factors and have been well studied as activators of stress-

related responses18–21. Unexpectedly, there were three gene modules in

which Msn2 and Msn4 bound to a significant number of genes

involved in the mating pheromone response pathway (P < 0.006). A

second example involves the factor Rtg3, which is generally thought to

regulate directly genes of the TCA cycle and indirectly contribute to

nitrogen metabolism22–25 (products of the TCA cycle are shunted to

nitrogen metabolism pathways in low- or poor-nitrogen conditions).

The gene modules network suggests that Rtg3 may directly regulate

genes involved in amino acid metabolism, and more specifically in

nitrogen metabolism.

A third example of an unexpected regulatory interaction involves

Hap2, a part of the Hap2-Hap3-Hap4-Hap5 complex that has been

well characterized as a regulator of genes involved in respiration22,26.

Indeed, in the rich medium gene modules network, members of the

Hap complex are unique among the 106 regulators profiled as the only

regulators controlling modules that are significantly enriched for genes

involved in respiration (P < 0.005). As expected, Hap2 regulates a mod-

ule of respiration genes under rapamycin conditions. Unexpectedly,

Hap2 was also found to regulate two modules containing genes

involved in nitrogen metabolism. There is some genetic evidence for

such cross-pathway regulation, as Hap2 was previously implicated as a

regulator of two nitrogen metabolism genes27,28. Our results indicate

that Hap2 participates in cross-pathway regulation more extensively

than previously reported.

In addition to suggesting that some transcriptional regulators may

control genes involved in biological pathways different from those

Figure 3 Motif enrichment. Genes in modules discovered by the GRAM

algorithm are more likely to show independent evidence of coregulation by 

the regulators assigned to the module when compared to sets of genes

obtained using genomic location analysis data alone, as demonstrated by an

enrichment for the presence of known DNA-binding motifs. We identified 

34 transcriptional regulators that bind to genes in at least one module and

have well-characterized DNA binding motifs in the TRANSFAC database11.

For each of these 34 transcriptional regulators, we generated a list of genes 

in modules bound by the regulator and a second list of genes bound by the

regulator using location analysis data alone (stringent P value cutoff of

0.001). We then computed the percentage of genes from each list that

contained the appropriate known motif in the upstream region of DNA. In

most cases, the percentage of genes containing the correct motif was higher

when we used modules generated by the GRAM algorithm than when we used

sets of genes generated by location analysis data alone. See Supplementary

Table 6 online for a complete list of transcription factors analyzed.

Figure 4  Rapamycin gene modules network. Analysis of the rapamycin

transcriptional regulatory subnetwork revealed a number of novel biological

insights, including evidence that some transcriptional regulators may 

control genes involved in biological pathways different from those generally

associated with these regulators. Further, analysis of the network suggested

more complex regulatory interactions in which there is communication

among modules. Such complicated network topologies may be important 

for facilitating rapid and flexible responses to changing environmental

conditions. See the text for further details. Thirty-nine modules containing

317 unique genes and regulated by 13 transcription factors were

discovered. Red arrows between transcriptional regulators indicate that the

source transcription factor binds at least one module containing the target

transcription factor. Modules are colored according to the MIPS category to

which a significant number of genes belong (significance test using the

hypergeometric distribution P < 0.05).
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generally associated with these regulators, analysis of the gene modules

network suggests more complex regulatory interactions in which there

is communication among gene modules. Such complicated network

topologies may be important for facilitating rapid and flexible

responses to changing environmental conditions. As an example, we

found that several transcriptional regulators may be involved in a feed-

forward regulatory loop in which the gene encoding a regulator is

bound by another regulator and both regulators bind to a set of com-

mon genes6,29. The regulator Gat1 has been previously identified as a

general activator of nitrogen-responsive genes30. We found that Gat1 is

itself contained in several modules along with genes involved in nitro-

gen metabolism. The transcriptional regulators Dal81, Dal82, Gln3

and Hap2 bind to these gene modules. Interestingly, Gat1 also binds to

several gene modules along with Dal81, Dal82 and Gln3 (see Fig. 4).

Feed-forward mechanisms may be important in regulatory responses

(such as the response to rapamycin) by modulating regulatory sensi-

tivity to sustained rather than transient inputs, providing temporal

control or amplifying the transcriptional response29. These findings

can be validated in further directed experimental studies.

The above analyses indicate that the GRAM algorithm can be useful

for studying transcriptional regulatory networks using genome-wide

location and expression data sources. We have made a Java implemen-

tation of the algorithm publicly available (see Supplementary

Methods online), and believe that as new genome-wide location data

become increasingly available, other researchers will find the algo-

rithm helpful. As demonstrated, the algorithm can integrate sources of

genome-wide location and expression data to help compensate for

technical limitations in the data. Further, the inferred gene modules

networks can give a clearer view of regulation than can either location

or expression data sources alone. We have found that the algorithm is

particularly useful for uncovering how certain regulators may act in

multiple biological pathways. Overall, the GRAM algorithm facilitates

a genome-wide approach to analysis of transcriptional regulatory net-

works that can suggest specific novel regulatory models, which can

then be validated in more directed experimental studies.

METHODS
The GRAM (Genetic Regulatory Modules) algorithm. Below we describe the

operation of the algorithm. Some details are omitted owing to space con-

straints; see the Supplementary Methods online for complete information as

well as a Java implementation of the algorithm.

Let ei denote an expression vector and bi a vector of binding P values for gene

i, where there are ng genes. Let B(i,t) denote the set of all transcription factors

that bind to gene i with a P value less than t, that is, the list of indices j such that

bij < t. Let F ⊆ B(i,t) denote a subset of the transcription factors that bind to i.

Let G(F,t) be the set of all genes i such that for any gene i ∈ G(F,t), F ⊆ B(i,t),

that is, genes to which all the factors in F bind with a given significance thresh-

old. The algorithm begins by going over all genes, and assigning each gene i to

all possible sets G(F,t), where t1 is a high-stringency binding threshold and F

ranges over all subsets of B(i,t).

For every set of transcription factors F, the genes in G(F,t1) serve as candi-

dates for a module regulated by F. For each such set G(F,t1) with a sufficient

number n of genes (e.g., n ≥ 5), the algorithm attempts to find a ‘core’ expression

profile. That is, we are seeking a point c in expression space such that for an

expression similarity threshold sn, the ball centered at c of radius sn contains as

many genes in G(F,t1) as possible. Denote by C(F,t1,c) the ‘core’ set of genes such

that C(F,t1,c) ⊆ G(F,t1) and for each gene i ∈ C(F,t1,c), d(ei,c) < sn, where d is the

Euclidian distance between two points. The threshold sn is determined by using

all genes, and randomly sampling subsets of size n to determine the distribution

of expression distances from a subset to all genes. The problem of finding a

point c for a set of expression vectors is nontrivial, and cannot be optimally

solved in a reasonable time given the dimensionality of the expression space

(>500). Thus, we use a theoretically motivated approximation algorithm that

looks for the central point in all triplets of genes in G(F,t1) (see Supplementary

Methods online for more details).

The genes in C(F,t1,c) are used to initialize a module M(F). Conceptually, we

would like to expand this module by relaxing our criteria for binding if a gene’s

expression profile is sufficiently similar to those in the ‘core.’ To do so, the algo-

rithm calculates a combined P value pi for each gene i that belongs to the

expanded set C(F,t2,c) and does not belong to C(F,t1,c), where t2 > t1. The P

value pi is arrived at by computing independent P values for gene i and each

transcription factor in F and then combining the P values using the Fisher

method. A gene i from C(F,t2,c) is then included in M(F) if pi < t1. This module

initialization and expansion is completed for each feasible F, starting with the

sets containing the largest number of factors and proceeding to the smallest. If a

gene is included in a module M(F), it is masked out (not considered) when

forming modules with factor subsets, M(F ′) where F′ ⊆ F. That is, the algorithm

will seek to explain a gene’s expression using the most specific regulatory pat-

terns. The thresholds t1 = 0.001 and t2 = 0.01 were chosen based on experi-

ments6 that suggested very low false positive rates for a significance threshold of

0.001. Further, the rate of false negatives was found to be relatively high for P

values between 0.01 and 0.001, but decreased markedly (to <3%) thereafter.

Strains. Epitope-tagged strains were generated as described6. Briefly, regulators

were tagged at the C terminus by using homologous recombination to insert

multiple copies of the Myc epitope coding sequence into the normal chromoso-

mal loci of these genes. Insertion of the epitope coding sequence was confirmed

by PCR and expression of the epitope-tagged protein was confirmed by western

blotting analysis.

Growth conditions. Strains containing epitope-tagged regulators were grown in

50 ml YPD broth (yeast extract, peptone, dextrose) at 30 °C. Cells were grown to

an OD600 of 0.7–0.8 and rapamycin was then added to a final concentration of

100 nM. Cells were grown for 20 min at 30 °C in the presence of rapamycin.

Genome-wide location analysis. Genome-wide location analysis was done as

previously described6. Briefly, cells containing an epitope-tagged regulator were

fixed with formaldehyde (1% final concentration) and then harvested by cen-

trifugation. Cells were lysed and then sonicated to shear DNA. DNA fragments

representing chromosomal regions crosslinked to a protein of interest were

enriched by immunoprecipitation with an anti-epitope antibody. After reversal

of crosslinking, enriched DNA was purified. The ends of DNA fragments were

then blunted using T4 DNA polymerase and ligated to previously prepared

linkers. The enriched DNA was then amplified and labeled with a fluorescent

dye by ligation-mediated PCR. A sample of control DNA was similarly

processed and labeled with a different fluorophore. Both IP-enriched and con-

trol DNA were then hybridized to a single DNA microarray. For each factor,

three independently grown cell cultures were processed and scanned to gener-

ate binding information as previously described (see Supplementary Materials

online for complete binding data for the rapamycin experiments).

URL. The latest version of the Java implementation of the GRAM algorithm

may be obtained from the authors’ website at http://psrg.lcs.mit.edu/

GRAM/Index.html.

Note: Supplementary information is available on the Nature Biotechnology website.
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In the version of this article initially published online, the word "and" was omitted from the fourth sentence of the abstract, altering the meaning.

The sentence should read: "We use the GRAM algorithm to describe a genome-wide regulatory network in Saccharomyces cerevisiae using bind-

ing information for 106 transcription factors profiled in rich medium conditions and data from over 500 expression experiments." This mistake

has been corrected for the HTML and print versions of the article.


