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Computational drug discovery is an effective strategy for accelerating and economizing drug discovery and development process.  

Because of the dramatic increase in the availability of biological macromolecule and small molecule information, the applicability of 

computational drug discovery has been extended and broadly applied to nearly every stage in the drug discovery and development 

workflow, including target identification and validation, lead discovery and optimization and preclinical tests.  Over the past decades, 
computational drug discovery methods such as molecular docking, pharmacophore modeling and mapping, de novo design, molecu-

lar similarity calculation and sequence-based virtual screening have been greatly improved.  In this review, we present an overview of 

these important computational methods, platforms and successful applications in this field.
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Introduction 
The process of novel drug discovery and development is 

generally recognized to be time-consuming, risky and costly.  

The typical drug discovery and development cycle, from con-

cept to market, takes approximately 14 years[1], and the cost 

ranges from 0.8 to 1.0 billion USD[2].  Rapid developments in 

combinatorial chemistry and high-throughput screening tech-

nologies have provided an environment to expedite the drug 

discovery process by enabling huge libraries of compounds to 

be screened and synthesized in short time[3, 4].  Although the 

investment in new drug development has grown significantly 
in the past decades, the output is not positively proportional to 

the investment because of the low efficiency and high failure 
rate in drug discovery[5].  Consequently, various approaches 

have been developed to shorten the research cycle and reduce 

the expense and risk of failure for drug discovery.  Computer-

aided drug design (CADD) is one of the most effective meth-

ods for reaching these goals.

CADD is a widely used term that represents computational 

tools and sources for the storage, management, analysis and 

modeling of compounds.  It covers many aspects of drug 

discovery, including computer programs for designing com-

pounds, tools for systematically assessing potential lead candi-

dates and the development of digital repositories for studying 
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chemical interactions[6].  In the post-genomic era, benefiting 

from the dramatic increase in biomacromolecule and small 

molecule information, computational tools can be applied to 

most aspects of the drug discovery and development process, 

from target identification and validation to lead discovery and 
optimization; the tools can even be applied to preclinical tri-

als[5, 7–9], which greatly alters the pipeline for drug discovery 

and development.  Figure 1 shows a flowchart for the tasks 

that computational approaches have been applied to and the 

computational methods used at each stage.  The use of com-

putational tools could reduce the cost of drug development by 

up to 50%[10].

The commonly used computational drug discovery 

approaches can be categorized into structure-based drug 

design (SBDD), ligand-based drug design (LBDD) and 

sequence-based approaches.  SBDD methods, such as molecu-

lar docking and de novo drug design, rely on the knowledge of 

the structure of the target macromolecule, which are mainly 

obtained from crystal structures, NMR data and homology 

models[11].  In the absence of three-dimensional (3D) structures 

of potential targets, LBDD tools, including quantitative struc-

ture-activity relationship (QSAR), pharmacophore modeling, 

molecular field analysis and 2D or 3D similarity assessment, 
can provide crucial insights into the nature of the interactions 

between drug targets and ligands, which allows predictive 

models that are suitable for lead discovery and optimization 

to be constructed[12].  In recent years, to deal with situations 

that neither the target structure nor the ligand information is 
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available, sequence-based approaches that use bioinformatic 

methods to analyze and compare multiple sequences have 

been developed to identify potential targets from scratch and 

to conduct lead discovery[13, 14].  Currently, all single methods 

are unable to fulfill the practical needs of drug discovery and 
development.  Therefore, combinational and hierarchical strat-

egies that employ multiple computational approaches have 

been frequently and successfully used.  

The efficiency, accuracy and speed of these computational 

methods largely depend on several technical aspects, includ-

ing conformation generation and sampling, scoring functions, 

optimization algorithms, and molecular similarity calcula-

tions[7, 11, 15].  In this paper, we focus on these topics and the 

widely used computational tools in the fields of target identifi-

cation and lead discovery and address some of the most recent 

methodologies, platforms and applications.

Methodologies and platforms 
Some remarkable methodologies and platforms focused on 

computational drug discovery and development have been 

developed and constructed.  In this section, several methodol-

ogies and platforms that involve target identification, docking-
based virtual screening, conformation sampling, scoring func-

tions, molecular similarity calculation, virtual library design 

and sequence-based drug design are summarized.  These 

aspects are intimately linked, and improvements in any aspect 

could benefit the others (Figure 2).

Target identification
As the first stage in the drug discovery pipeline, the identifica-

tion of drug targets from large quantities of candidate macro-

molecules is both important and challenging[16].  The current 

major tools for target identification are genomic and proteomic 
approaches, which are laborious and time-consuming[17].  

Therefore, to complement the experimental methods, compu-

tational tools and platforms, including reverse docking and 

pharmacophore mapping, have been developed.

TarFisDock is a web server that identifies drug targets using 
a reverse docking strategy to seek all possible binding proteins 

for a given small molecule[18].  The development of TarFis-

Dock was based on the widely used docking program, DOCK 

(version 4.0)[19, 20].  This platform consists of a front-end web 

interface written in PHP and HTML with MySQL as database 

system.  DOCK is used as a back-end tool for reverse dock-

ing.  The advantage of TarFisDock is obvious; it could be a 

valuable tool for identifying potential targets for a compound 

with known biological activity, a newly isolated natural prod-

uct or an existing drug whose pharmacological mechanism is 

unclear.  In addition, this platform is also able to find poten-

tial targets that could be responsible for the toxicity and side 

effects of a drug, which could allow for the prediction of the 

off-target effects of a drug candidate.  Indeed, studies have 

shown that off-target effects have been largely responsible for 

the high attrition rate in drug development[21].  Furthermore, 

TarFisDock could provide valuable information for construct-

ing drug target networks in order to study the drug-target 

interaction in a more systematic way.  The reliability of this 

methodology has been tested on vitamin E and 4H-tamoxifen 

by identifying their putative binding proteins.  The results 

indicated that TarFisDock could predict 50% of the reported 

corresponding targets.  However, this method still has certain 

limitations: (1) the protein entries are not sufficient to cover 

all the protein information of disease related genomes; (2) the 

flexibility of the proteins is not considered during the docking 
procedure; and (3) the scoring function, which was intended 

to evaluate small molecules, may not be accurate enough for 

evaluating reverse docking[18].

A web-accessible potential drug target database (PDTD) 

was constructed for TarFisDock.  This database currently 

contains more than 1100 protein entries with 3D structures 

Figure 1.  Multiple computational drug discovery approaches that have been applied in various stages of the drug discovery and development pipeline, 

including target identification and validation, lead discovery and optimization, and preclinical tests.
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obtained from the Protein Data Bank.  The general informa-

tion for these proteins was extracted from the literature and 

several online databases, such as TTD[22], DrugBank[23], and 

Thomson Pharma.  This database contains diverse information 

on more than 830 potential drug targets, and each drug target 

has structures in both the PDB and MOL2 formats.  Informa-

tion on related diseases, biological functions and associated 

signaling pathways has also been collected.  All of the targets 

were classified according to their function and their related 

diseases.  PDTD has a keyword search function for parameters 

such as the PDB ID, the target name and the disease name[24].  

As a comprehensive and unique repository of drug targets, 

it could be used for in silico drug target identification, virtual 
screening, and the discovery of secondary effects for existing 

drugs.

Another important issue in target identification is finding 

the best interaction mode between the potential target can-

didates and the small molecule probes.  In addition to the 

reverse docking method, pharmacophore modeling and map-

ping can be used to identify the optimal interaction mode.  A 

pharmacophore model is the spatial arrangement of features 

essential for a molecule to interact with a specific target recep-

tor.  PharmMapper is the first web-based tool to use a ‘reverse’ 
pharmacophore mapping approach to predict potential drug 

targets against any given small molecule[25].  However, the 

PharmMapper server requires a sufficient number of avail-

able pharmacophore models that describe the binding modes 

of known ligands at the binding sites.  Thus, a large, in-house 

database of pharmacophore models annotated with their 

target information was constructed (PharmTargetDB).  The 

target protein structures in complex with small molecules 

were carefully extracted from the DrugBank[26], BindingDB[27], 

PDBBind[28], and PDTD[24] databases, and over 7000 pharma-

cophore models (covering information for over 1500 drug 

Figure 2.  Important methodologies and platforms in the computational drug discovery field introduced and discussed in this article, with a focus on 
target identification and lead discovery fields.
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targets) based on the complex structures were generated.  A 

sequential combination of triangle hashing (TriHash) and 

genetic algorithm (GA) optimization was adopted to identify 

the pharmacophore that best fit the task.  Benefiting from the 
highly efficient and robust triangle hash mapping method, 

PharmMapper is computationally efficient and has the ability 
to carry out high throughput screens.  The algorithm is highly 

automated, and the interface is user friendly.  For experienced 

users, optional parameters controlling speed and accuracy and 

the candidate targets subset can be freely customized.  The 

major limitation of the program is that the pharmacophore 

database only includes drug targets that have PDB structures 

with a co-crystallized ligand.  However, PharmTargetDB is 

updated periodically as the number of structures deposited in 

PDB grows[25].

Docking-based virtual screening 

Virtual screening based on molecular docking has become 

one of the most widely used methods of SBDD.  The primary 

criteria for any docking method are docking accuracy, scoring 

accuracy, and computational efficiency, which are all strongly 
influenced by the conformational searching method[29, 30].  

Molecular docking is a typical optimization problem; there-

fore, it is difficult to obtain the global optimum solution.  Most 
conformational optimization methods in docking programs 

can only deal with a single objective, such as the binding 

energy, shape complementarity, or chemical complementar-

ity.  This type of method is not effective for solving real-world 

problems, which normally involve multiple objectives[31].  

Therefore, an optimization algorithm that comprises several 

objectives and results in more reasonable and robust bind-

ing modes between ligands and macromolecules is urgently 

needed.

A newly developed docking methodology, GAsDock, 

uses an entropy-based multi-population GA to optimize the 

binding poses between small molecules and macromolecule 

receptors[32].  Information entropy was employed in the GA 

for optimization, and contracted space was used as the con-

vergence criterion, ensuring that GAsDock can converge rap-

idly and steadily.  A validation test docking known inhibitors 

into the binding pockets of thymidine kinase (TK) and HIV-1 

reverse RT indicated that GAsDock is more accurate than 

other docking programs, such as GOLD[33], FlexX[33], DOCK[33], 

Surflex[30], and Glide[29].  To increase the accuracy and speed of 

the process, an improved adaptive genetic algorithm has been 

developed that supports a flexible docking method.  Some 

advanced techniques, such as multi-population genetic strat-

egy, entropy-based searching technique with self-adaption 

and quasi-exact penalty, were introduced into this algorithm.  

A new iteration scheme was also employed in conjunction 

with these techniques to speed up the optimization and con-

vergence processes, making this method significantly faster 

than the old method[34].  In addition, two sets of multi-objec-

tive optimization (MO) methods, denoted MOSFOM (Multi-

Objective Scoring Function Optimization Methodology), that 

simultaneously consider both the energy score and the contact 

score were developed.  MOSFOM primarily emphasizes a new 

strategy to obtain the most reasonable binding conformation 

and increase the hit rates rather than to accurately predicting 

the binding free energy[31].

Conformation sampling

One of the imperative aspects of drug design and develop-

ment is to perceive the bioactive conformations of the small 

molecules that determine the physical and biological proper-

ties of the molecules.  Many of the drug discovery methods, 

such as molecular docking, pharmacophore construction and 

matching, 3D database searching, 3D-QSAR, and molecular 

similarity analysis, involve a conformational sampling pro-

cedure to generate conformations of small molecules in the 

binding pocket and a scoring phase to rank these conforma-

tions.  A practical conformation ensemble should guarantee 

that the conformers are energy reasonable and span the con-

formational space in an appropriate amount of time.  Other 

sophisticated criteria, such as pharmacophore and binding 

pocket mapping, have also been implemented to sample the 

conformers, making the conformation generation process a 

multi-objective optimization process[35].

A highly efficient conformational generation method named 
Cyndi, which is based on the multi-objective evolution algo-

rithm (MOEA), has been developed.  Using multiple objectives 

to control energy accessibility as well as geometric diversity, 

Cyndi is capable of searching the conformational space in 

nearly constant time and of sampling the Pareto frontier at 

which both the energy and diversity features are favored.  The 

conformers are encoded into GA individuals with information 

on the dihedral torsions of the rotatable bonds; the VDW and 

the torsional energy terms are two distinctive objectives for 

separating the generated conformers in energy space using the 

Tripos force field[36].  Cyndi ensures that the generated confor-

mation ensemble simultaneously meets multiple criteria, such 

as low energy and geometric diversity, instead of concentrat-

ing on just one criteria[35].  Recently, Cyndi was updated to 

incorporate the MMFF94 force field to more rationally assess 
the conformational energy.  A comparison between Cyndi 

and MacroModel integrated in Maestro V7.5 (Schrodinger 

Inc), focusing on the balance between the sampling depth of 

the conformational space and the conformational costs with 

respect to the algorithm method used has been performed.  

MacroModel was shown to have comparable performance 

to Cyndi in terms of retrieving the bioactive conformations, 

while Cyndi performed better at discovering bioactive con-

formations in the shortest amount of time with regard to the 

efficiency of the conformation sampling[37].

Scoring function

The scoring function is an essential component in virtual 

screening.  One major scoring method is the knowledge-

based scoring method, which typically extracts structural 

information from experimentally determined protein-ligand 

complexes and employs the Bolztmann law to transform 

the atom pair preferences into distance-dependent pairwise 
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potentials[38–41].  The potential of mean force (PMF) scoring 

function can convert structural information into free energy 

without any knowledge of the binding affinities and is there-

fore expected to be more applicable.  This method implicitly 

balances many opposing contributions to binding, such as 

solvation effects, conformational entropy and interaction 

enthalpy[40].  Several remarkable methodologies focused on 

these fields are introduced below.
A kinase family-specific PMF scoring function named 

kinase-PMF was developed with a kinase data set of 872 com-

plexes from the PDB database to assess the binding of ATP-

competitive kinase inhibitors[42].  This scoring function inherits 

the functional form and atom type of PMF04[43].  Compared 

to eight other commonly used scoring methods, kinase-PMF 

had the highest success rate in identifying not only positive 

compounds from decoys but also crystal conformations.  Thus, 

this method could allow researchers to screen and optimize hit 

compounds in kinase inhibitor development[42].

An improved PMF scoring function named KScore, which 

is based on several diverse training sets and a newly defined 
atom-typing scheme using 23 redefined ligand atom types, 

17 protein atom types and 28 newly introduced atom types 

for nucleic acids, has been developed.  In comparison with 

the existing PMF potentials, such as PMF99 and PMF04, the 

pairwise potentials for different atom types used in KScore 

have been significantly improved, particularly in the field of 
reflecting experimental phenomena, including the interaction 
distances and the strengths of hydrogen bonding, electrostatic 

interactions, VDW interactions, cation-π interactions and 
aromatic stacking.  KScore is a powerful tool for distinguish-

ing strong binders from a series of compounds and can be 

applied to large-scale virtual screening.  In addition, further 

improvements should be possible by modifying the atom-

typing scheme and diverse training sets[44].  KScore has been 

integrated into the previously mentioned molecular docking 

program GAsDock[32].

On the basis of the concept and formalism of PMF and a 

novel iteration method, a knowledge-based scoring function 

named IPMF was developed.  This scoring function integrates 

additional experimental binding affinity information into the 
knowledge base as complementary data to the generally used 

structural information.  The employed iteration method is to 

extract the 3D structural information and the binding affinity 
information in order to yield an “enriched” knowledge-based 

model.  The performance of IPMF was evaluated by scoring 

a diverse set of 219 protein-ligand complexes and comparing 

the results to seven commonly used scoring functions.  As a 

result, the IPMF score performs best in the activity predic-

tion test.  In addition, when re-ranking binding poses, IPMF 

also demonstrated marginal improvements over the other 

evaluated knowledge-based scoring functions.  These results 

suggest that the additional binding affinity information can 

be used not only for developing scoring functions but also for 

improving their ability to predict binding affinities.  The IPMF 
approach provides a well-defined scheme to introduce bind-

ing information into typical statistical potentials, which may 

be applicable to other knowledge-based scoring functions[45].

Molecular similarity methods

As the cornerstone of structure-activity relationship (SAR) 

and structural clustering analysis, molecular similarity is a 

pivotal concept in LBDD.  Similarity-based virtual screening 

and candidate ranking are considered to be one of the most 

powerful tools in medicinal chemistry[46, 47] and have been 

successfully applied in a number of cases.  Similarity search-

ing programs can generally be categorized into 2D and 3D 

similarity according to whether 3D conformation information 

is considered.  2D similarity methods are efficient for quickly 
profiling neighboring compounds.  However, it may to some 
extent provide different hits for the same queries as different 

2D similarity definitions target different aspects of the infor-

mation.  This method also tends to discover close structural 

analogues instead of novel scaffold hits[48].  However, 3D simi-

larity methods typically consider multiple aspects of the 3D 

conformation, including pharmacophores, molecular shapes, 

and molecular fields.  3D methods can be conveniently used to 
accomplish scaffold hopping to identify novel compounds.

Based on the pharmacophore matching approach, which 

was used as the engine of the previously mentioned Pharm-

Mapper Server[25], a method named SHAFTS (SHApe-FeaTure 

Similarity) has been developed for rapid 3D molecular similar-

ity calculation.  This method adopts hybrid similarity metrics 

of molecular shape and colored (or labeled) chemistry groups 

annotated by pharmacophore features for 3D calculation and 

ranking in order to integrate the strength of both pharmacoph-

ore matching and volumetric similarity approaches.  The trip-

let hashing method is used to enumerate fast molecular align-

ment poses.  The hybrid similarity consists of shape-densities 

overlaps and pharmacophore feature fit values and is used to 
score and rank alignment modes.  SHAFTS achieved superior 

performance in terms of both overall and early stage enrich-

ments of known actives and chemotypes compared to other 

ligand-based methods[48].  SHAFTS has been integrated into 

ChemMapper Server (unpublished result).

Spherical harmonic (SH) is a set of orthogonal spherical 

functions that can easily represent the shape of a closed curve 

surface, such as a molecular surface.  SH expansion theory has 

been successfully applied in virtual screening, protein-ligand 

recognition, binding pocket modeling, molecular fragment 

similarity, and so forth.  SHeMS is a novel molecular shape 

similarity comparison method derived from SH expansion.  In 

this method, the SH expansion coefficients are weighted to cal-
culate similarity, leading to a distinct contribution of overall 

and detailed features to the final score.  In addition, the refer-

ence set for optimization can be configured by the user, which 
allows for system-specific and customized comparisons.  A 

retrospective VS experiment on the directory of useful decoys 

(DUD) database and principal component analysis (PCA) 

reveals that SHeMS provides dramatically improved perfor-

mance over the original SH (OSH) and ultra-fast shape recog-

nition (USR) methods[49].
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Virtual library construction

De novo drug design aims to chemically fill the binding sites of 
target macromolecules.  One of the critical challenges of this 

process is to select fragment sets that have the best potential to 

be parts of new drug leads for a given target.  Virtual library 

construction including focused library, targeted library and 

primary screening library has been suggested as one way to 

overcome this challenge[50].  Another challenge is to set up 

proper criteria for product judgement.  To solve this problem, 

drug-likeness and structural diversity have been introduced 

into library design to reduce the size and increase the screen-

ing efficiency of the constructed libraries.  
Focused libraries concentrate on one particular target and 

are built on the basis of a lead compound or pharmacoph-

ore, while targeted libraries are designed to seek drug leads 

against specific targets[14].  A new efficient approach that 

adopts the advantages of both focused and targeted libraries 

and integrates technologies from docking-based virtual screen-

ing and drug-like analysis was established to build, optimize 

and assess focused libraries.  A software package named 

LD1.0 was successfully developed using the new approach[51].  

Building blocks are selected from given fragment databases to 

create a series of virtual libraries.  The virtual libraries are then 

optimized by library-based GA and evaluated on the basis of 

specified criteria such as docking energy, molecular diversity 
and drug-likeness.  GA retains libraries with higher scores and 

creates new libraries to form the next generation of focused 

libraries.  Once the termination condition is satisfied, GA opti-
mization ends[51].

Sequence-based drug design

The 3D structures of most proteins have not previously been 

determined, and many of the proteins do not even have a 

known ligand.  In this situation, neither structure-based 

methods nor ligand-based methods can be employed to con-

duct drug discovery and development research.  Therefore, 

a method to predict ligand-protein interactions (LPIs) in 

the absence of 3D or ligand information is urgently needed.  

Recently, a sequence-based drug design model for LPI was 

constructed solely on the basis of the primary sequence of pro-

teins and the structural features of small molecules using the 

support vector machine (SVM) approach[13].  This model was 

trained using 15 000 LPIs between 626 proteins and over 10 000 

active compounds collected from the Binding Database[52].  In 

the validation test of this model, nine novel active compounds 

against four pharmacologically important targets were found 

using only the sequence of the target.  This is the first example 
of a successful sequence-based drug design campaign[13].

Applications
The newly developed computational drug discovery 

approaches have been successfully applied in several cases, 

which suggests that these methods may further emphasize the 

role of computational drug discovery in the drug R&D work-

flow.  

Application of computational methods to target identification
The combinational strategy of the reverse docking tools Tar-

FisDock and the PDTD database have been successfully used 

to identify the targets for several bioactive compounds whose 

in vivo targets are unknown.  Colonization of the human stom-

ach by the pathogenic bacterium Helicobacter pylori is a major 

cause of gastrointestinal illnesses.  However, because of the 

lack of mature protein targets, discovering anti-H pylori agents 

is a daunting task.  Using the active natural product discov-

ered by anti-H pylori screening as a probe, potential binding 

proteins were screened from PDTD using the reverse docking 

tool TarFisDock.  A subsequent homology search indicated 

that among the 15 candidates discovered by reverse dock-

ing, only diaminopimelate decarboxylase (DC) and peptide 

deformylase (PDF) had homologous proteins in the H pylori 

genome.  Enzymatic assays demonstrated that the natural 

product and one of its analogs are potent inhibitors against H 

pylori PDF (HpPDF), with IC50 values of 10.8 and 1.25 μmol/L, 
respectively.  The X-ray crystal structures of apo-HpPDF and 

inhibitor-HpPDF complexes were determined, demonstrating 

at the atomic level that HpPDF is a potential target for screen-

ing new anti-H pylori agents[53].  

A natural component of ginger, [6]-gingerol, has been 

reported to exhibit anti-inflammatory and antioxidant prop-

erties and exert substantial anticarcinogenic and antimuta-

genic activities[54].  Despite its potential efficacy in cancer, the 
mechanism by which it exerts its chemopreventive effects was 

elusive.  By using TarFisDock, [6]-gingerol was docked to each 

target in PDTD to identify its potential in vivo targets.  The 

top 2% of protein hits from the ranked list were considered 

to be potential target candidates.  Subsequent experimental 

data revealed that [6]-gingerol can effectively suppress tumor 

growth in nude mice by inhibiting leukotriene A4 hydrolase 

(LTA4H).  These findings indicated a crucial role for LTA4H in 

cancer and supported the anticancer role of [6]-gingerol in tar-

geting LTA4H to prevent colorectal cancer[55].

Sphingosine-1-phosphate (S1P) is a sphingolipid metabo-

lite that regulates many cellular and physiological processes, 

including cell growth, survival, movement, angiogenesis, 

vascular maturation, immunity and lymphocyte traffick-

ing[56–58].  Although S1P could exert its biological function by 

binding to five S1P receptors on the cytomembrane, consider-

able evidence has suggested that S1P has direct intracellular 

targets.  Using an in silico target identification approach, S1P 
was discovered to specifically bind to the histone deacetylases 
HDAC1 and HDAC2 to regulate histone acetylation[59].  S1P 

was also found to be a missing cofactor for the E3 ubiquitin 

ligase TRAF2[60].  These achievements illustrate the pivotal role 

of S1P in the “inflammation-cancer” chain-related TNFα sig-

naling pathway and in the regulation of gene expression and 

transcription.

Applications of computational methods in lead discovery

RhoA, one of the most characterized member of the Rho 

GTPase family, is essential for multiple cellular processes, 
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including cytoskeletal rearrangement, gene expression, mem-

brane trafficking as well as cell adhesion, migration, differ-

entiation, proliferation and apoptosis[61–63].  This protein is a 

promising target for treating cardiovascular diseases.  Using a 

docking-based virtual screening strategy in conjunction with 

chemical synthesis and bioassays, a series of first-in-class small 
molecular RhoA inhibitors were discovered from the SPECS 

database.  A hierarchical docking strategy was adopted: 

DOCK4.0[19] was used for the initial screening, and the stan-

dard DOCK score was used to rank the resulting list; the top 

3000 candidates were further docked and ranked by their new 

scores with Glide in standard precision (SP) mode[29, 64].  In the 

end, eight compounds showed high RhoA inhibition activities, 

and two of them showed significant inhibitory effects against 
PE-induced contraction in thoracic aorta artery rings[65].

Insulin-like growth factor-1 receptor (IGF-1R), a receptor 

tyrosine kinase, plays a pivotal role in signaling pathways 

involved in cell growth, proliferation and apoptosis[66].  IGF-

1R has been shown to be overexpressed in many human can-

cers, which suggests it might be a promising target for cancer 

therapy[67].  Pharmacophore-based virtual screening combined 

with molecular docking was applied hierarchically to dis-

cover IGF-1R inhibitors.  Beginning with the complex crystal 

structure of IGF-1R and its inhibitor, pyridine-2-one, the key 

interactions between the protein and the ligand at the ATP-

binding site were used to construct a pharmacophore model.  

The SPECS database was screened using this model.  The top 

ranked hits were then docked to the ATP-binding site using 

Glide[29, 64].  This strategy led to the identification of a series 

of novel thiazolidine-2,4-dione analogues as potential IGF-1R 

inhibitors; the molecules demonstrate favorable inhibitory 

potency and selectivity against IGF-1R over insulin resistance 

(IR)[68].

A prospective application of the LBDD program SHAFTS 

is the discovery of novel inhibitors for p90 ribosomal S6 pro-

tein kinase 2 (RSK2).  Overexpression and aberrant activation 

of RSK2 have been linked to many human diseases, such as 

breast cancer, prostate cancer, and human head and neck 

squamous cell carcinoma[69].  Using the putative 3D conforma-

tions of two weakly binding RSK2 inhibitors with moderate 

activity as the query templates, 16 compounds with IC50 lower 

than 20 μmol/L, which would be missed by conventional 2D 
methods, were identified via chemotype switching directed 

by the SHAFTS calculation.  The most potent hits show low 

micromolar inhibitory activities specifically for RSK2, and 

one compound also exhibits potent anti-migration activity in 

MDA-MB-231 tumor cells[70].

In another study, a series of novel small molecule inhibi-

tors of cyclophilin A (CypA) were identified using a de novo 

drug design approach.  CypA plays an essential role in many 

biological processes, including enhancing the rate of protein 

folding/unfolding[71, 72], inhibiting the serine/threonine phos-

phatase activity of calcineurin[73, 74], facilitating viral replication 

and infection[75, 76], and inducing neuroprotective/neurotrophic 
effects[77, 78].  In addition, CypA has been reported to be over-

expressed exclusively in cancer cells, particularly in solid 

tumors, suggesting that CypA is an important regulator of car-

cinogenesis[79].  The identification of potent, structurally novel 
small molecule CypA inhibitors is urgently needed, as the 

most currently available CypA inhibitors are primarily natural 

products and peptide analogs that may face pharmacokinetic 

problems.  Using the fragment structures of previously discov-

ered CypA inhibitors[80] as building blocks, a focused combi-

natorial library containing 255 molecules was designed using 

the LD1.0[51] program.  By applying a docking-based virtual 

screening strategy that targets the binding pocket of CypA, 16 

compounds were selected for synthesis and bioassay.  Accord-

ing to the experimental results, these compounds all showed 

high CypA inhibitory activities.  The binding affinity and 

inhibitory activity of the most potent compound among the 

identified novel CypA inhibitors are approximately 10 times 
more potent than the best previously known inhibitor[81].  

Outlook
Great progress has been made in methodology development 

and the application of computational drug discovery, resulting 

in a paradigm change in both industry and academics.  Tak-

ing advantage of computational methods, potent hits can be 

obtained in a matter of weeks[82].  Searching for new chemical 

entities has led to the construction of high quality datasets and 

libraries that can be optimized for either molecular diversity 

or similarity.  In addition, distributed computing has become 

more popular in large-scale virtual screening, in part because 

of increasingly powerful technology[6].

Although it is apparent that computational drug discov-

ery methods have great potential, one should not rely on 

computational techniques in a black box manner and should 

beware of the Garbage In-Garbage Out (GIGO) phenomenon.  

The in silico components in research must still be coupled 

with experiment resources, and computational discovery 

tools are not substitutions for the more important in cerebro 

component[9,  83,  84].  In the future, in addition to increasing the 

accuracy and effectiveness of existing technologies, the most 

important tendency in computational drug discovery field 

will be the integration of computational chemistry and biology 

together with chemoinformatics and bioinformatics, which 

will result in a new field known as pharmacoinformatics[14, 85].  

Inspired by the completion of the human genome and numer-

ous pathogen genomes, great efforts will be made to under-

stand the role of gene products in order to exploit their func-

tions, which could be of great help for discovering new drug 

targets[86].  Computational methods involving target identifi-

cation will become more attention-getting[87, 88], and designed 

small molecules will also be extensively used as probes for 

functional research[89, 90].
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