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We conduct a numerical study to determine the in�uence of magnetic 	eld and thermal radiation on both velocity and temperature
distributions in a single blood vessel. �e model here assumes that blood is a Newtonian incompressible conducting �uid with
radially varying viscosity due to hematocrit variation. �e transient equations of momentum and energy transport governing the
�ow in an axisymmetric con	guration are solved numerically using a semi-implicit 	nite di
erence method. Results are presented
graphically and discussed both qualitatively and quantitatively from the physiological point of view. �e results of this work may
enhance current understanding of the factors that determine the e
ects of hyperthermia treatment on tumor tissues.

1. Introduction

Blood �ow in a large blood vessel has a profound in�uence
on the e�ciency of thermal therapy treatment [1–3]. In
pathological situations, thermal radiation therapy is one of
the treatments employed by medical practitioners [4–6]. �e
procedure involves transmitting heat below the skin surface
into tissues and muscles. Deep heat speeds up healing by
increasing blood �ow to the injury. Electromagnetic heat,
such as shortwaves andmicrowaves, sends heat up to 2 inches
into the tissue and muscles. It works best for injuries in
joints, muscles, and tendons. Heat therapy may help reduce
pain. Moreover, hyperthermia treatment has been demon-
strated as e
ective during cancer therapy in recent years. Its
objective is to raise the temperature of pathological tissues
above cytotoxic temperatures (41–45∘C) without overexpos-
ing healthy tissues [7, 8]. Temperature distribution within
tissues primarily depends on tissue thermal conductivity, the
heating source’s power deposition pattern characteristics, and
heat transfer resulting from blood �ow [9–11]. An important
source of temperature nonuniformity is the presence of large
vessels entering the heated volume and carrying blood at a
lower systemic temperature (37∘C). �e design of delivered

power devices and numerous theoretical, experimental, and
clinical studies have demonstrated that large blood vessels
may produce localized cooling regions within heated tissues
during hyperthermia treatment [12, 13]. Kolios et al. [14]
demonstrated the e
ect of large blood vessel in heated
tissues and showed that the dissipation of heat from heated
tissues was carried out by convection through blood �ow
and also by conduction process. A numerical study on the
impact of large vessels on the temperature uniformity during
hyperthermia treatment assuming steady-state condition was
conducted by Creeze and Lagendijk [15]. �ey reported that
the presence of a large vessel may result in nonuniform
temperature resulting in possible underdosage. Cho and
Hyun [16] assumed a sinusoidal variation of the velocity at
the pipe inlet in a numerical study of pulsatile �ow and heat
transfer characteristics within a pipe. Seo Young Kim et al.
[17] analyzed numerically the heat transfer characteristics
of fully developed pulsatile �ow in a channel, assuming a
sinusoidal variation of the velocity at the inlet of the channel.
In recent time, several authors have also investigated the
�ow structure and heat transfer characteristics of Newtonian
and non-Newtonian �uid models in order to understand
the physiological �ow systems [18–21]. However, in the large
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Figure 1: Geometry of the problem.

blood vessel it is a good approximation to consider whole
blood as a Newtonian viscous �uid [22].

So far, the theoretical studies dealing with the combined
e
ects of thermal radiation absorption and magnetic 	eld
on the transient �ow of blood in a large artery with viscous
dissipation have received very little attention. It was observed
that the heart rate decreases by exposing biological systems
to an external magnetic 	eld.�e electrocardiography (ECG)
pattern taken in the presence of a magnetic 	eld not only
provides information on blood �ow but also o
ers a new
noninvasive method of studying the cardiac performance
[23]. Moreover, the red blood cell (RBC) is a major biomag-
netic substance, and the blood �ow may be in�uenced by
the magnetic 	eld. �e magnetic properties of RBCs play
important roles in the increase in blood viscosity during
exposure to a static magnetic 	eld. Motivated by the above
studies, our aim is to investigate the combined e
ects of
thermal radiation and magnetic 	eld on transient �ow of
blood in a large blood vessel. In Section 2 the mathematical
formulation of the problem is established. �e numerical
solutions to the problem are obtained in Section 3. Qualita-
tive and quantitative discussions of the solutions are given in
Section 4.

2. Formulation of the Problem

Consider unsteady, axisymmetric incompressible Newtonian
blood �ow through a rigid vessel of length � and radius �0.
�e geometry of the problem and the coordinate system are
shown in Figure 1.

For the development of mathematical model, the follow-
ing assumptions are made.

(i) �e �ow is incompressible so that the simple equation
of state for a Boussinesq �uid holds in gravitational
	eld acting in reverse direction to �.

(ii) Viscosity of blood varies radially with maximum
magnitude along the arterial centerline due to the
accumulation of red blood cells (RBC) in this region.

(iii) �e temperature di
erence of the blood and artery is
high enough for radiative heat transfer to be valid.

(iv) Magnetic 	eld applied externally is of constant
strength.

(v) �e electromagnetic force produced and the electrical
conductivity are very small.

(vi) �e�ow through the intimal andmedia layers and the
deformation of blood vessels are neglected.

Under the above mentioned assumption, the one-dimen-
sional equations of motion and energy balance for the
unsteady and axisymmetric �ow of blood through an artery
provided are [22–25]

����� = �	
�
 + 1

�
�
�� (�

��
�� ) − ���20� + ��� (� − �0) ,

��� ���� = �1�
�
�� (�

��
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�� + (���� )
2
,

� (�, 0) = 1 − �2, � (�, 0) = 0,
��
�� (0, �) =

��
�� (0, �) = 0, for � > 0,

� (1, �) = 0, � (1, �) = ��, for � > 0,

(1)

where � is the blood axial velocity,� is the blood temperature,
�� is the arterial wall temperature, �0 is the blood reference
temperature, � is the gravitational acceleration, � is the
density, � is the thermal expansion coe�cient, �0 is the
intensity of magnetization, �� is the electric conductivity of
the blood, �0 is the radius of the normal blood vessel, � is the
blood thermal conductivity, and 	 is the blood pressure. �e
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most general di
erential approximation for the radiative �ux
�� as given by Cheng [26] is

�
�� (

1
�
���
�� ) − 3�3�� − 16���3 ���� , (2)

where � is the absorption coe�cient and � is the Stefan-
Boltzman constant. For the optically thin case that we adopt
in the present study � ≪ 1 and an approximate form of the
radiative �ux equation could be taken as [1, 2, 26]

���
�� = 4�� (�40 − �4) . (3)

Following Lih [27], the transverse variation in the blood
viscosity (�) is taken as

 (�) = 0 [1 + �ℎ (�)] , (4)

where � = 2.5 (a constant), and ℎ(�) is the hematocrit
function given as

ℎ (�) = ℎ� [1 − ( �
�0)
�
] , (5)

where ℎ� is the maximum hematocrit at the center of the
blood vessel and " (≥2) is a parameter determining the exact
shape of the pro	le. Equation (5) is valid only for dilute
suspension of red cells which are assumed spherical [14, 15].
We introduce the following dimensionless quantities:
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(6)

Substituting (5) into (1), we obtain the following dimension-
less governing equations:

Re
�$
�� = 1

�
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Re Pr
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�
�
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(7)

where Ra is the radiation absorption parameter, Gr is the
Grashof number, ℎ is the temperature di
erence parame-
ter, � is the axial pressure gradient parameter, ' is the
magnetic 	eld parameter, Br is the Brinkman number, Re
is the Reynolds number, Pr is the Prandtl number, -, *
are hematocrit constants, and " is the hematocrit shape
parameter. �e volumetric �ow 9 of blood in the artery is
given by

9 = 2:�0 ∫
1

0
$ (�) � ��. (8)

�e dimensionless shear stress (<	) and the rate of heat
transfer (Nu) at the arterial wall are given by

<	 = − �$
��

????????
=1, Nu = − �&
��

????????
=1. (9)

In the following section, (7) are solved numerically and the
skin-friction together with the arterial wall heat transfer rate
is computed.

3. Numerical Solution

Our numerical algorithm is based on the semi-implicit 	nite
di
erence scheme given in [20] for the isothermal viscoelastic
case. As in [21, 28–31], we extend the algorithm to the
temperature equation and take the implicit terms at the
intermediate time level (@ + A), where 0 ≤ A ≤ 1.
�e algorithm employed in [21] uses A = 1/2; we will,
however, follow the formulation in [20, 28–31] and thus take
A = 1 in this paper so that we can use larger time steps.
�e discretization of the governing equations is based on
a linear Cartesian mesh and uniform grid on which 	nite
di
erences are taken. We approximate both the second and
	rst spatial derivatives with second-order central di
erences.
�e equations corresponding to the 	rst and last grid point
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Figure 2: Velocity and temperature pro	les at � = 0.5.

are modi	ed to incorporate the boundary conditions. �e
semi-implicit scheme for the velocity component reads

Re
($(�+1) − $(�))

Δ�
= (- − *��) $(�+�)

 −'$(�+�)

+ � + Gr &(�) + 1
� [- − * (" + 1) ��] $(�)
 .

(10)

�e equation for $(�+1) then becomes

− �1$(�+1)−1 + (Re+2�1 +'Δ�)$(�+1)
− �1$(�+1)+1 = explicit terms,

(11)

where �1 = (- − *��)Δ�/(Δ�2). �e solution procedure

for $(�+1) thus reduces to inversion of tridiagonal matrices
which is an advantage over a full implicit scheme. �e semi-
implicit integration scheme for the temperature equation is
similar to that for the velocity component. Unmixed second
partial derivatives of the temperature are treated implicitly:

Re Pr
&(�+1) − &(�)

Δ� = &(�+�)

 + 1
�&
(�)



+ Ra [(&(�) + ℎ)4 − ℎ4]
+ Br (- − *��) ($2
)(�).

(12)

�e equation for &(�+1) thus becomes

−�&(�+1)−1 + (Re Pr + 2�) &(�+1) − �&(�+1)+1 = explicit terms,
(13)

where � = Δ�/Δ�2. �e solution procedure again reduces to
inversion of tridiagonal matrices. �e schemes (11) and (13)
were checked for consistency. For A = 1, these are 	rst order
accurate in time but second order in space. �e schemes in
[21] have A = 1/2 which improves the accuracy in time to
second order. We use A = 1 here so that we are free to choose
larger time steps and still converge to the steady solutions.
�e algorithm was also tested for both spatial and temporal
convergence and shown to be independent of both mesh size
and time step size.

4. Results and Discussion

Unless otherwise stated, we employ the parameter values:
Gr = 1, Pr = 25, Re = 0.5, - = 1, * = 0.7, " = 3, 8 = 0.2,
' = 0.5, Ra = 0.1, � = 1, ℎ = 0.2, Br = 0.1, Δ� = 0.001, and
� = 50.

4.1. General Pro
les of Flow Quantities. In the early stage of
thermal therapy treatment (say � = 0.5), it is interesting to
note that the blood velocity pro	le in a large vessel converges
to a standard parabolic pro	le much earlier than does the
temperature pro	le as illustrated in Figure 2. �is is because
large vessels exhibit large temperature gradients than smaller
vessels. As such, the dissipation of heat from heated tissues,
which is carried out by convection and conduction, is greater
for large vessels due to a strong cooling e
ect. Consequently,
the cooling e
ect of the blood �ow in large vessels may
result in underdosage of select tumor parts, since part of
the surrounding tumor may not reach the desired treatment
temperature. However, at much later time of thermal dosage
administration (say � = 50), the blood temperature pro	le
increases transversely towards the arterial centerline in the
same manner as the velocity pro	le (see Figure 3). �is
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Figure 3: Velocity and temperature pro	les at convergence; � = 50.
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Figure 4: Blowup of �uid temperature; � = 50.

enables the surrounding tumor parts to attain the desired
treatment temperature.

We need to point out early on that the parameter Ra
will need to be carefully controlled. Physically, the thermal
radiation therapy is administered on the patient for time
� > 0. However, the therapy dose needs to be controlled
in order to prevent development of hot spots (represented
by blowup) in the �ow system; see Figure 4 which plots the
steady state maximum blood temperature against each value
of Ra. Occurrence of such blowup phenomena may severely
damage normal body tissue.

Signi	cantly large dosage of radiation therapy (i.e., large
Ra) would lead to 	nite time temperature blowup since the
terms associated with Ra are strong heat sources as with, say,
the Frank-Kamenetskii parameter in reacting �ows [21]. At

our current material values, we notice that such blowup of
solutions occurs below, say, Ra = 0.35. Our choices of Ra in
this paper will thus be informed by Figure 4.

4.2. Transient Solutions. As an immediate followup to the
results of Figures 2 and 3, we display the transient solutions in
Figure 5. As expected, Figure 5 shows that the blood velocity
increases with time during the thermal therapy treatment.

As explained earlier, Figure 5 shows a progressive increase
of arterial blood temperature with increasing time, until a
steady state is reached which depicts an expected parabolic
pro	le. �e time evolution of the velocity and temperature
with varying values of the radiation parameter along the
arterial centerline is illustrated in Figure 6.

Since, as mentioned earlier, the radiation acts as a heat
source within the blood, the arterial blood temperature
(and hence also that along the centerline) should gradu-
ally increase with increasing radiation dosage; this is well
illustrated in Figure 6. �e resultant increase in temperature
correspondingly increases the Boussinesq source terms in
the momentum equation and hence also increases the blood
velocity. �is increase of velocity with radiation dosage is
illustrated in Figure 6.

4.3. Velocity Dependence on Magnetic Field and Hematocrit
Shape. �e in�uences of the magnetic 	eld and hematocrit
shape on the velocity pro	le are shown in Figures 7 and 8,
respectively.

Increasing the damping magnetic force predictably
decreases the blood velocity as alluded to earlier and illus-
trated in Figure 7. A change in the hematocrit shape from the
" = 2 pro	le also decreases the velocity.�is is expected since
higher values of " correspond to increased blood viscosity
and hence reduced velocity.
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Figure 5: Developing velocity and temperature pro	les.
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Figure 6: Evolution of velocity and temperature along � = 0.

4.4. Wall Shear Stress and Wall Heat Transfer. �e wall
shear stress dependence on hematocrit shape is illustrated
in Figure 9 for varying values of the radiation parameter.
Similarly, Figure 10 shows the wall shear stress dependence
on the magnetic 	eld for varying values of Gr.

Since increased values of " correspond to increased
viscosities and thus reduced velocities, the magnitude of
the slope of the velocity correspondingly decreases (with
increasing ") and hence also the wall shear stress, Figure 9.
Increases in the thermal radiation dosage would necessarily
also increase the blood temperature as mentioned earlier.

�us, for 	xed ", increasing the radiation dosage (Ra) would
indirectly increase the blood velocity and hence also the wall
shear stress as illustrated in Figure 9. �is is so since the
increase inRa increases the blood temperature and hence also
the source terms in the momentum equation.

�e velocity pro	les have been shown to decrease with
increasing magnetic 	eld force, '. �is in turn means that
the magnitude of the slope of the velocity near the wall
would also decrease with increasing ', hence explaining
the observed decrease in wall shear stress with increasing
magnetic 	eld force in Figure 10. At each value of the
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magnetic 	eld, an increase in the Grashof number would
directly increase the velocity via the increased Boussinesq
source terms and hence also the magnitude of the slope of
the velocity at the wall.

�e variation of the wall heat transfer with hematocrit
shape for varying radiation parameter values is shown in
Figure 11 and is similarly explained as with Figure 9. In
particular, the velocity (and hence also the magnitude of
the velocity gradient at the wall) decreases with increasing
". �is in turn leads to a decrease in the viscous heating
terms in the temperature equation leading to reduced blood
temperatures. �e decrease in the blood temperature (and
hence also the magnitude of the temperature gradient at the
wall) then leads to the corresponding decrease in wall heat
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Figure 9: Variation of wall shear stress with hematocrit shape; � =
50.
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transfer (with increasing ") observed in Figure 11. At 	xed
", increases in Ra directly lead to corresponding increases
in the blood temperature as already noted. �e increase
in blood temperature (and hence also the magnitude of
the temperature gradient at the wall) then leads to the
corresponding increase in wall heat transfer (with increasing
Ra) observed in Figure 11.

�e variation of the wall heat transfer with Brinkman
number for varying values of the Grashof number is shown
in Figure 12. Increases in the Brinkman number would cor-
respondingly increase the magnitude of the viscous heating
terms and thus also increase the arterial blood temperature.
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�is leads to increases in the magnitudes of the temperature
gradients at the wall and hence the observed increases in the
wall heat transfer; see Figure 12. For each 	xed Brinkman
number, we again refer to the increase in the velocity with
increasing Grashof number. �is in turn similarly increases
the magnitude of the viscous heating terms for each 	xed
value of the Brinkman number leading to the increased wall
heat transfer shown in Figure 12.

5. Conclusion

We computationally investigate the in�uence of magnetic
	eld force and thermal radiation on the dynamics of arterial
blood with transversely varying viscosity and subjected to
axisymmetric one-dimensional pressure driven �ow under
Boussinesq approximations. We observe that there is a
transient increase in the blood velocity with an increase in
the radiation absorption. Such increases in blood velocity and
hence wall shear stress together with the possible develop-
ment of hot spots in the �ow system mean that the therapy
dose needs to be carefully controlled. We also note that the
blood velocity decreases with an increase in magnetic 	eld
intensity.
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