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SUMMARY

In this work a mixed variational formulation to simulate quasi-incompressible electro- or magneto-

active polymers immersed in the surrounding free space is presented. A novel domain decomposition

is used to disconnect the primary coupled problem and the arbitrary free space mesh update problem.

Exploiting this decomposition we describe a block iterative approach to solving the linearised multiphysics

problem, and a physically and geometrically based, three-parameter method to update the free space mesh.

Several application-driven example problems are implemented to demonstrate the robustness of the mixed

formulation for both electro-elastic and magneto-elastic problems involving both finite deformations and

quasi-incompressible media. Copyright c⃝ 2016 John Wiley & Sons, Ltd.
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2 J-P. V. PELTERET ET AL.

1. INTRODUCTION

The interaction between elastic bodies and electromagnetic fields has been a subject of study for

many decades. Field-responsive polymers are an interesting class of smart materials that deform and

alter their material characteristics under the influence of electric or magnetic fields. These electro-

active polymers (EAPs) and magneto-active polymers (MAPs) have recently found application

in, for example, general engineering as actuators, valves and damping devices [1, 2, 3] and the

biomedical field as artificial muscles [4, 5]. However, the numerical modelling of EAPs and MAPs

still poses serious challenges that need to be addressed in both the understanding and simulation of

field-sensitive bodies under the influence of an electric or magnetic field.

Much work is being done to characterise these materials in order to further enhance their

properties. Due to their polymer nature, both EAPs and MAPs often exhibit both incompressible

and viscoelastic behaviour. In dielectric actuators, instabilities are often exhibited at the high electric

fields needed to obtain large deformations (driven by Coulombic forces) [6, 7]. Fundamentally

different behaviour is demonstrated by MAPs, with either magnetostriction or magneto-elongation

developing depending on the arrangement of their microstructure [8, 9, 10, 11, 12]. Analysis of the

constitutive response of such materials [13, 14, 15, 16, 17, 18] typically assumes that the body is

incompressible.

Numerous examples of finite-strain coupled numerical models of EAPs [19, 20, 21, 22, 23, 24, 25]

and MAPs [26, 27, 18] can be found in the literature. In the context of electro-elastic problems,

mixed variational principals have been used by Ortigosa and Gil [28], Rodrı́guez-Ramos et al. [29],

Yang and Batra [30], and Zwecker et al. [21]. We note that in all the aforementioned works for EAPs,

only their material bodies were considered and discretised using the finite element method, which

is a reasonable approach for simulating condensator-like structures whose thickness is very small

in comparison with other dimensions. However, unlike the simulation of piezoelectric materials

[31] under electric stimulation for which the electric field in the free space surrounding a material

body can be in many cases ignored because of its minor importance, in dealing with EAPs the

contribution of the free space can, in some cases, become significant and must be taken into account

[32, 33]. This is mainly due to the fact that the electric permittivity of most EAPs is considerably

weak; for many EAPs it is of approximately one order greater magnitude than that of a vacuum [34].

Similarly, it is well understood that forces arising from the Maxwell stress [35, 36] in the free space

are often central to functioning of MAP-based devices, and therefore should be accounted for within

macroscopically-focussed numerical models [26, 18]. In some cases, due to stability issues arising

from its inclusion, the Maxwell stress contribution is ignored [37].

When the contribution of the free space is important, one of two approaches is typically used.

In the first approach (FEM with truncation of free space), the finite element method is employed

with a finite element mesh that extends considerably beyond the body in order to capture the correct

response of the system (the deformable body and surrounding free space). In the second approach

the finite element method is used in combination with the boundary element method (coupled

BEM-FEM [38, 39, 40]). Despite the fact that coupled BEM-FEM is relatively easy to implement,

work still needs to be done to improve the numerical efficiency of the simulation process since the

resulting system of equations is dense and non-symmetric. In this respect, at the current state of

development, the FEM with truncation of free space is a reasonable choice. The implementation

This article is protected by copyright. All rights reserved.
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of this approach is, however, not straightforward. The Maxwell stress must be accounted for in a

practical manner and a robust scheme for describing the movement of the free space mesh during

large deformations of the elastic body must be provided. Furthermore, the use of a traditional,

monolithic mesh update scheme would introduce a large number of additional degrees-of-freedom

to the global system and destroy its symmetry due to one-way coupling at the solid-free space

interface.

In this work, we present a general implementation of the quasi-incompressible coupled finite

element problem with truncation of free space. From a total energy functional we derive in full

the variational formulation of the mixed problem, along with its first and second variation, and

the resulting finite element discretisation. A novel domain decomposition is used in conjunction

with a staggered mesh update scheme, thereby leading to a smaller and symmetric primary

system of equations to solve. A general, physically-based mesh update algorithm that is easy

to implement, tuned to the problem geometry, and sufficiently robust for finite deformations is

presented. Decoupling the primary and mesh-motion problems also allows for the development

of focussed iterative solving strategies for the linearised multi-physics problem, two of which are

shown here. The use of these methods are illustrated using examples derived from practical problems

involving finite deformation of highly incompressible media. As it consolidates and details the key

concepts required to implement problems involving EAPs and MAPs, this paper also aims to serve

as a starting point for future development in this field of research.

The remainder of this manuscript is composed as follows: In section 2 a brief review of nonlinear

electro-/magneto-statics and electro-/magneto-elastostatics is presented. Some points regarding

constitutive modelling are discussed in section 3. The variational formulation is then presented

in section 4, after which details of the finite element discretisation are provided in section 5. Two

methods of solving the linearised problem using a block-iterative approach is given in section 6.

Section 7 is dedicated to describing a secondary problem following from the truncation of free

space. Finally, illustrative numerical examples are presented in section 8, followed by a discussion

and conclusion.

2. KINEMATICS AND BALANCE LAWS

We consider the general case of a deformable solid immersed in free space with the closure of

the material configuration (that of zero strain and stress) denoted by B0 = B0 ∪ ∂B0 surrounded by

free space S0. Application of a load results in the reference state of the body, depicted in figure 1,

deforming to Bt and the free space to St. The extents of the truncated domain, namely the far-field

boundary, remains fixed in shape (topologically constant), namely ∂S0 = ∂St. We define a nonlinear

deformation function x = ϕ (X) that maps points X ∈ B0 ∪ S0 to x ∈ Bt ∪ St. We assume that ∂B0

and ∂S0 admit the decomposition ∂B0 = ∂Bϕ

0 ∪ ∂Bt
0 = ∂BΦ

0 ∪ ∂BD

0 and ∂S0 = ∂SΦ
0 ∪ ∂SB

0 , where

∂Bϕ

0 ∩ ∂Bt
0 = ∅, ∂BΦ

0 ∩ ∂BD

0 = ∅ and ∂SΦ
0 ∩ ∂SB

0 = ∅. Here ∂Bϕ

0 and ∂Bt
0 respectively denote the

portions of ∂B0 with either prescribed deformation or traction. Similarly, the areas of ∂B0 with

prescribed electric potential and electric flux are respectively denoted as ∂BΦ
0 and ∂BD

0 . The portion

of the truncated far field boundary with either a prescribed magnetic scalar potential or magnetic

flux are given by ∂SΦ
0 and ∂SB

0 , respectively.

This article is protected by copyright. All rights reserved.
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4 J-P. V. PELTERET ET AL.

We define two differential operators; ∇0 being that with respect to X and ∇ with respect to x. The

deformation gradient is given by F = ∇0x, and it is necessary that its determinant J = detF > 0

to ensure that ϕ remains a one-to-one map that prevents self-penetration of the material.

In this work we will consider two distinct cases, namely that of the material being responsive to

electric fields alone, and the other being when the media is sensitive to only magnetic fields. As

will be shown below, there exist numerous similarities in the equations governing these scenarios.

Therefore it is relatively simple to implement these equations in a general way such that either case

can be considered independently.

In the absence of free charges, the governing equations for electro-statics as given by Faraday’s

law of induction and Gauss’s law [41, 42] in terms of referential quantities are

∇0 × E = 0 , ∇0 · D = 0 in B0 ∪ S0 . (1)

Here E and D respectively denote the electric field and displacement (sometimes called the electric

induction) vectors, as defined in the material configuration. Alternatively, assuming that the material

is electrically non-conductive and that there exist no free currents, then the static form of Maxwell’s

equations are defined by Ampére’s law and Gauss’s law dictating that no magnetic monopoles are

present [43, 41, 44, 18], that is

∇0 × H = 0 , ∇0 · B = 0 in B0 ∪ S0 . (2)

The referential magnetic field and induction vectors are given by H and B respectively. The

continuity conditions on ∂B0 are given by either of

JEK ×N = 0 , JDK ·N = 0

JHK ×N = 0 , JBK ·N = 0
on ∂B0 (3)

which enforce that the tangential component of the electric and magnetic fields, as well as the normal

component of the electric and magnetic induction, remain continuous on the boundary ∂B0 with

outward normal N. Here we define the jump as J•K := [•]+ − [•]−, where [•]+ and [•]− respectively

denote the one-sided limit of the function (•) from the outward and inward normal directions. Note

that when body and surface charges are to be considered, suitable amendments to equation (1)2 and

equation (3)2 (namely those discussed by [45]) have to be made. Similarly, for the case when body

and surface free currents must be accounted for, equation (2)1 and equation (3)3 require modification

[46].

The fundamental constitutive equations that link the various electric and magnetic quantities are

[41, 47, 48, 49]

D = ε0JC
−1 · E + P ,

J−1
C · B = µ0 [H + M]

(4)

where C = F
T · F is the right Cauchy–Green deformation tensor, the free space electric permittivity

constant ε0 = 8.854× 10−12 Fm−1 and the free space magnetic permeability constant µ0 =

This article is protected by copyright. All rights reserved.
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4π × 10−7H m−1. The two additional material quantities P and M describe the polarisation and

magnetisation in the solid media (and therefore vanish in the free space).

For the elastic problem, the kinematic compatibility condition is

∇0 × F = 0 in B0 . (5)

In the case of fully incompressible media, the point-wise volumetric Jacobian J is unity. For

both electro- or magneto-elastostatics, the Lagrangian form for the balance of linear momentum

is expressed as [50, 51, 52, 41, 53, 49]

∇0 ·Pelas + b
pon
0 + b0 = ∇0 ·Ptot + b0 = 0 in B0 ∪ S0 , (6)

where P denotes a Piola stress, along with the associated angular momentum balance equation

[54, 55]

P
tot · FT = F ·

[
P

tot
]T

(7)

that ensures that the total Cauchy stress σ
tot = J−1

P
tot · FT = J−1

F · Stot · FT (where S
tot is the

total Piola–Kirchhoff stress tensor) is symmetric. The ponderomotive body force, as described by

Pao [35], can be expressed as the divergence of a stress tensor

b
pon
0 = ∇0 ·Ppon ≡ J−1

b
pon
t = J−1∇ · σpon (8)

and in the spatial setting has the compact expansion [48, 36]

b
pon
t = [∇e] · p where e = F

−T · E , p = J−1
F · P

b
pon
t = m · [∇b] where b = J−1

F · B , m = F
−T · M

(9)

for the respective electric and magnetic cases. It describes the force exerted on the solid body due to

the presence of an electric or magnetic field and, due to the electric or magnetic couple, prescribes

that the elastic Cauchy stress σelas is not symmetric. We define the total stress as

P
tot = P

elas +P
pon = P

elas +P
pol/mag +P

max (10)

where the ponderomotive stress is decomposed into a symmetric Maxwell stress tensor and a

secondary component directly resulting from the polarisation or magnetisation of the solid material.

For detailed discussions on the full expression of Ppon, we refer the reader to [14, 16, 53, 36, 48, 56]

and the references therein. Noting that P = Jσ · F−T , for the electric problem [48, 42]

σ
pon = e ⊗ d − 1

2
ε0 [e · e] i , σ

pol = e ⊗ p , σ
max = ε0

[
e ⊗ e − 1

2
[e · e] i

]
, (11)

This article is protected by copyright. All rights reserved.
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where i is the spatial identity tensor, while for the magnetic problem [35, 56]

σ
pon =

1

2µ0
[b · b] i− [h · b] i+ h ⊗ b , σ

mag = µ0

[
1

2
[m · m] i+ h ⊗ m

]
,

σ
max = µ0

[
h ⊗ h − 1

2
[h · h] i

]
.

(12)

It is also required that the mechanical traction applied at ∂B0 is balanced by the traction across a

material interface

JPtotK ·N = t0 on ∂Bt

0 . (13)

For the magnetic problem, as only quasi-static conditions are considered and the lack of free

currents, we define a scalar potential [43, 41, 26] related to the curl-free magnetic field by

H := −∇0Φ in B0 ∪ S0 . (14)

Although this quantity is convenient but fictitious for the magnetic problem, in the electric setting

(devoid of free charges) it represents the physical and measurable electric potential (voltage)

E := −∇0Φ in B0 ∪ S0 . (15)

The continuity condition associated with the potential is

JΦK = 0 on ∂B0 . (16)

With reference to figure 1, for the electric problem the Dirichlet and Neumann boundary conditions

are

Φ = Φ on ∂BΦ
0 , JDK ·N = DN on ∂BD

0 (17)

while in contrast those of the magnetic problem are

Φ = Φ on ∂SΦ
0 , B

∞
·N∞ = BN,∞ on ∂SB

0 . (18)

Given the structural similarities in equation equations (1) to (3), (9), (11)3 and (12)3 it is clear,

that from an implementational perspective, the governing equations for the electric and magnetic

problems are identical. From this point forward we consider the electric and magnetic counterparts

{E,H}, {D,B} and {P,M}, as well as the fundamental quantities {ε0, µ0}, interchangeable.

However, for the purpose of post-processing for the third field the difference present in equation (4)

must be taken into account. Note that in the following sections we will present the problem

formulation in terms of the magnetic quantities. For detailed formulations of coupled nonlinear

electro- and magneto-elasticity see, for example, [44, 57, 35, 40].

This article is protected by copyright. All rights reserved.
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3. CONSTITUTIVE MODELLING

Since there are two distinct material domains, we consider them individually. The total energy per

unit reference volume stored in electric or magnetic fields2 [58, 42, 49] in the free space is

Ψ0 (J,C,H) := M0 (J,C,H) = −µ0

2

[
JC−1 : H ⊗ H

]
in S0 . (19)

Following the framework described by Simo et al. [59] (also presented in, amongst many other

works, [60, 55] from which the utilised notation is adopted), within the elastic body B0 we choose a

multiplicative split of deformation gradient

F =
[
J

1

3 I

]
· F (20)

where the isochoric component is F := J−
1

3F. We further assume a partial decoupling of the energy

density function into volumetric and mixed volumetric-isochoric components such that

Ψ(J,C,H) = Ψvol
0 (J) +W0

(
J,C,H

)
in B0 (21)

for which Ψvol
0 is a strictly convex function representing the volumetric part of the energy in the pure

elastic case, W0 is a total energy function describing the coupled material response, and C = F
T · F

is the isochoric portion of the right Cauchy–Green tensor. Note that at this point we leave the

definition of W0 general, with its form collectively accounting for the energy stored due to elastic

deformation, magnetisation and the permeating magnetic field. It is often convenient to describe the

coupled effect in terms of the spatially linear response given by equation (19). For example, one

may choose W0

(
J,C,H

)
= W elas

0

(
C
)
+ µrM0

(
J,C,H

)
, with W elas

0 describing a purely elastic

response and µr ≥ 1 a constant prescribing the relative permeability of the media (µr = 1 represents

a non-magnetisable material). Details regarding the construction of polyconvex energy functions

can be found in, for example, [61, 62, 63] for elastic materials and [64, 65, 16] for coupled electro-

and magneto-active polymers. The issue of material instabilities, which are of particular relevance

when the electro- and magneto-strictive materials are modelled, is discussed in [66, 67, 65, 68, 64].

Furthermore, for a discussion on the validity of the assumed decomposition of the energy density

function in relation to anisotropic materials, we refer the reader to the work of Sansour [69].

Using equations (19) and (21), the definition of magnetic induction and Piola–Kirchhoff stress

are in general

B = −∂Ψ(J,C,H)

∂H
, S = 2

∂Ψ(J,C,H)

∂C
, (22)

and we implicitly define the polarisation/magnetisation vector through equation (4).

2For the magnetic problem in particular, the natural description of the free field energy is given in terms of the magnetic
induction. A Legendre transformation, which is necessary to change the independent variable, results in the form given
in equation (19). Further details on this point are given in [56] and references therein.

This article is protected by copyright. All rights reserved.
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4. VARIATIONAL FORMULATION

Due to the need to simulate near incompressible media, it is generally not feasible to utilise a

standard approach with a low-order displacement ansatz to discretise the elastic part of the problem.

This is due to the tendency of these low-order finite elements to exhibit volumetric locking in

quasi-incompressible solids (as well as shear locking in bending dominated problems). However,

the use of higher-order elements is often not preferred in practical applications due to their added

computational expense.

Application of the Veubeke-Hu-Washizu principle [70] regularly forms the cornerstone in the

development of mixed methods applied to the finite element approach to prevent the occurrence

of locking in elastic problems. Based on the seminal work by Nagtegaal et al. [71], Simo et

al. [59] (and also [72, 60]) presented a formulation for non-linear quasi-incompressible elasticity

that utilises two additional scalar fields. Although it has some drawbacks, it offers a balance

between computational expense and implementational simplicity [73] versus other mixed methods

[74, 75, 64] and alternatives approaches. Hu-Washizu mixed formulations for the coupled problem

have been successfully adopted by Ask et al. [76, 22, 77], Jabareen [78], and Ortigosa and Gil [28],

albeit for conditions that exclude the free space.

In this work we use a mixed variational approach to derive the weak form of the governing

equations. Inspired by the work of Simo et al. [59] and Ask et al. [77], we define the total potential

energy functional

Π = Πint −Πext =

∫

B0

[
Ψvol

0

(
J̃
)
+W0

(
J̃ ,C,H

)
+ p̃

[
J − J̃

]]
dV +

∫

S0

M0 (J,C,H) dV

−
∫

B0

ϕ · b0 dV −
∫

∂Bt

0

ϕ · t0 dA−
∫

∂SB

0

Φ [B
∞

·N∞] dA ,

(23)

wherein the third term in the integral over the solid body in equation (23) penalises the difference

between the point-wise volumetric Jacobian J = J (ϕ) = det (F) and the dilatation J̃ . We recognise

the Lagrange multiplier p̃ as the pressure response, related to the hydrostatic pressure by p̃ = −phyd.

From equation (23) we discern that there are three unknown elastic field variables and one related to

the electric or magnetic problem. Note that, unlike Simo and Taylor [72], we do not directly impose

incompressibility conditions via a penalty or Lagrange multiplier method, but will rather prescribe

a bulk modulus that is representative of a near-incompressible material.

The stationary (saddle-)point [79] min
ϕ,J̃

max
p̃,Φ

Π ⇒ δΠ = 0 defines the equilibrium solution for

the boundary value problem. Using the Gâteaux derivative

δΠ =
[
DδϕΠ

int +Dδp̃Π
int +D

δJ̃
Πint +DδΦΠ

int
]
−
[
DδϕΠ

ext +DδΦΠ
ext
]

, (24)

This article is protected by copyright. All rights reserved.
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the components of the first variation are

DδϕΠ
int =

∫

B0

δE :
[
S

tot
+ p̃JC−1

]
dV +

∫

S0

δE : Smax dV , (25a)

Dδp̃Π
int =

∫

B0

δp̃
[
J − J̃

]
dV , D

δJ̃
Πint =

∫

B0

δJ̃

[
∂Ψvol

0

∂J̃
+

∂W0

∂J̃
− p̃

]
dV , (25b)

DδΦΠ
int = −

∫

B0

δH · Btot dV −
∫

S0

δH · Bmax dV , (25c)

DδϕΠ
ext = −

∫

B0

δϕ · b0 dV −
∫

∂Bt

0

δϕ · t0 dA , DδΦΠ
ext = −

∫

∂SB

0

δΦ [B
∞

·N∞] dA ,

(25d)

with

δE = sym
[
F

T · δF
]

, δF = ∇0δϕ , δH = −∇0δΦ . (26)

From equation (22), the total stress and induction within the elastic body are expressed as

S
tot = S

tot
+ p̃JC−1 , S

tot
= 2

∂W0

∂C
= P :

[
2
∂W0

∂C

]
, Btot = −∂W0

∂H
(27)

with the referential projection tensor defined as [54]

P :=
∂C

∂C
= J−

2

3

[
I − 1

3
C⊗C

−1

]
. (28)

The symmetric fourth-order identity tensor is I = 1
2

[
I⊗I+ I⊗I

]
, where I is the referential identity

tensor and for which we define the non-standard tensor outer products C = A⊗B → Cijkl = AikBjl

and C = A⊗B → Cijkl = AilBjk . As it is a non-magnetisable medium, the counterpart stress and

induction in the free space reduce to the Maxwell contributions

S
max = 2

∂M0

∂C
, Bmax = −∂M0

∂H
. (29)

The relationship between the developed weak form and the strong form is collectively detailed in

[45, 80] (for a more simplified form of the electro- and magneto-static problems) and [55] (for the

three-field elastostatic problem).

From equations (25) it is noted that the space in which the variations must lie are

δΦ ∈ H1
(
B0 ∪ S0

)
, δϕ ∈ H1

(
B0

)
, δp̃, δJ̃ ∈ L2

(
B0

)
(30)

with constraints

δΦ = 0 on ∂BΦ
0 and ∂SΦ

0 , δϕ = 0 on ∂Bϕ

0 ∪
[
S0\ΓBS

0

]
, (31)

This article is protected by copyright. All rights reserved.
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where ΓBS
0 = S0 ∩ B0 indicates the boundary of the solid exposed to the free space. We note that

the variation of the displacement degrees-of-freedom is set to vanish not only on the Dirichlet

boundaries of the solid body, but also in the region of the free space not overlapping with the body.

This is sensible as the free space naturally offers no (elastic) resistance to the movement of the solid

body at low deformation rates (when viscous forces are negligible).

As the coupled problem is nonlinear, the linearisation of equations (25) will be required as part

of an iterative numerical solution scheme. This is provided in appendix A.

5. FINITE ELEMENT DISCRETISATION

In order to solve the boundary value problem, we employ the Galerkin finite-element method that,

for this problem, ultimately leads to a symmetric and square linear system. As to best replicate

its implementation, we define vector- (N) and scalar- (N,M,Q) valued shape functions for each

global degree-of-freedom. Using these, the discretisation of the unknown fields and their variations

is expressed as

ϕ (X) ≈
∑

I

ϕI
N

I (X) , Φ (X) ≈
∑

I

ΦIN I (X) ,

p̃ (X) ≈
∑

I

p̃IM I (X) , J̃ (X) ≈
∑

I

J̃IQI (X) ,
(32)

with corresponding gradients

∇0ϕ (X) ≈
∑

I

ϕI∇0N
I (X) , ∇0Φ(X) ≈

∑

I

ΦI∇0N
I (X) . (33)

From equation (24), the discretised form of the first variation is therefore

δΠ = δϕI



∫

B0

sym
[
F

T · ∇0N
I
]
:
[
S

tot
+ p̃JC−1

]
dV +

∫

S0

sym
[
F

T · ∇0N
I
]
: Smax dV




︸ ︷︷ ︸
[δΠint

ϕ ]
I

+ δϕI


−

∫

B0

N
I · b0 dV −

∫

∂Bt

0

N
I · t0 dA




︸ ︷︷ ︸
[δΠext

ϕ ]
I

+ δp̃I
∫

B0

M I
[
J − J̃

]
dV

︸ ︷︷ ︸
[δΠp̃]

I

+ δJ̃I

∫

B0

QI

[
∂Ψvol

0

∂J̃
+

∂W0

∂J̃
− p̃

]
dV

︸ ︷︷ ︸
[δΠJ̃ ]

I

+ δΦI




∫

B0∪S0

∇0N
I · B dV −

∫

∂SB

0

N I [B
∞

·N∞] dA




︸ ︷︷ ︸
[δΠΦ]I

(34)
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from which the residual for each degree-of-freedom is expressed as

rI = δΠI
ϕ
+ δΠI

p̃ + δΠI

J̃
+ δΠI

Φ (35)

The discretised expression for the linearisation follows similarly.

For the purpose of computational convenience, we introduce the numerical subdomain SB,h
0 ⊂ Sh

0

such that ΓBS,h
0 = Bh

0 ∩ SB,h
0 . As is shown in figure 2, for the discrete problem this is a single layer

of cells extending outwards from the elastic body Bh
0 into the free space Sh

0 , such that all cells

in SB,h
0 share at least one vertex with the cells in Bh

0 . Using this approach we may reduce the

integration domain for the Maxwell stress contributions in equation (34) from Sh
0 to SB,h

0 . This

is motivated by the observation that this stress has a detectable influence only on B0 and by the

constraint requirements for δϕ listed in equation (31).

We subsequently employ a reduced discretisation for each unknown field of the presented

problem. In table I we outline the finite element spaces for each field applied to each subdomain.

Given the domain of integration for the solid, the basis functions M,Q need only have support on Bh
0

while N require support on Bh
0 ∪ Sh

0 . As motivated above we can a priori remove any displacement

degrees-of-freedom3 from Sh
0 \SB,h

0 . This compact discretisation leads to the smallest linear problem

that approximates the fundamental governing equations. The benefit of such an approach would be

most visible on problems with large domains and a large number of degrees-of-freedom in the free

space.

In the example problems for the coupled problem we employ continuous trilinear (order 1)

Lagrange finite elements to approximate each component of the displacement field as well as for the

potential field. The use of continuous elements ensures that the tangential continuity, compatibility

and potential continuity conditions, respectively listed in (3)1,3, (5) and (16), are fulfilled as the

gradients of the fields are curl-free. Motivated by the necessity to satisfy the Ladyzenskaja-Babuška-

Brezzi (LBB) conditions4, identical discontinuous constant elements are used for the pressure

response and dilatation fields.

6. SOLUTION OF LINEAR ITERATION STEP

As the variations δϕ, δp̃, δJ̃ , δΦ are arbitrary, a discretised system of linear equations which is valid

for all variations can be formed from the linearisation of equation (34). At any given time t and

3Within B0, the deformation gradient results from displacement of the elastic body. However, in the free space the
description of the Lagrangian movement of mesh is arbitrary (although detF > 0 to ensure an invertible mapping
between the referential and spatial configurations). In S0, F is therefore provided by the solution of the auxiliary problem
presented in section 7 so that the mesh quality in the current configuration St is preserved.
4The chosen discretisation is based on the well known Q1− P0− P0 solid element which is known, for the lowest
possible order n = 1, not to strictly satisfy the LBB conditions [81]. In practice, however, this choice has been shown to
be robust [59, 82, 72, 60].
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Newton iterate n the discrete form of algebraic equations are




Kϕϕ Kϕp̃ K
ϕJ̃

KϕΦ

Kp̃ϕ 0 K
p̃J̃

0

K
J̃ϕ

K
J̃ p̃

K
J̃J̃

K
J̃Φ

KΦϕ 0 KΦJ̃
KΦΦ







∆dϕ

∆dp̃

∆d
J̃

∆dΦ


 =




fϕ

fp̃

f
J̃

fΦ


 ⇒ K ·∆d = f = −r (36)

where r → 0 is the residual vector given in equation (35) and ∆d is the iterative increment with

which we compute the solution update for each iteration n by

dn+1 = dn +∆d . (37)

In general, possible approaches to solving such a system of equations include (i) the use of a direct

solver, (ii) construction of a global preconditioner for use with a global iterative solver, and (iii)

exploitation of the tangent matrix’s block-structure to sequentially solve for each variable.

Solving the saddle-point problem arising from the discretisation and linearisation of the boundary

scheme poses several challenges [79]. Most apparent is that, since p̃ is a Lagrange multiplier, there

is no pressure-pressure coupling (Kp̃p̃ = 0) which renders the global system singular [83]. The

properties of the symmetric blocks Kϕϕ and KΦΦ are less certain as they depend on the chosen

constitutive models and their parameters, as well as the electric/magnetic field in the free space.

Consider the decomposition

Kϕϕ =



K

B,B
ϕϕ K

B,T
ϕϕ 0

K
T,B
ϕϕ K

T,T
ϕϕ K

T,S
ϕϕ

0 K
S,T
ϕϕ K

S,S
ϕϕ


 , KΦΦ =



K

B,B
ΦΦ K

B,T
ΦΦ 0

K
T,B
ΦΦ K

T,T
ΦΦ K

T,S
ΦΦ

0 K
S,T
ΦΦ K

S,S
ΦΦ


 (38)

with B = Bh
0\ΓBS,h

0 , T = ΓBS,h
0 and S = Sh

0 \ΓBS,h
0 . Derived from the concave transformed energy

function given by equation (19), both of the free space tangent contributions K
S,S
ϕϕ and K

S,S
ΦΦ are

negative-definite. The electric/magnetic tangent within the body K
B,B
ΦΦ may either be positive or

negative-definite depending on the constitutive law and parameters (for example, paramagnetic

versus diamagnetic materials). Ideally K
B,B
ϕϕ is always positive-definite, which would be the case

if Ψ0 is polyconvex. However, due to the electric/magnetic contributions (for example, simply that

given in equation (19)) this no longer necessarily holds and is the source of the material instabilities

referred to in section 3. They correspond to observable physical phenomena in electro-/magneto-

strictive materials; for example, electric breakdown in capacitors. At low magnetic fields and high

deformation the elastic stiffness dominates, while at high magnetic fields and low deformation

the contributions from the electric/magnetic terms dominate, indicating that the material can no

longer resist the induced ponderomotive forces. This effect is exacerbated by the presence of the

surrounding free space. Although the tangent stiffness matrix K
S,S
ϕϕ can be ignored (because δϕ = 0

on Sh
0 ), that of K

T,T
ϕϕ must remain. For the degrees-of-freedom on the body’s boundary, K

T,T
ϕϕ

includes contributions from the body (positive-definite) and free space (negative-definite). It is

expected that at low electric/magnetic fields the former dominates but at high electric/magnetic

fields the latter contribution is expected to dominate, potentially leading to numerical instabilities.
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Wishing to investigate the third solution strategy, we first restrict ourselves to energy functions

of the form W0 = W0

(
C,H

)
to describe the coupled response of quasi-incompressible media. This

implies that the stored energy due to material dilation as a response to the applied electric/magnetic

field is negligible and contributions of the form given by equation (19) can be transformed to

M0

(
C,H

)
= −µ0

2

[
C

−1
: H ⊗ H

]
in B0 (39)

within the near incompressible body. This simplifies the structure of equation (36) slightly as there is

no resulting coupling of the form K
ϕJ̃

,K
J̃ϕ

nor K
J̃Φ,KΦJ̃

. To increase the stability of the problem

we neglect the material tangent of the Maxwell contribution to K
T,T
ϕϕ . It will be later demonstrated

that this does not necessarily lead to inferior convergence rates in the nonlinear solver for the range

of stable electric/magnetic fields.

Using Gaussian elimination of the full block system, the linear problem for the displacement

update is expressed as

[
Kϕϕ +Kϕp̃K

−1

J̃ p̃
K

J̃J̃
K

−1

p̃J̃
Kp̃ϕ −KϕΦ K

−1
ΦΦ KΦϕ

]

︸ ︷︷ ︸
S

∆dϕ

= fϕ −Kϕp̃K
−1

J̃ p̃

[
f
J̃
−K

J̃ J̃
K

−1

p̃J̃
fp̃

]
−KϕΦK

−1
ΦΦfΦ

︸ ︷︷ ︸
f

.
(40)

where the incremental updates for the scalar potential, dilatation and pressure response fields are

respectively given by

∆dΦ = K
−1
ΦΦ [fΦ −KΦϕ ∆dϕ] , (41)

∆d
J̃
= K

−1

p̃J̃

[
fp̃ −Kp̃ϕ∆dϕ

]
, (42)

∆dp̃ = K
−1

J̃ p̃

[
f
J̃
−K

J̃ J̃
∆d

J̃

]
. (43)

Alternatively, one may also exploit the discontinuous fields p̃, J̃ and perform static condensation to

remove these degrees-of-freedom from the global system. From this, a condensed form of the linear

problem is

[
K̃ϕϕ −KϕΦ K

−1
ΦΦ KΦϕ

]

︸ ︷︷ ︸
S̃

∆dϕ = f̃ϕ −KϕΦK
−1
ΦΦfΦ︸ ︷︷ ︸

f̃

, (44)

where the augmented stiffness matrix and right-hand side vector contributions are

K̃ϕϕ = Kϕϕ +Kϕp̃Kp̃p̃Kp̃ϕ , f̃ϕ = fϕ −Kϕp̃

[
K

−1

J̃ p̃
f
J̃
−Kp̃p̃fp̃

]
, (45a)

for which the auxiliary matrix, which retains a block-sparse structure, is given by

Kp̃p̃ := K
−1

J̃ p̃
K

J̃ J̃
K

−1

p̃J̃
. (45b)
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Note that the solutions to the two strategies

∆dϕ = S̃
−1

f̃ ≡ S
−1

f (46)

are equivalent but their implementation differs.

The discrete problem is implemented and solved using the open-source finite element library

deal.II [84, 85] in conjunction with the Trilinos [86, 87] linear algebra suite. The framework

used to implement the discretisation strategy described in section 5 is detailed in [88]. Further details

related to the formulation of the linear solution procedure and the choice of linear solvers are given

in appendix B.

7. LARGE DEFORMATIONS AND THE SURROUNDING FREE SPACE

In problems involving both magneto-elastic bodies and the simulation of the free space, typically

a fine mesh is used at the solid-free space interface to accurately capture the locally steep

electromagnetic field gradients. Without some imposition of a fictitious motion to the free space

mesh, impingement by the body on the fine adjacent cells would occur at finite deformations likely

rendering the displacement map in SB,h
0 , at the very least, non-invertible. In large deformation

problems it is therefore typical that a mesh-update algorithm be employed to prevent this. The

Laplace update method has found use in general fluid mechanics problems [89, 90], as well as

those related to magneto-active polymers [26]. An elasticity-based approach to the mesh-motion

problem has also been explored in fluid simulation [91, 92] and magneto-elasticity [18] problems.

An alternative method, as described by Knupp et al. [93], involves the movement of mesh points as

to retain or improve the computational properties of the discretisation.

As described in section 5, the elastic degrees-of-freedom in the free space had been removed from

the primary coupled problem. We therefore compose a secondary problem to compute a suitable

deformation map ϕ in S0. These two problems are solved in a staggered manner, with the auxiliary

problem only being evaluated if some measure of the displacement update of the primary problem is

larger than a prescribed threshold. In the current implementation we adopt a conservative approach

and perform the update if |∆dϕ|∞ ∈ B0 is greater than 1% of the smallest mesh element diameter.

If the secondary problem is not evaluated, then only the displacement degrees-of-freedom on ΓBS
0

are incrementally updated thereby ensuring that ϕ in SB,h
0 is synchronised for both the primary

and auxiliary problems. The resulting map is then used in the computation of equation (34), its

linearisation and spatial quantities defined in St.

Given that a (reusable) finite-deformation elastic framework has been developed for the primary

coupled problem, there are two relevant update methodologies that are physically-based, simple to

implement and compatible with this framework. Presented in strong form, the vector-valued Laplace

and static linear elasticity equation, along with their constitutive laws, are respectively

∇0 · [K∇0ϕ] = 0 on S0 , K (X) = c (X)I , (47)

∇0 · [K [∇0ϕ]
s
] = 0 on S0 , K (X) = µ (X)I + λ (X) I⊗ I . (48)
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Spatially dependent material constants are denoted by c, µ, and λ. The discretisation of S0 by finite

elements is detailed in table I. The boundary conditions associated with the auxiliary problem are

ϕ = ϕ on ΓBS

0 and ϕ = ϕ on ∂S0 , (49)

for which the displacement on the solid-free space interface is prescribed by the solution of the

primary coupled problem, denoted as ϕ. There exists no limitation on the movement of degrees-

of-freedom within the free space domain, except that material domains with different magnetic

permeabilities should retain their original topology. Mesh sliding is allowed on the far-field

boundary, but the shape of the geometry must remain the same while a electric or magnetic load

is applied.

We propose that, as a more general expression of the above, equation (48)1 be used in conjunction

with a local isotropic stiffness tensor of the form

K (X) = k (X) [[1− α]I + αI⊗ I] (50)

where k (X) > 0 is a function governing the effective stiffness magnitude at the given coordinate

position.

The value −1 ≤ α ≤ 1 is a blending parameter that effectively prescribes the Poisson ratio

ν∗ =
α

2
for the fictitious elastic media5. Some noteworthy choices of the blending parameter are:

α = 0 describes a highly compressible material (ν∗ = 0), α → 1 describes a material with increasing

incompressibility (ν∗ → 0.5) and α = 1 behaves like an “incompressible” media, with zero shear

modulus but a finitely bounded Lamé parameter. When comparing these governing equations along

with their associated constitutive laws, it is observed that setting α = −1 reduces the elasticity

equations to the Laplace equations6 given in equation (47).

For the stiffness function k (X), we evaluate the options listed by Jasak and Tukovicć [89] as

being effective candidates in the update of meshes in airfoil simulations. Given a certain metric

d (X) and a exponent p, we may choose either a homogeneous, power law or exponential law for

the stiffness

k = k = 1 or k (d) = d−p or k (d) = exp (−d p) . (51)

Here we note that, for the last two choices of k, there is an inverse relationship between the stiffness

and the given metric d. In this work, we investigate two metrics. The first is the cell diameter, which

is defined as the value of the largest diagonal of the undeformed cell containing X. The principle

behind this choice of metric is that the smaller the cell, naturally the less relative motion between

its vertices can be accommodated before it becomes significantly deformed. The second metric is

the distance from X to the nearest solid-body vertex, again measured in the reference configuration.

Thus the movement of the cells adjacent to the solid should in concept be translation dominated,

5This can be directly shown through the identity ν =
λ

2 (λ+ µ)
by noting the similarities between equation (50) and the

classical description of the isotropic linear elastic stiffness modulus given in equation (48)2.
6Shown in appendix C, this may be deduced by substituting equation (50) into equation (48)1 and comparing the result
to the static Navier–Cauchy displacement equations, [λ+ µ]∇ [∇ ·ϕ] + µ∇ · [∇ϕ] = 0, which demonstrates that the
linear elastic problem can be written as a superposition of a “convective” (vector Laplacian) and a “diffusive” quantity.
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while those in the far-field deform freely. However, it should be noted that for this choice there is an

underlying assumption that all of the smallest cells are located in the near vicinity of the solid body,

as would be found in a boundary-layer mesh for fluid simulations. For both cases, it is proposed that

it is possible to design a mesh such that the cells close to the deforming solid are “stiff” and they

will convect with the deforming body. Since the largest magnetic field gradients are expected to be

found at the interface of the solid and free space, it is natural that one concentrates the triangulation

in this region and not in the far-field where a more uniform magnetic field is expected.

8. NUMERICAL EXAMPLES

In this section we provide numerical examples to demonstrate the capabilities of the coupled

formulation, the linear solver strategy and the approach to the mesh motion problem. We focus

in particular on problems in which finite deformation of a near incompressible media takes place

and high electric or magnetic fields are induced. Comparison can be made between the latter two

examples and the classical variational formulations presented by Bustamante [94, 95], wherein the

interaction of soft polymers with rigid bodies for the electro- and magneto-elastic problems have

been described.

The volumetric energy density function that is utilised in all examples is [55]

Ψvol
0 (J) =

κ

4

[
J2 − 1− 2 ln J

]
, (52)

where the bulk modulus is [81]

κ = λ+
2µ

3
=

2µ [1 + ν]

3 [1− 2ν]
. (53)

As all presented problems are quasi-static and the materials used are hyperelastic (non-dissipative),

time t reduces to a parameter that governs the applied load. For examples in which the free space

is modelled, the truncated boundary has been made sufficiently far from the elastic body so have no

influence on its deformation and the field permeating it. This implies that the electric/magnetic field

in the vicinity of the boundary is uniform.

8.1. Pinned electroactive plate in free space

To validate the numerical implementation and highlight the general behaviour of the mesh motion

algorithm, we analyse the quality of the free space mesh resulting from the electric activation of

a pinned square plate. This problem has been used previously by Vu and Steinmann [38], and Vu

[33] to investigate the influence of the free space on an electro-elastic body, as well as various

approaches to model it. Illustrated in figure 3 is a plate of length 60× 60× 10µm3 immersed in a

free space volume of dimensions 300× 300× 10µm3. The length of the plate is discretised by 20

elements, a single element through its thickness and a total of 2100 cells in the free space. A five

cell thick boundary layer mesh was constructed adjacent to the plate. This coarse discretisation is

neither sufficient to fully resolve the electric singularities that will develop at the plate corners nor
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the constrained deformation of the plate. However, it serves to highlight aspects of the possible mesh

motion strategies discussed in section 7.

The Z-orientated edges of the electroelastic plate were fully pinned (ϕ = ϕ = 0). The magnitude

of the prescribed potential on the upper (positive) and lower (negative) sides of the plate Φ = Φmax t

with t ∈ [0, 1] s and Φmax = 500V such that the maximum potential difference between them is

max (∆Φ) = 1000V. Periodic conditions between the +Z and -Z surfaces were enforced to ensure

that the solution remains symmetric through its depth. This reduces the three-dimensional elastic

problem to one of plane-strain. For the mesh motion problem, in addition to the continuity of the

displacement at the solid-free space interface, the boundary nodes were allowed to slide along the

surfaces of the reference geometry.

The isochoric component of the stored energy function is an additive decomposition of a Neo-

Hookean model and a prototype coupled electro-elastic model

W0

(
C,E

)
=

µ

2

[
C : I− 3

]
+ αε0 [I : E ⊗ E] + βε0

[
C : E ⊗ E

]
+ ηε0

[
C

−1
: E ⊗ E

]
. (54)

The constitutive parameters, taken from [33], are µ = 50 kPa, α = 0.2, β = 2, η = −2.5. By varying

the value of λ both the compressible and incompressible case are considered.

The displacement along the upper and side edges of ∂B0 are shown in figure 4 for several

values of the potential difference. For the compressible case (λ = 60 kPa ⇒ ν = 0.273) these results

are qualitatively similar to those presented in [33], with the slight deviation in response to the

benchmark solution being due to the difference in the utilised (isochoric) stored energy function.

Due to the quadratic dependence of the energy function on the electric field, the displacement of the

upper surface increases considerably as the electric load is linearly increased. Above ∆Φ = 600V,

the contraction of the upper and lower surfaces towards one another is increasingly inhibited by the

displacement constraint at the plate corner.

For the nearly incompressible case (λ = 249.95MPa ⇒ ν = 0.4999), the displacement solution

is very different to the compressible case. Although the displacement of the lateral edge is increased

considerably at high electric fields, less vertical constriction of the body takes place. Imposition of

the quasi-incompressibility condition leads to significant deformations near the pinned corners of

the plate. It was observed that, for this discretisation, only the first 7 load steps can be computed

when the free space mesh update is not performed. Application of a greater potential difference

leads to an invalid deformation map (detF < 0) in a part of the free space. From this it is concluded

that the use of a mesh update strategy is vital for this example that exhibits finite deformations.

8.1.1. Mesh motion study The various schemes listed in section 7 are evaluated by investigating

the worst element scaled Jacobian [96] for this test case. This measure of quality was chosen as

it is directly linked to the element geometry but is independent of its size. It relates to the quality

of computation at the quadrature points, with value close to unity indicating excellent numerical

properties and a negative value indicating an non-invertible deformation map. Shown in figure 5 is

a subset of results providing a visual depiction of the updated mesh position, while table II presents

the quality of the problematic cell located in the free space adjacent to the solid body and constrained

vertices.
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Overall the best mesh quality was produced by a single-sweep Laplace-type algorithm. Apart

from this individual case, its performance with the different stiffness functions was consistently

poorer than that of the elastic update methods. In general the use of elastic-type update methods

reliably led to free space meshes of overall higher quality at the point of singularity at the plate

corner. Increasing the parameter α → 1 results in the free space mesh being convected with the

moving body. A large component of the grid distortion is thus propagated throughout the mesh,

away from the body towards the boundary. Although this leads to better local quality at the point

of interest, there is a discernible degradation of the mesh quality distant to B0. This impact can

be controlled though the use of different stiffening functions k (X), for which the inverse distance

function with an exponent of 2 typically performed best. It is clear that utilising a distance-based

stiffness parameter in association with a power function led to consistently good results. Collectively

these two schemes tended to transport the free space mesh with the solid, thereby preventing the

localisation of deformation to that of the problem cell. These results suggest that for this class of

problems, wherein a constrained body is fully immersed in a large free space domain, a robust and

reliable free space update method can be produced by using equation (51)2 in conjunction with

α = 0.98.

8.1.2. Solver and convergence study To study the convergence characteristics of the compressible

and incompressible problem using different solver settings, we coarsely discretise the domain

(initially with 4 cells in B0 and 60 in S0, for which the mesh unit length described in µm) and

solve the boundary value problem for differing levels of global, isotropic h-refinement. The iterative

solution scheme that we employ here is described by equation (40) with the following settings: The

operation S̃
−1 (•)

ϕ
is solved to an accuracy of three decimal places wherein the inner operation

K
−1
ΦΦ (•)Φ is solved to six decimal places. For this step of the process the AMG preconditioners for

both K
−1
ϕϕ

and K
−1
ΦΦ both employ a single V-cycle and have an aggregation threshold of 1× 10−4.

The preconditioner to the Schur complement (that is the approximation to S̃
−1 (•)

ϕ
) is also solved

to six decimal places and the SSOR preconditioner that approximates the inverse of K−1
ΦΦ has an

over-relaxation value of 0.7.

In figure 6 it is observed that the effectiveness of the constructed iterative solver rivals that of

the direct solver. That the convergence rates are near-identical for both cases demonstrates that the

chosen settings for the iterative solver preserve the accuracy of the numerical solution throughout the

Newton–Raphson procedure. Although this should not be strictly necessary (as, given a reasonable

initial guess, the Newton–Raphson algorithm is self-correcting), it was observed that convergence

of this particular problem at high electric loads relied on the computation of an accurate solution

update at each Newton step.

As is shown in figure 7, for this problem the use of the implemented iterative solution scheme

leads to significantly longer linear solver times when compared to the direct solver. This may be

partially attributed to the nested Schur operation and necessity to have an accurate inner solver

step. However, it was observed that over the course of the last two load steps in particular the

number of outer CG solver iterations required to compute the inverse Schur operation increased

from approximately 5 up to 40 for the compressible case and 40 to 75 for the incompressible case.

Under high electric loads, the Maxwell stress contribution becomes more dominant. As we only
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compute the approximation to its tangent, the loss of accuracy in its linearisation is reflected as an

increase in the stiffness of the linear system.

Table III provides a comparison of the number of Newton iterations needed at each fixed load step

for different computations of the tangent. In particular, we test the cases for which we compute the

exact tangent against that for which we exclude the material tangent contribution from the Maxwell

stress. To mitigate any possible influence of solver error, a direct solver is used. Convergence is

attained when the residual norm |r| < 1× 10−9.

It was observed that the exclusion of the Maxwell tangent contribution does not affect the

convergence rate at relatively low electric field strength. However, using the approximate tangent

leads to a significant benefit for both the compressible and incompressible cases at higher electric

loads. Although the rate of convergence decreases when a fixed load step is used (reducing from

quadratic towards superlinear convergence), we delay the solver divergence that occurs when the

exact tangent is utilised and the positive-definite property of the global stiffness matrix is lost. It

should however be noted that at higher loads than those shown here, divergence does still occur for

the case of the approximate tangent as the influence of the Maxwell stress becomes dominant.

8.2. Electroactive polymer strip

In this example we broadly replicate experiments conducted on quasi-incompressible viscoelastic

dielectric polymers by Hossain et al. [97]. Shown in figure 8a is the partially prestretched polymer

that undergoes further mechanical loading to reach the state shown in figure 8b, and subsequent

electric loading. In order to apply a potential difference to the specimen’s surface, a conductive

material has been applied to the face of the sample with a small strip at the edge of the face left

unpainted. Figure 8c depicts the reference geometry for this problem, with the material domain

being reduced to a 1
8 model due to symmetry conditions. The reduced domain has dimensions

(17.5 + 2.5)× 5× 0.5 mm3 and is discretised by (30 + 10)× 25× 8 low-order finite elements.

There is a concentration of elements towards the line separating the conductive and non-conductive

areas on the front face, as it is expected that a large lateral potential gradient will be generated

in this region. The number of degrees-of-freedom for each field in the coupled problem are{
ϕ, p̃, J̃ ,Φ

}
= {28782, 8000, 8000, 9594}.

The boundary conditions for the reduced problem are as follows: Due to the geometric symmetry,

constrained planar motion is prescribed on the X-,Y- and Z- (symmetry) planes and a zero electric

potential condition is enforced on the X-Y plane. A time-dependent deformation on the +Y face

is prescribed in order to represent the two stages of prestretching before the potential difference is

applied7. On this surface, we ensure that

ϕ2 (X) =





t

30
(λ2 − 1)X2 if t ≤ 30 s

(λ2 − 1)X2 otherwise
(55)

7In order to minimise mesh distortion, lateral and vertical prestretch is performed in the opposite order to that in which
it is conducted in experiments. However, as the chosen constitutive model is hyperelastic the deformation due to the
electric loading is independent of the stress history.
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ϕ1 (X) =





X1 if t ≤ 30 s
t− 30

30
(λ1 − 1)X1 if 30 s < t ≤ 60 s

(λ1 − 1)X1 otherwise

(56)

for which the stretches are λ1 = 3, λ2 = 5 and t ∈ [0, 120] s. On the +Z face for which 0 ≤ X1 ≤
17.5, the applied electric potential is

Φ =




0 if t ≤ 60 s
t− 60

60
Φmax otherwise

(57)

with Φmax = 5000V. The remaining surfaces remain mechanically and electrically traction free.

Although some characterisation of this EAP material has been performed [98, 23, 97], for the

purpose of demonstration we will assume a hyperelastic constitutive law with a simplified coupled

component. The stored energy function W0 is additively decomposed into mechanical and electro-

aelectro-active components. The Arruda–Boyce 8-chain model [99] is used to represent the elastic

part and a prototype function [20] for the electro-active component

W0

(
C,E

)
=

µ

K

5∑

i=1

γi ω
(i−1)

[[
C : I

]i − 3i
]

+ αε0 [I : E ⊗ E] + βε0
[
C : E ⊗ E

]
+ ηε0

[
C

−1
: E ⊗ E

]
,

(58)

where

ω =
1

N
, K =

[
1 +

3

5
ω +

99

175
ω2 +

513

875
ω3 +

42039

67375
ω4

]
, (59a)

γ1 =
1

2
, γ2 =

1

20
, γ3 =

11

1050
, γ4 =

19

7000
, γ5 =

519

673750
. (59b)

The chosen elastic constitutive parameters µ = 13.5 kPa, N = 784× 103 were taken from [23],

the Poisson ratio ν = 0.4999 and the electro-mechanical parameters8 were α = 50, β = 10× 103,

η = −37.5× 10−3. The respectively large and small values for β and η are appropriate as the stretch

in the thickness direction λ3 ≪ 1 and the large electric field is aligned with e3.

Illustration to the extent of deformation applied during the mechanical loading phase is given in

figure 9. With the application of equations (55) and (56) the material is initially deformed vertically

by 400% after which the upper surface is extended laterally by 200%.

As is observed in figure 10, the geometry changes further upon application of the potential

difference across the surface of the polymer. The central region of strip (along the centreline

C−B−A shown in figure 8c) expands outwards as the conductive surfaces contract towards each

other. As the assumed energy function is quadratic in |E|, a very high electric field is required to

induce large displacements in the media. As expected, in the central region there exists a potential

gradient aligned through the thickness of the material. Furthermore, due to the lack of a conductive

8These parameters were chosen such that application of 10 kV leads approximately 10% additional lateral deformation
of the prestretched material. This loosely correlates to the displacement observed during experimental analysis of this
material under similar conditions.
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material at the sample edge (and the chosen constitutive model), the potential field in this region is

non-uniform, with the edge experiencing a low voltage.

Figure 11a shows the displacement history for the point A at the intersection between the

traction-free surfaces and the X-Z plane. The thickness of the material (as computed from the

Z-displacement) decreases non-linearly here throughout the course of the applied load, with the

largest change occurring during the first phase of stretching. After mechanical and electric loading

the free perimeter is slightly less than 20% of its original thickness. During the initial phase of

stretching, the sample contracts laterally but then expands significantly as lateral stretch at the

gripped surface is prescribed. This expansion continues in a non-linear manner as the surface

potential is increased. Application of the voltage difference results in the pre-stretched spatial

position of point A moving from x ≈ 49.1mm to x ≈ 53.6mm. This equates to an overall increase

in lateral stretch of approximately 9.2% which corresponds to the deformation typically observed

in experiments conducted under similar conditions. This response is primarily due to the near-

incompressibility of the material and imposed boundary conditions, as after the prestretch phase

any reduction in thickness must correspond to a lateral expansion along the midline.

Plotting the displacement along the midline of the surface of the applied potential reveals that the

sample thickness is not constant, primarily due to the spatially non-uniform loading conditions. As

is shown in figure 11b, the central region of the material is always compressed to a greater extent

than the perimeter, with the difference becoming more pronounced as the prescribed mechanical

deformation increases. The central region of the 1
8 geometry is approximately 25 µm thick after

both mechanical loading steps, which is four times less than at the perimeter. Upon application of

the electrical load, the thickness at position C does not change significantly. Compression of the

material is rather observed mainly in the vicinity of B, towards the edge of the painted region. At

this point the full electric load reduces the thickness by approximately 37% and leads to a sharp

transition in the measured deformation between the region under the direct influence of the applied

load and that with no conductive material on the surface near it. After all loading is applied, the

thickness profile in the central region is ultimately three times less than that of the perimeter.

Presented in figure 12 is the lateral and vertical true stress history recorded at the quadrature

point closest to the origin (the geometric centre of the full geometry) and point A at the boundary.

At both measurement points the mechanical loading results in an increase in stress in the respective

directions, with the maximum stress in the Y-direction being 1 order of magnitude larger than that in

the X-direction at O, and 3 orders of magnitude larger at A. Application of the electric load induces

stress softening at O in both coordinate directions. At the boundary however there is no appreciable

change in the vertical component of the stress tensor and σXX appears to decrease asymptotically as

the material expands laterally.

Measuring the overall dilatation as the change in material volume

θ =
Vt

V0
= ∫

B0

J
/

∫
B0

1 , (60)

it was observed the weakly imposed quasi-incompressibility of the polymer was maintained

throughout the simulation as the maximum relative dilatation given by θ − 1 was 0.59%. For this

example with the mixed formulation, load steps of size 0.5 s were required for stable displacement

loading for which the linearised problem was solved using equation (44) (an inexact linear
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increment). As a point of comparison, the same problem was repeated using a standard Q2−Q2

ansatz for the displacement and potential fields. The grid was coarsened such that the total number

of {ϕ,Φ} degrees of freedom in each grid direction were similar to the previous example. Although

a direct solver was utilised (thereby producing an “exact” linear increment), a load step size of

0.05 s (10 times smaller) was necessary to achieve convergence during the mechanical loading stage.

Furthermore, stability issues (not present for the mixed formulation) were noted at very high electric

fields.

As confirmation of the lack of influence of the ponderomotive force in the functioning of

condensator-like geometries, the same problem was repeated with the free space, clamps (of which it

is assumed all four comprise undeformable steel for which the constitutive parameters were assumed

to be α = 0, β = 0, η = −5× 105), and polymeric material gripped by the clamps included. To

attain the correct deformation state the displacement conditions given by equations (55) and (56)

were prescribed to the clamped material. To attain the correct spatial configuration during the

prestretch phase of loading, the (artificial) motion of various parts of the free space geometry were

prescribed as well. The part of the clamp that was in contact with the material was also made

to stretch at an equal rate to the polymer. The region of the domain both above and to the side

of the polymer was allowed to translate with the deforming body. For the final configuration to

be representative of the state shown in figure 8b, it was therefore required to compute a suitable

reference domain B0 ∪ S0 that would transform to the correct spatial configuration Bt ∪ St under

these conditions. The deformation of the free space was performed using an elastic update approach

with α = −0.1, while the stiffness parameter was set using the vertex distance approach with

p = 1.25. To prevent excessive grid distortion, the mesh motion at and above the height of the clamp

was fully prescribed, as was the Z-displacement of the mesh below it. Therefore only movement in

the X-Y plane in front and alongside the cross-section of material was computed.

Presented in figure 13 is the spatial configuration of the problem after the mechanical loading

steps have taken place and its state after the electric loading has also been applied. Due to the

symmetry condition, a strong electric field was present in the gap above the sample, but as the

material is fixed in the metallic clamp it did not influence the displacement result. However, as can

be expected, the electric field generated in the clamp and rest of the free space surrounding the

sample is negligible and therefore the displacement and potential solution in the region of interest

are not significantly affected. This, therefore, confirms that only the reduced geometry illustrated in

figure 8 need be considered for problems of this nature.

8.3. Magnetoactive polymer valve

Finally, we examine a simplified magneto-active valve that broadly replicates the coil-activated

design presented by Böse et al. [2, figure 2]. Figure 14 illustrates the truncated geometry of the valve,

with the magneto-active polymer denoted as B0, and the iron inner yoke and casing by SI,i
0 and

SI,o
0 respectively. The magnetisable polymer was considered deformable, while the very stiff iron

components were fully immobile (and therefore not represented as an elastic solid). The height and

radius of the inner yoke are 9mm and 3mm respectively, while the casing has a height of 7mm, an

inner radius of 14mm and outer radius of 18mm. The outer radius of the polymer is 12mm and its

overall thickness is 5mm. The initial gap between the polymer and casing was therefore 2mm. The

free corners of the polymer were rounded with a fillet of radius 0.25mm to prevent the generation
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of magnetic singularities along these edges. However, sharp corners of the iron components were

retained. The height and radius of the truncated far-field S0 were, respectively, 24mm and 33mm.

Although the problem is axisymmetric, one quarter of the full 3-d model is represented.

A combination of structured and unstructured mesh techniques were used to discretise the

complex geometry. Within a radius of 0.25mm of the three sharp corners marked R in

figure 14, three levels of local h-refinement were manually performed in order to capture the

magnetic singularity that was expected to develop in these locations. A fine mesh was used

in the region surrounding the polymer in order to capture the sharp change in the magnetic

field through the different media. After refinement, a total of 103 283 computational cells were

present. The overall number of degrees-of-freedom in the primary problem were
{
ϕ, p̃, J̃ ,Φ

}
=

{20 412, 4832, 4832, 119 223}, while the ancillary mesh-motion problem required {ϕ} = {342 657}
degrees-of-freedom. The iterative solver scheme outlined in equation (40) was utilised in the

solution of the linearised problem.

As the magnetic scalar potential formulation is utilised, the coil cannot be directly represented.

However, an approximation of its effect is instead captured through the applied potential boundary

conditions. A magnetic potential is prescribed at the surface of truncation of the casing and inner

yoke, with the casing set to have zero potential and that at the inner yoke

Φ =
√
tΦmax (61)

with t ∈ [0, 1] and Φmax = 310A. The elastic body is constrained only at the interface between

it and the inner yoke. Here we prescribe that the central displacement degrees-of-freedom remain

fixed in space, while the rest of the surface can slide freely along the interface. With respect to the

mesh update problem, we allow the mesh in free space to slide along “solid” geometries, namely

the outer casing and iron yoke, as well as along ∂S0 (the boundary of the free space at the edge of

the computational domain).

An additively decomposed Neo-Hookean model and a prototype coupled magneto-elastic model

W0

(
C,H

)
=

µ

2

[
C : I− 3

]
+ αµ0 [I : H ⊗ H] + βµ0

[
C : H ⊗ H

]
+ ηµ0

[
C

−1
: H ⊗ H

]
(62)

with constitutive parameters µ = 30 kPa, α = −0.5, β = −4, η = −0.5 were used for the isochoric

component of the polymer energy density function. In the small strain regime, this corresponds to

a relative magnetic permeability µr ≈ 10. This is somewhat greater than that typically measured

in magneto-active polymers [100] but necessary to induce large displacements in this example

problem. The material was made quasi-incompressible by choosing ν = 0.4999. The total stored

energy function for the (inelastic) iron components was

Ψ(J,C,H) = µrM0 (J,C,H) (63)

with the relative magnetic permeability µr = 5000.

The imposed set of magnetic boundary conditions effectively produces a qualitatively similar

magnetic induction field to that observed when the curl-formulation for the magnetic problem,

which can directly represent rotational magnetic fields induced by currents, is used. To demonstrate

that this is indeed the case, figure 15a illustrates the magnetic field generated when directly
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modelling the coil using the vector potential formulation (with no consideration of elastic

deformation). Comparing this result to that obtained using the truncated domain and scalar potential

formulation, we observe that the magnetic field is both qualitatively and quantitatively similar. The

domain truncation in Sl
0 forces the component of the magnetic field normal to the boundary to

vanish; a numerical artefact that is not seen in the vector potential formulation. This error could be

partially mitigated though the use of the traction boundary condition listed in equation (25d)2, but

is not considered in this demonstration problem.

The spatial magnetic field and induction measured along the midplane of the polymer is presented

in figure 16a. This result is qualitatively similar to that shown by Böse et al. [2] for a static geometry

with matching characteristics. While the magnetic field strength is very low in the iron yoke and

casing, it is larger in the less permeable materials with the highest value recorded within the free

space adjacent to the polymer. The field strength in the gap and polymer decrease non-linearly

as the radius increases due to the non-linear material constitutive law and deformation. It should

be noted that the jump in the magnetic field strength at the polymer-air interface B0 ∩ Sg
0 gets

disproportionally larger with increasing load step. Due to its proximity to the source of the potential

the magnetic induction in the inner yoke is very large. Within the polymer it decays non-linearly

from the inner to the outer radius in response to the non-linear magnetic field. By comparison, the

induction within the gap appears almost constant for a given magnetic load.

In figure 17 we plot both the radial and axial displacement along the polymer midplane. For

the specified geometry and constitutive models, at the maximum loading conditions the gap radius

was reduced by 25%9. Due to the influence of the ponderomotive force and, to a lesser extent,

the material non-linearity the radial displacement was not directly proportional to
√
t (as might be

expected since the energy function is quadratic in |H|). The ponderomotive force is driven by the

jump in the magnetic field at the interface, and therefore the large radial gradient in the magnetic

field at the surface B0 ∩ Sg
0 produces a large traction here. As measured by a small negative axial

displacement along its radius, the asymmetry of the magnetic field above and below the polymer led

to it bending slightly downwards. However, as is suggested the comparison given in figure 15, the

phenomenon may be a result of, or at least exacerbated by, the truncation of the domain below

the polymer. With reference to the material dilatation (equation (60)), the volume change after

application of the full magnetic load was less than 0.0032%.

To further highlight the role of the ponderomotive force in the functioning of this design

(specifically using an isotropic magneto-elastic polymer with a large relative permeability), we

compare the maximal displacement configuration of the polymer as computed with and without

the surrounding free space. Accounting for the free space, we observe a relatively large overall

deformation of the material, along with an asymmetric axial displacement due to the non-uniform

magnetic field. Furthermore, although the surface B0 ∩ Sg
0 is attracted towards the outer casing SI,o

0

(thereby reducing the material thickness), there exists a large magnetic field in the vicinity of the

filleted corners that leads to an axial ponderomotive force acting on the polymer. The net result is

that the thickness of the material here is greater than at its inner radius and the surface becomes

slightly concave. In contrast, when inducing a similar field within the media without accounting

9 Higher magnetic fields could not be evaluated due to well understood numerical issues related to the tangent
contribution derived from the Maxwell stress. Therefore no further deformation could be induced without compromising
the numerical stability of the problem.
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for the surrounding free space, only relatively small displacements are produced and the axial

displacement field is symmetric about the midplane. This difference could potentially be corrected

by adding a representative traction condition to the second case. However, this would require an a

priori knowledge of surrounding magnetic field.

The mesh motion analysis presented in section 8.1 suggests that several combinations of settings

for equation (50) may lead to satisfactory results for the solution of the free space deformation map.

Here we make a note of the difference in the updated mesh resulting from the method ultimately

chosen for this purpose (α = −1 with a vertex-distance stiffness function and power law with

p = 1.25) and the anticipated next best strategy (α = 0.98 with a vertex-distance stiffness function

and power law with p = 2). To perform the free space mesh update for this problem, we allowed the

mesh to slide along “pseudo-solid” geometries, namely the outer casing and iron core, as well as

along ∂S0 (the boundary of the free space at the edge of the computational domain). Furthermore,

the vertex positions of the “pseudo-solid” media (namely ∂SI,i
0 and ∂SI,o

0 , which were not endowed

with elastic degrees-of-freedom in the coupled problem) were also considered when defining the

effective stiffness of the free space.

Figure 19 illustrates the deformation map resulting from these two strategies at maximum

magnetic load. Of specific importance is the deformation within the gap Sg
0 , highlighted in red.

Using a Laplace-type update strategy, there is a controlled reduction in the volume of the gap that

leads to minimal distortion of the mesh in this region, as well as around it. However, as is highlighted

in figure 19b, the elasticity-based approach to the update resulted in significant distortion as the

material is “squeezed” out of the gap. It is anticipated that the latter method would be unsustainable

at higher deformations while the former could accommodate it.

Figure 20 illustrates the functioning and performance of the valve when the polymer is attached to

the outer casing and expands inwards under the application of the magnetic field. Due to limitations

in the model stemming from the new geometry the pinned boundary condition was moved from the

centreline of the polymer to the upper edge coinciding with R2. For the magneto-elastic case the

maximum applied potential was lowered to Φmax = 243A due to numerical stability issues.

Comparing figure 20a to figure 15b we observe that, for the same applied potential, the magnetic

field strength in the gap is significantly greater and material magnetisation has been decreased. This

is confirmed in the magneto-elastic case for which the magnetic field and induction strength at

the polymer midline and are shown in figure 20c and figure 20d respectively. We note that for this

second geometry the applied potential at t = 1 is nearly equivalent to that for the first at t = 0.7. It is

observed that the jump in the magnetic field at the radial polymer-free space interface is significantly

larger than before, implying that the ponderomotive traction is stronger for this geometry. However,

the maximum radial displacement is comparable for the two geometries at similar applied potentials,

although this result may be influenced by the imposed displacement boundary conditions.

9. DISCUSSION AND CONCLUSIONS

A mixed variational formulation for quasi-incompressible electro- or magneto-active polymers,

which accounts for the influence of the surrounding free space, has been presented. We have

demonstrated a novel domain decomposition that can be leveraged to separate the primary coupled
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problem and secondary mesh update problem for the free space. Thus we were able to select

independent and most-suitable approaches to solving the multiphysics and artificial mesh motion

problems, resulting in the smallest possible linear problem for the given discretisation. This is

particularly advantageous due to the arbitrary motion of the deformation map in the free space.

Iterative solution strategies for the linearised problem that exploit its block substructure were also

presented and discussed.

Overall, the mixed formulation and solution strategy were shown to be robust for several example

problems that are applicable to research in the field of electro- and magneto-elasticity. All of these

involved near incompressible media, large deformations and high electro-magnetic loadings. It was

shown therein that the near incompressibility condition was successfully imposed. We presented

a detailed discussion on their implementation and solution procedure, and highlighted some of

the fundamental behaviours of these geometries. Using an approximation for the tangent of the

Maxwell stress contribution was shown to be beneficial at high electro-magnetic loads, delaying

the occurrence of divergence in the nonlinear solver with no apparent loss in convergence rate at

low loads. It was found that for one tested geometry the use of a direct solver, as opposed to an

iterative one, for the linear problem was the superior choice. This is because high deformation and

electro-magnetic loads, the loss of accuracy for the linearisation of the Maxwell stress contribution

becomes more significant. A comparison was also conducted on the solutions of the problems

with and without the inclusion of free space, thereby empirically demonstrating when it need be

considered.

We illustrated the functioning of the general, elasticity-based free space mesh update method

using several test cases. A three parameter constitutive model was developed to adapt the nature of

the update algorithm based on various physical and geometric parameters. From the analysis of the

numerical example problems we were able to demonstrate how several update strategies influence

the displacement map in the free space. From this we provided insight as to how parameter choices

affect its functioning and which might be more applicable for particular geometries. This approach

was easy to implement and easy to control for relatively small but finite deformations, for which

both the Laplace and elasticity-based approaches can be made to work sufficiently well. However,

for problems involving very large deformations or highly constrained movement of solid bodies the

disadvantages of physically based update algorithms became apparent. More guided control over the

mesh movement was necessary, indicating that quality-based update methods may be most suitable

for these applications.
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A. LINEARISATION OF COUPLED PROBLEM

From equation (24), the first-order Taylor expansion of the residual is

0 ≡ δΠ
∣∣∣
ϕ,p̃,JΦ

+
[
D∆ϕ,δϕΠ

int +D
∆J̃,δJ̃

Πint +D
∆J̃,δJ̃

Πint +D∆Φ,δΦΠ
int
]

(64)

for which the resulting direct terms of the linearisation (assuming a dead load) are

D∆ϕ,δϕΠ
int =

∫

S0

∆δE : Smax
dV +

∫

S0

δE : Hmax : ∆E dV +

∫

B0

∆δE :
[
S

tot
+ p̃JC

−1
]
dV

+

∫

B0

δE :
[
H

tot
+ p̃J

[
C

−1 ⊗C
−1 − 2C−1⊗C

−1
]]

: ∆E dV ,

(65a)

D
∆J̃,δJ̃

Πint =

∫

B0

δJ̃

[
∂2Ψvol

0

∂J̃2
+

∂2W0

∂J̃2

]
∆J̃ dV , (65b)

D∆Φ,δΦΠ
int = −

∫

B0

δH ·Dtot ·∆H dV −

∫

S0

δH ·Dmax ·∆H dV , (65c)

where

∆δE = sym
[
∆F

T · δF
]

, (66)

while the coupling terms arising from the linearisation are

D∆p̃,δϕΠ
int =

∫

B0

δE : JC−1 ∆p̃ dV , D∆ϕ,δp̃Π
int =

∫

B0

δp̃ JC
−1 : ∆E dV , (67a)

D
∆J̃,δϕ

Πint =

∫

B0

δE : Rtot ∆J̃ dV , D
∆ϕ,δJ̃

Πint =

∫

B0

δJ̃ : Rtot ∆E dV , (67b)

D∆Φ,δϕΠ
int = −

∫

S0

δE : Pmax ·∆H dV −

∫

B0

δE : P tot ·∆H dV ,

D∆ϕ,δΦΠ
int = −

∫

S0

δH ·
[
P

max
]T

: ∆E dV −

∫

B0

δH ·
[
P

tot
]T

: ∆E dV ,

(67c)

D
∆J̃,δp̃

Πint = −

∫

B0

δp̃ ∆J̃ dV , D
∆p̃,δJ̃

Πint = −

∫

B0

δJ̃ ∆p̃ dV , (67d)

D
∆ΦδJ̃

Πint = −

∫

B0

δJ̃ Q
tot ·∆H dV , D

∆J̃,δΦ
Πint = −

∫

B0

δH · Qtot ∆J̃ dV . (67e)
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The elastic tangent H, the piezo- or magneto-elasticity tensor P and the dielectricity or magnetostatic tensor

D and ancilliary coupling tensor Rtot and vector Qtot are defined as

H
tot

= 2
∂S

tot

∂C
= 2

∂P

∂C

.

.

.

.

[
2
∂W0

∂C

]
+P :

[
4

∂2W0

∂C⊗ ∂C

]
: P , (68a)

R
tot =

∂Stot

∂J̃
= P :

[
2
∂2W0

∂J̃∂C

]
, (68b)

D
tot =

∂Btot

∂H
= −

∂2W0

∂H ⊗ ∂H
, Q

tot =
∂Btot

∂J̃
= −

∂2W0

∂H∂J̃
, (68c)

P
tot = −

∂Stot

∂H
= P :

[
−2

∂2W0

∂H ⊗ ∂C

]
,

[
P

tot
]T

= 2
∂Btot

∂C
=

[
−2

∂2W0

∂C⊗ ∂H

]
: P , (68d)

and their Maxwell counterparts in the free space are

H
max = 2

∂Smax

∂C
= 4

∂2M0

∂C⊗ ∂C
, D

max =
∂Bmax

∂H
= −

∂2M0

∂H ⊗ ∂H
(69a)

P
max = −

∂Smax

∂H
= −2

∂2M0

∂H ⊗ ∂C
,

[
P

max
]T

= 2
∂Bmax

∂C
= −2

∂2M0

∂C⊗ ∂H
. (69b)

B. DETAILS OF SOLUTION OF LINEAR ITERATION STEP

Subsequent to introducing the assumption regarding the form of the energy stored in the magnetic field

inside the near-incompressible body (as given in equation (39)), the amended discrete form of the linear

system is




Kϕϕ Kϕp̃ 0 KϕΦ

Kp̃ϕ 0 K
p̃J̃

0

0 K
J̃ p̃

K
J̃J̃

0

KΦϕ 0 0 KΦΦ







∆dϕ

∆dp̃

∆d
J̃

∆dΦ


 =




fϕ

fp̃

f
J̃

fΦ


 . (70)

We note that K
J̃ J̃

is block diagonal due to the discontinuous nature of the dilatation field, and K
p̃J̃

, K
J̃ p̃

are uncoupled on an element level and square (and thus invertible) due to the identical choice of ansatz for

p̃ and J̃ . One may further exploit the discontinuous fields p̃, J̃ and perform static condensation to remove

these degrees-of-freedom from the global system. From equation (70) the update of the dilatation can be

expressed as equation (42) while condensation of pressure response results from equation (43). The outcome

of condensing these fields into row 1 of equation (70) is

[
K̃ϕϕ KϕΦ

KΦϕ KΦΦ

] [
∆dϕ

∆dΦ

]
=

[
f̃ϕ

fΦ

]
(71)

for which the augmented stiffness matrix and right-hand side vector contributions are given by

equation (45a). Noting that we can write the iterative update for the scalar potential field as equation (41)

we can produce the Schur complement of the reduced linear system to compute the iterative displacement

update as given in equation (44). Once the displacement update has been determined, it is necessary to

post-process for the continuous potential field using equation (41) and for the discontinuous fields using the

identities given in equation (42) followed by equation (43).

With regards to the nature of the solution scheme, we choose to solve for the displacement field before

the potential. This is because computing the vector operation K
−1
ΦΦ (•)Φ for the Φ sub-block of an arbitrary

global vector (•) is cheap in comparison to K
−1
ϕϕ (•)

ϕ
. Although the volume of cover for Φ is larger than that
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of ϕ, its nature is well understood (as it derives from the Laplace-type problem ∇2Φ = 0) and its bandwidth

is much lower than that of the displacement stiffness matrix.

Equation (46) is solved using an iterative method for which only the matrix-vector operation by S or S̃ is

required (as opposed to the direct expression of their inverse). To achieve this, an inner solver is required to

compute the result of K−1
ΦΦ (•)Φ and, for the case of S, also K

−1

p̃J̃
(•)p̃ and K

−1

J̃ p̃
(•)

J̃
. The former operation

is performed using the conjugate-gradient (CG) algorithm10 in conjunction with an algebraic multi-grid

(AMG) preconditioner [102], while the latter two used CG with a Jacobi preconditioner. As the problem is

fully symmetric, the approximate inverse S
−1 or S̃−1 was computed using a reduced-iteration CG solver

with an AMG preconditioner applied to Kϕϕ or K̃ϕϕ. As it is embedded within a Newton–Raphson method,

the solution to the linearised problem may be inexact as the algorithm is self-correcting.

A computationally less expensive approximation of the inverse of S or S̃ is used as a preconditioner to

solve equation (46). As a replacement the expensive inner inverse matrix multiplications we choose to define

the approximate inverse of KΦΦ by a single sweep of its symmetric successive over-relaxation (SSOR)

preconditioner, while the equivalent operation for K
p̃J̃

and K
J̃ p̃

is performed by a sweep of their Jacobi

preconditioner.

Apart from the apparent increase in the number of matrix-vector operations when solving equation (40) as

opposed to equation (44), the primary difference arising from the implementation of these two schemes is the

preconditioner from the ϕ−ϕ space used for the Schur matrix. When condensation is used, we transform

Kϕϕ → K̃ϕϕ using equation (45a) which, depending on the degree of material incompressibility, may be

stiff.

C. NATURE OF MESH MOTION PROBLEM

The nature of the mesh update algorithm derived from the linear elastic equations with the specialised

constitutive law are established below. Substituting equation (50) into equation (48) and regrouping terms

we attain

0 =
∂

∂Xj

[
Kijkl

1

2

[
∂ϕk

∂Xl
+

∂ϕl

∂Xk

]]

=
∂

∂Xj

[
k (X)

[
[1− α]

1

2

[
δikδjl + δilδjk

]
+ αδijδkl

]
1

2

[
∂ϕk

∂Xl
+

∂ϕl

∂Xk

]]

= k (X)

[
[1− α]

∂

∂Xj

1

2

[
∂ϕi

∂Xj
+

∂ϕj

∂Xi

]
+ α

∂2ϕj

∂Xi∂Xj

]

≡ k (X)

[
1

2
[1− α]

∂2ϕi

∂Xj∂Xj
+

1

2
[1 + α]

∂2ϕj

∂Xi∂Xj

]
.

From the last line it is deduced that the natural limiting values for the blend coefficient are α ∈ [−1, 1].
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96. Stimpson CJ, Ernst CD, Knupp P, Pébay PP, Thompson D. The verdict geometric qual-

ity library. Technical Report SAND2007-1751, Sandia National Laboratories 2007. URL

http://www.csimsoft.com/download?file=Documents/sand20071751.pdf.

97. Hossain M, Vu DK, Steinmann P. A comprehensive characterization of the electro- mechanically coupled

properties of VHB 4910 polymer. Archive of Applied Mechanics 2014; .

98. Volokh KY. On electromechanical coupling in elastomers. Journal of Applied Mechanics 2012; 79(4):044 507, .

99. Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic

materials. Journal of the Mechanics and Physics of Solids 1993; 41(2):389–412, .

100. Mitsumata T, Ohori S, Honda A, Kawai M. Magnetism and viscoelasticity of magnetic elastomers with wide range

modulation of dynamic modulus. Soft Matter 2013; 9(3):904–912, .

101. Meeker D. Finite Element Method Magnetics. Version 4.2. User’s Manual February 2009. URL

http://www.femm.info/Archives/doc/manual42.pdf.

102. Gee MW, Siefert CM, Hu JJ, Tuminaro RS, Sala MG. ML 5.0 smoothed aggregation

user’s guide. Technical Report SAND2006-2649, Sandia National Laboratories 2006. URL

https://trilinos.org/oldsite/packages/ml/mlguide5.pdf.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le

34 J-P. V. PELTERET ET AL.

Figure 1. Domain definition, with illustration of the deformable body B0 immersed in a electromagnetically
permeable medium S0.
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Figure 2. Specialised discretisation of the problem domain using finite elements. The free space has been
partitioned, with the finite-element treatment of the layer of cells directly adjacent to the solid body being

different to that of the rest of the subdomain. Note that the definition of SB,h
0 must follow any h-refinement

that occurs across the solid-free space interface.
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Figure 3. Representative geometry of pinned square plate in free space
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Figure 4. Total displacement magnitude along plate edges. Solid lines indicate compressible case (λ =
60 kPa) and dotted lines indicate result for quasi-incompressible case (λ = 249.95MPa).
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Figure 5. Comparison of a selection of mesh update methods for ∆Φ = 1000V (compressible case; λ =
60 kPa). The boundary layer mesh surrounding the elastic body is clearly visible.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le

COMPUTATIONAL ELECTRO- AND MAGNETO-ELASTICITY FOR MEDIA IN FREE SPACE 39

Figure 6. Convergence of the normalised residual norm
|r|

|r1|
at different load steps. Cases for which the

direct and iterative solver were used are denoted “Dir.” and “It.” respectively, while the incompressible and
compressible cases are respectively delineated by “inc.” and “comp.”. The maximum potential difference is

max∆Φ = 600V.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le

40 J-P. V. PELTERET ET AL.

Figure 7. Influence of uniform h-refinement on linear solver time. The maximum potential difference is
max∆Φ = 600V.
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Figure 8. Electro-active polymer strip with conductive surface coating. An unpainted (non-conductive) strip
can be observed at the edge of the material.
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Figure 9. Deformation of the strip during stretching phase
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Figure 10. Deformation of the strip during application of electric potential. The position of the polymer after
prestretch (t = 60 s) indicated by the dashed outline.
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Figure 11. Deformation recorded in various regions of the geometry
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Figure 12. Stress history at various points in the geometry
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Figure 13. Deformation of the EAP strip with the free space and mechanical clamps considered.
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Figure 14. A scale representation of the cross-section of magneto-active polymer valve geometry and
boundary conditions. The original position of the polymer B0 is shown in red and its expected displaced

configuration Bt shown in grey.
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Figure 15. Simulation of valve under equivalent static conditions (zero-deformation) using the vector
potential (curl) formulation (FEMM [101]) and the magnetic scalar potential formulation. Magnetic flux

lines are shown in black.
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Figure 16. Magnetic quantities measured radially (along reference coordinates) at the height Z = 4.5mm.
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Figure 17. Deformation measured radially (along reference coordinates) at axial distance Z = 4.5mm.
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Figure 18. Polymer displacement solution with and without representation of the surrounding free space and
iron components. For the case without free space, the potential prescribed on the polymer inner and outer

surfaces was ΦI = 116A and ΦO = 309A respectively. With reference to figure 14, this equates to ΦI being

applied on B0 ∩ SI,i
0 and ΦO being prescribed on B0 ∩ Sg

0 . The chosen values were obtained from the final
solution for the problem that included free space.
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Figure 19. Comparison of free space mesh update using two choices of blending parameter. The gap between
the polymer and outer yoke is highlighted in red. In both cases the stiffness function was given by the distance

to the nearest solid or “pseudo-solid” vertex and defined by the power law listed in equation (51)2.
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Figure 20. Evaluation of alternative design for valve. Measurements were taken radially (along reference
coordinates) at the height Z = 4.5mm.
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Table I. Finite element basis applied to subdomains. The element types FE Q and FE DGM are respectively
the continuous Lagrange FE and discontinuous monomial FE. The polynomial order is denoted by n and

vector elements are highlighted by bold font.

Field ϕ p̃ J̃ Φ
Subdomain Coupled problem

Bh
0 FE Q (n) × FE DGM (n− 1) × FE DGM (n− 1) × FE Q (n)

SB,h
0 FE Q (n) × — × — × FE Q (n)

Sh
0 \SB,h

0 — × — × — × FE Q (n)
Mesh motion problem

Bh
0 — × — × — × —

SB,h
0 FE Q (n) × — × — × —

Sh
0 \SB,h

0 FE Q (n) × — × — × —
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Table II. Comparison of a selection of mesh update methods (compressible case; λ = 60 kPa). The worst
quality cell was computed using the scaled Jacobian metric.

Homogeneous Power Exponential

d – Vertex distance Cell diameter Vertex distance Cell diameter

α\p – 1 2 1 2 1 2 1 2

-1 -0.496 0.040 0.620 -0.270 0.119 -0.500 -0.490 -0.440 -0.252

0 -0.204 0.156 0.437 -0.061 0.086 -0.208 -0.211 -0.170 -0.117

0.6 0.083 0.249 0.409 0.128 0.213 0.071 0.060 0.067 0.089

0.9 0.294 0.340 0.431 0.297 0.351 0.278 0.265 0.257 0.266

0.98 0.387 0.390 0.446 0.386 0.422 0.376 0.367 0.360 0.364

1 0.408 0.372 0.369 0.371 0.365 0.405 0.403 0.399 0.388
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Table III. Number of Newton iterations needed at each fixed load step using different approaches to compute
the tangent. The maximum potential difference is max∆Φ = 600V. Load steps for which divergence was

observed are denoted by “div.”.

Incompressible Compressible

Load step Approximate tangent Exact tangent Approximate tangent Exact tangent

1 3 3 3 3

2 3 3 3 3

3 3 3 4 4

4 4 4 4 4

5 4 4 5 5

6 5 5 5 5

7 5 >10 6 7

8 6 >10 7 div.

9 7 div. 8 –

10 7 – 9 –
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