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Computational engineering analysis with the new-generation

space–time methods

Kenji Takizawa

Abstract This is an overview of the new directions we

have taken the space–time (ST) methods in bringing solu-

tion and analysis to different classes of computationally chal-

lenging engineering problems. The classes of problems we

have focused on include bio-inspired flapping-wing aero-

dynamics, wind-turbine aerodynamics, and cardiovascular

fluid mechanics. The new directions for the ST methods

include the variational multiscale version of the Deforming-

Spatial-Domain/Stabilized ST method, using NURBS basis

functions in temporal representation of the unknown vari-

ables and motion of the solid surfaces and fluid meshes, ST

techniques with continuous representation in time, and ST

interface-tracking with topology change. We describe the

new directions and present examples of the challenging prob-

lems solved.

Keywords Bio-inspired flapping-wing aerodynamics ·

MAV · Wind-turbine aerodynamics · Cardiovascular fluid

mechanics · Space–time methods · DSD/SST method ·

ST-SUPS method · ST-VMS method · NURBS in time ·

STNMUM · ST with continuous temporal representation ·

ST-C · ST with topology change · ST-TC

1 Introduction

In computational engineering analysis, one frequently faces

the challenges involved in solving flow problems with mov-

ing boundaries and interfaces (MBI). This wide class of

problems include fluid–structure interaction (FSI), fluid–
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object interaction (FOI), fluid–particle interaction (FPI),

free-surface and multi-fluid flows, and flows with solid sur-

faces in fast, linear or rotational relative motion. The compu-

tational challenges still being addressed include accurately

representing the small-scale flow patterns, which requires a

reliable multiscale method. They also include contact or near

contact between moving solid surfaces and other cases of

topology change (TC) or near TC, such as those in flapping-

wing aerodynamics, wind-turbine aerodynamics, and car-

diovascular fluid mechanics. These three specific classes of

problems played a key role in motivating the development of

the computational-analysis methods discussed in this article.

A method for flows with MBI can be viewed as an

interface-tracking (moving-mesh) technique or an interface-

capturing (nonmoving-mesh) technique, or possibly a com-

bination of the two. In interface-tracking methods, as the

interface moves, the mesh moves to follow (i.e. “track”)

the interface. The Arbitrary Lagrangian–Eulerian (ALE)

finite element formulation [1] is the most widely used

moving-mesh technique. It has been used for many flow

problems with MBI, including FSI (see, for example,

[2–35]). The Deforming-Spatial-Domain/Stabilized Space–

Time (DSD/SST) method [30,36–42], introduced in 1992, is

also a moving-mesh method. The costs and benefits of mov-

ing the fluid mechanics mesh to track a fluid–solid interface

were articulated in many papers (see, for example, [39,43]).

Moving-mesh methods require mesh update methods.

Mesh update typically consists of moving the mesh for as

long as possible and remeshing as needed. With the key

objectives being to maintain the element quality near solid

surfaces and to minimize frequency of remeshing, a number

of advanced mesh update methods [40,44–48] were devel-

oped in conjunction with the DSD/SST method, including

those that minimize the deformation of the layers of small

elements placed near solid surfaces.
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Perceived challenges in mesh update are quite often given

as reasons for avoiding interface-tracking methods in classes

of problem that can be, and actually have been, solved with

such methods. A robust moving-mesh method with effective

mesh update can handle FSI or other MBI problems even

when the solid surfaces undergo large displacements (see,

for example, FPI [46,49] with the number of particles reach-

ing 1,000 [46], parachute FSI [40,43,50–56], flapping-wing

aerodynamics [57–59], and wind-turbine rotor and tower

aerodynamics [60]. It can handle FSI or other MBI prob-

lems also even when the solid surfaces are in near contact

or create near TC, if the “nearness” is sufficiently “near” for

the purpose of solving the problem. Examples of such prob-

lems are FPI with collision between the particles [46,49],

parachute-cluster FSI with contact between the parachutes of

the cluster [52–54,56], flapping-wing aerodynamics with the

forewings and hindwings crossing each other very close [57–

59], and wind-turbine rotor and tower aerodynamics with the

blades passing the tower close [60].

No method is a panacea for all classes of MBI prob-

lems. As mentioned in [30], certain classes of interfaces,

such as those in splashing, might be too complex to deal

with an interface-tracking technique, requiring an interface-

capturing technique. The Mixed Interface-Tracking/Interface-

Capturing Technique (MITICT) [46] was introduced for

computations that involve both fluid–solid interfaces that can

be accurately tracked with a moving-mesh method and fluid–

fluid interfaces that are too complex or unsteady to be tracked.

Those fluid–fluid interfaces are captured over the mesh track-

ing the fluid–solid interfaces. The MITICT was successfully

tested in 2D computations with solid circles and free sur-

faces [61,62] and in 3D computation of ship hydrodynam-

ics [21].

In some MBI problems with contact between the solid

surfaces, the “nearness” that can be modeled with a moving-

mesh method without actually bringing the surfaces into

contact might not be “near” enough for the purpose of

solving the problem. Cardiovascular FSI with heart valves,

where the flow has to be completely blocked at contact, is

an example. The Fluid–Solid Interface-Tracking/Interface-

Capturing Technique (FSITICT) [51] was motivated by such

FSI problems. In the FSITICT, we track the interface we

can with a moving mesh, and capture over that moving

mesh the interfaces we cannot track, specifically the inter-

faces where we need to have an actual contact between the

solid surfaces. A specific application of the FSITICT was

presented in [63], where the ALE method is used for inter-

face tracking, and a fully Eulerian approach for interface

capturing, with some 2D benchmark problems as test com-

putations. This specific application was extended in [63] to

2D FSI models with flapping and contact, where the fully

Eulerian interface-capturing is complemented with mesh

adaptivity.

Since its inception, the DSD/SST method has been

applied to some of the most challenging flow problems

with MBI. The classes of problems solved include the free-

surface and multi-fluid flows [36,38,44–46,49,61,64–69],

FOI [36–38,45,49,61,65,67,70–77], aerodynamics of flap-

ping wings [57–59,78–80], flows with solid surfaces in

fast, linear or rotational relative motion [20,46,49,60,81–

83], compressible flows [49,65,77,84–86], shallow-water

flows [46,87,88], FPI [46,49,67,75,89–93], and FSI [40–

43,50–56,59,64–66,69,70,78,86,94–138]. Much of the suc-

cess with the DSD/SST method in recent years was due to

the new directions we have taken the ST methods in bringing

solution and analysis to different classes of computationally

challenging engineering problems.

The original DSD/SST method is based on the SUPG/

PSPG stabilization, where “SUPG” and “PSPG” stand for

the Streamline-Upwind/Petrov–Galerkin [139] and Pressure-

Stabilizing/Petrov–Galerkin [36,140] methods. Starting in

its very early years, the DSD/SST method also included

the “LSIC” (least-squares on incompressibility constraint)

stabilization. The ST-VMS method [30,41,42] is the vari-

ational multiscale version of the DSD/SST method. It was

called “DSD/SST-VMST” (i.e. the version with the VMS

turbulence model) when it was first introduced in [41]. The

VMS components are from the residual-based VMS method

given in [141–144]. We demonstrated the increased accuracy

brought by the ST-VMS method the first time with the com-

putations reported in [41,83,145]. We have been using the

ST-VMS method in most of our computations since then. The

original DSD/SST method was named “DSD/SST-SUPS”

in [41] (i.e. the version with the SUPG/PSPG stabilization),

which was also called “ST-SUPS” in [30].

The ST methods give us the the option of using higher-

order basis functions in time, including the NURBS, which

have been used very effectively as spatial basis func-

tions (see [4,8,146,147]). We started using that option

with the methods and concepts introduced in [41]. This

of course increases the order of accuracy in the com-

putations [41,42,129], and the desired accuracy can be

attained with larger time steps, but there are positive con-

sequences beyond that. The ST context provides us better

accuracy and efficiency in temporal representation of the

motion and deformation of the moving interfaces and vol-

ume meshes, and better efficiency in remeshing. This has

been demonstrated in a number of 3D computations, specif-

ically, flapping-wing aerodynamics [57–59,79,80], separa-

tion aerodynamics of spacecraft [55], and wind-turbine aero-

dynamics [60]. The mesh update method based on using

NURBS basis functions in mesh motion and remeshing was

named “ST/NURBS Mesh Update Method (STNMUM)” in

[60].

There are some advantages in using a discontinuous tem-

poral representation in ST computations. For a given order of
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temporal representation, we can reach a higher order accu-

racy than one would reach with a continuous representation

of the same order. When we need to change the spatial dis-

cretization (i.e. remesh) between two ST slabs, the temporal

discontinuity between the slabs provides a natural frame-

work for that change. There are advantages also in contin-

uous temporal representation. We obtain a smooth solution,

NURBS-based when needed. We also can deal with the com-

puted data in a more efficient way, because we can represent

the data with fewer temporal control points, and that reduces

the computer storage cost. These advantages motivated the

development of the ST computation techniques with contin-

uous temporal representation (ST-C) [148].

There are different types of nonmoving-mesh methods

that can compute MBI problems involving an actual con-

tact between solid surfaces or other cases of TC. Some of

those methods give up on the accurate representation of the

interface, and most give up on the consistent representation

of the interface motion. The DSD/SST formulation does not

need to give up on either, even where we have an actual

contact or some other TC, provided that we can update the

mesh even there. Using an ST mesh that is unstructured

both in space and time, as proposed for contact problems

in [46], would give us such a mesh update option. How-

ever, that would require a fully unstructured 4D mesh gen-

eration, and that is not easy in computing real-world prob-

lems. An ST interface-tracking method that can deal with

TC was introduced in [138], and it is called ST-TC. It is a

practical alternative to using unstructured ST meshes, but

without giving up on the accurate representation of the inter-

face or the consistent representation of the interface motion,

even where there is an actual contact between solid surfaces

or other TC. The ST-TC method is based on special mesh

generation and update, and a master–slave system that main-

tains the connectivity of the “parent” mesh when there is a

TC.

In this article we provide an overview of these four new

directions we have taken the ST methods and show how that

brought solution to the three specific classes of problems

mentioned in the first paragraph. In Sect. 2, we briefly review

the Navier–Stokes equations of incompressible flows. The

ST-SUPS and ST-VMS methods are described in Sects. 3 and

4. Methods based on temporal representation with NURBS

basis functions, including the STNMUM, are given in Sect. 5.

The ST-C and ST-TC are described in Sects. 6 and 7. In the

three sections following that, we present examples of the

challenging problems solved. In Sect. 8, we present aero-

dynamic analysis of flapping wings of an actual locust and

an MAV, in Sect. 9 aerodynamic analysis of wind turbines,

and in Sect. 10 a proof-of-concept computation with two

pairs of symmetrically-flapping surfaces with coordinated

opening/closing actions. The concluding remarks are given

in Sect. 11.

2 Governing equations

Let Ωt ⊂ R
nsd be the spatial domain with boundary Γt at time

t ∈ (0, T ). The subscript t indicates the time-dependence of

the domain. The Navier–Stokes equations of incompressible

flows are written on Ωt and ∀t ∈ (0, T ) as

ρ

(

∂u

∂t
+ u · ∇∇∇u − f

)

− ∇∇∇ · σσσ = 0, (1)

∇∇∇ · u = 0, (2)

where ρ, u and f are the density, velocity and the exter-

nal force, respectively. The stress tensor σσσ is defined as

σσσ(p, u) = −pI+2µεεε(u), withεεε(u) =
(

(∇∇∇u) + (∇∇∇u)T
)

/2.

Here p is the pressure, I is the identity tensor, µ = ρν is the

viscosity, ν is the kinematic viscosity, and εεε(u) is the strain-

rate tensor. The essential and natural boundary conditions for

Eq. (1) are represented as u = g on (Γt )g and n · σσσ = h on

(Γt )h, where (Γt )g and (Γt )h are complementary subsets of

the boundary Γt , n is the unit normal vector, and g and h

are given functions. A divergence-free velocity field u0(x) is

specified as the initial condition.

3 ST-SUPS (DSD/SST-SUPS) method

In the DSD/SST method (see, e.g., [36–42]), the finite ele-

ment formulation is written over a sequence of N ST slabs

Qn , where Qn is the slice of the ST domain between the

time levels tn and tn+1 (see Fig. 1). At each time step, the

integrations are performed over Qn . The ST finite element

interpolation functions are continuous within a ST slab, but

discontinuous from one ST slab to another. The notation (·)−n
and (·)+n will denote the function values at tn as approached

from below and above. Each Qn is decomposed into ele-

ments Qe
n , where e = 1, 2, . . . , (nel)n . The subscript n used

with nel is for the general case where the number of ST ele-

ments may change from one ST slab to another. The essential

and natural boundary conditions are enforced over (Pn)g and

(Pn)h, the complementary subsets of the lateral boundary of

Fig. 1 ST slab in an abstract representation
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the ST slab. The finite element trial function spaces Sh
u for

velocity and Sh
p for pressure, and the test function spaces

Vh
u and Vh

p = Sh
p are defined by using, over Qn , typically

first-order polynomials in space and time, but can also be of

higher-order functions.

The ST-SUPS (DSD/SST-SUPS) method (from [39]) is

written as follows: given (uh)−n , find uh ∈ Sh
u and ph ∈ Sh

p ,

such that ∀wh ∈ Vh
u and ∀qh ∈ Vh

p :

∫

Qn

wh
· ρ

(

∂uh

∂t
+ uh

· ∇∇∇uh
− fh

)

dQ

+

∫

Qn

εεε(wh) : σσσ(uh, ph)dQ −

∫

(Pn)h

wh
· hhdP

+

∫

Qn

qh
∇∇∇ · uhdQ +

∫

Ωn

(wh)+n · ρ
(

(uh)+n − (uh)−n dΩ

+

(nel)n

e=1

∫

Qe
n

1

ρ
τSUPGρ

(

∂wh

∂t
+ uh

· ∇∇∇wh

)

+ τPSPG∇∇∇qh

]

·rMdQ +

(nel)n

e=1

∫

Qe
n

ρνLSIC∇∇∇ · whrCdQ = 0, (3)

where rM and rC are the the residuals of the momentum

equation and incompressibility constraint (continuity equa-

tion). The ST-SUPS method has all the ingredients of the

semi-discrete SUPG/PSPG finite element formulation. That

includes the test functions, domain integrations, stress terms

that have been integrated by parts, boundary integrations,

and the SUPG, PSPG and LSIC stabilization terms with

stabilization parameters τSUPG, τPSPG and νLSIC. The sta-

bilization is residual based because rM and rC appear as fac-

tors in the stabilization terms. The stabilization parameters

τSUPG, τPSPG and νLSIC originate from stabilized finite ele-

ment methods for fluid dynamics (see, e.g., [36,39,139,149–

152]). There are various ways of defining these parameters.

In the computations included in this article, we mostly use

the definitions given in [39], with some new options intro-

duced in [40,60,79,145]. For more ways of calculating the

stabilization parameters in finite element computation of flow

problems, see [30,106,153–177].

4 ST-VMS (DSD/SST-VMST) method

4.1 Conservative form

The conservative form of the ST-VMS method is written as

follows: given (uh)−n , find uh ∈ Sh
u and ph ∈ Sh

p , such that

∀wh ∈ Vh
u and ∀qh ∈ Vh

p :

∫

Qn

wh
· ρ

(

∂uh

∂t
+ ∇∇∇ · (uhuh) − fh

)

dQ

+

∫

Qn

εεε(wh) : σσσ(uh, ph)dQ −

∫

(Pn)h

wh
· hhdP

+

∫

Qn

qh
∇∇∇ · uhdQ +

∫

Ωn

(wh)+n · ρ
(

(uh)+n − (uh)−n dΩ

+

(nel)n

e=1

∫

Qe
n

τSUPS

ρ
ρ

(

∂wh

∂t
+ uh

· ∇∇∇wh

)

+ ∇∇∇qh

]

· rMdQ

+

(nel)n

e=1

∫

Qe
n

ρνLSIC∇∇∇ · whrCdQ

+

(nel)n

e=1

∫

Qe
n

τSUPSrM ·

(

∇∇∇wh uhdQ

−

(nel)n

e=1

∫

Qe
n

τ 2
SUPS

ρ
rM ·

(

∇∇∇wh rMdQ = 0. (4)

The stabilization parameter τSUPS is calculated in essentially

the same way as τSUPG is calculated. The notation “SUPS,”

introduced in [41], indicates that there is a single stabilization

parameter for the SUPG and PSPG stabilizations, instead of

two separate parameters.

Remark 1 One of the main differences between the ALE and

ST forms of the VMS method is that the ST form retains the

fine-scale time derivative term ∂u′

∂t

∣

∣

ξξξ
(ξξξ is the vector of ele-

ment coordinates). Dropping this term is called the “quasi-

static” assumption (see [15] for the terminology). This is the

same as the “WTSE” option in the DSD/SST formulation

(see Remark 2 of [40]). We believe that this makes a signif-

icant difference, especially when the polynomial orders in

space or time are higher (see [41]).

4.2 Convective form

∫

Qn

wh
· ρ

(

∂uh

∂t
+ uh

· ∇∇∇uh
− fh

)

dQ

+

∫

Qn

εεε(wh) : σσσ(uh, ph)dQ −

∫

(Pn)h

wh
· hhdP

+

∫

Qn

qh
∇∇∇ · uhdQ +

∫

Ωn

(wh)+n · ρ
(

(uh)+n − (uh)−n dΩ

+

(nel)n

e=1

∫

Qe
n

τSUPS

ρ
ρ

(

∂wh

∂t
+ uh

· ∇∇∇wh

)

+ ∇∇∇qh

]

· rMdQ
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+

(nel)n

e=1

∫

Qe
n

νLSIC∇∇∇ · whρrCdQ

−

(nel)n

e=1

∫

Qe
n

τSUPSwh
·

(

rM · ∇∇∇uh dQ

−

(nel)n

e=1

∫

Qe
n

τ 2
SUPS

ρ
rM ·

(

∇∇∇wh
· rMdQ = 0. (5)

Remark 2 The 6th and 7th terms of the ST-VMS method

in either form are the SUPG/PSPG and LSIC stabiliza-

tion terms, respectively. If we exclude the last two terms

of the convective form, the method reduces to the ST-

SUPS (DSD/SST-SUPS) method under the condition τPSPG

= τSUPG.

5 Temporal representation with NURBS basis functions

The concept of using NURBS basis functions, in conjunc-

tion with the ST methods, in temporal representation of the

unknown variables and motion of the solid surfaces and fluid

meshes was first introduced in [41].

5.1 ST basis functions

An ST basis function can be written as a product of its spatial

and temporal parts:

Nα
a = T α (θ) Na (ξξξ) , a = 1, 2, . . . , nen,

α = 1, 2, . . . , nent, (6)

where θ ∈ [−1, 1] is the temporal element coordinate, and

nen and nent are the number of spatial and temporal ele-

ment nodes. Figure 2 shows an example of temporal NURBS

basis functions. Temporal NURBS basis functions can be

used in an ST slab for the representation of the unknown

variables and test functions as well as the spatial coordi-

nates.

As pointed out in [30,41,42,60,79], different components

(i.e. unknowns), and the corresponding test functions, can

be discretized with different sets of temporal basis func-

Fig. 2 Temporal NURBS basis functions

tions. This was shown in [30,41,42,60,79] by introduc-

ing a secondary mapping Θζ (θ) ∈ [−1, 1], where Θζ (θ)

is a strictly increasing function, and rewriting the gener-

alized ST basis function for the element indices (a, α)

as
(

Nα
a

)

ζ
= T α

(

Θζ (θ)
)

Na (ξξξ) . (7)

For example, we can discretize time and position as

t =

nent

α=1

T α(Θt (θ))tα, (8)

x =

nent

α=1

T α(Θx (θ))xα. (9)

Here Θt (θ) and Θx (θ) are the secondary mappings for time

and position, and tα and xα are the time and position values

corresponding to the basis function T α .

5.2 Motion of solid surfaces

As an example, Fig. 3 shows, from [79], how the motion

of the forewing (FW) of a locust is represented temporally.

In the preliminary computations reported in [79], quadratic

NURBS basis functions were used in the temporal repre-

sentation of the wing motion. Based on those computations,

using even higher-order temporal basis functions was pro-

posed in [79], so that the acceleration is continuous. Fig. 4

shows, from [57], how the path of a point on the hind-

wing (HW) of the locust is represented with cubic NURBS

basis functions over four temporal patches (see [57] for

details).

5.3 Rotation representation with constant angular velocity

With temporal NURBS basis functions, as described in [30,

41,42,60,79], we can represent a path accurately, such as

representing a circular arc exactly with quadratic NURBS.

Fig. 3 FW control mesh and corresponding surface at three temporal-

control points
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Fig. 4 Path of a point on the HW as represented with cubic NURBS

basis functions over four temporal patches

We can also specify a speed along that path, such as a constant

angular velocity for a circular arc [30,60,79]. In this this

subsection, from [60], we describe how to do that.

For the circular arc, with quadratic NURBS, nent = 3.

With the secondary-mapping concept described in Sect. 5.1,

the velocity can be expressed as follows:

dx

dt
=

nent

α=1

dT α

dΘx

dΘx

dθ
xα

) (

nent
∑

α=1

dT α

dΘt

dΘt

dθ
tα

)−1

, (10)

leading to

dx

dt
=

nent

α=1

dT α

dΘx

xα

) (

nent
∑

α=1

dT α

dΘt

tα

)−1
(

dΘx

dθ

dθ

dΘt

)

. (11)

Thus, the speed along the path can be specified only by mod-

ifying the secondary mapping. For a circular arc, two meth-

ods were introduced in [79] and also described in [30]; one is

modifying the secondary mapping for position and the other

one is modifying both such that dt
dθ

is constant. We note that,

in theory, the secondary-mapping selections do not make any

difference as long as the relationship dΘx

dΘt
is the same. In our

implementation, to keep the process general, we search for

the parametric coordinate θ by using an iterative solution

method [30,79]. We use the latter set of the secondary map-

pings, having constant dt
dθ

.

5.4 STNMUM

5.4.1 Mesh computation and representation

Given the fluid mechanics mesh on a moving solid surface,

we compute the fluid mechanics volume mesh using the

mesh moving techniques [40,44–46] developed in conjunc-

tion with the DSD/SST method. As proposed in [79] and

also described in [30], these mesh moving techniques are

applied to computing the meshes that will serve as temporal-

control points. This allows us to do mesh computations

with longer time in between, but get the mesh-related infor-

mation, such as the coordinates and their time derivatives,

from the temporal representation whenever we need. Obvi-

ously this also reduces the storage amount and access asso-

ciated with the meshes. However, because of the longer time

between the control meshes, linear interpolation of the sur-

faces between control points in time might be needed in

computing those meshes with the mesh moving technique

mentioned.

Remark 3 Getting the meshes used in the computations from

the temporal representation can be done independent of

which time direction was used in computing the control

meshes. For example, in flapping-wing aerodynamics, it does

not matter if the control meshes were computed while the

wings were flapping forward or backward in time.

5.4.2 Remeshing

In many computations remeshing becomes unavoidable. Two

choices were proposed in [79] and also described in [30]. To

explain those choices, let us assume that when we try to

move from control mesh M
β
c to M

β+1
c , we find the qual-

ity of M
β+1
c to be less than desirable. In the first choice,

called “trimming,” we remesh going back to M
β−p+1
c , where

p is the order of the NURBS basis functions. Then when-

ever our solution process needs a mesh, depending on the

time, we use the control meshes belonging to either only

the un-remeshed set or only the remeshed set (Fig. 5). In

the second choice, we perform knot insertion p times in the

temporal representation of the surface at the right-most knot

before the maximum value of the basis function correspond-

ing to t
β+1
c , making that knot a new patch boundary. Then

we do the mesh moving computation for the control meshes

associated with the newly-defined basis functions, not only

the one at the new patch boundary, but also going back

(p − 1) basis functions (Fig. 6). We favor the second choice,

because we believe that in many cases the need for remesh-

ing is generated by a topological change, which we can avoid

going over with a large step if we use the knot insertion

process.

6



Fig. 5 Remeshing and trimming NURBS. A set of un-remeshed

meshes (top). A set of remeshed meshes (middle). Common basis func-

tions (bottom)

Fig. 6 Remeshing with knot insertion. For the set of un-remeshed

meshes, there are p newly-defined basis functions and the correspond-

ing control points are marked “New.” We carry out the mesh moving

computations for those meshes

6 ST-C

In this section, from [148], we describe the version of ST-C

used in extracting continuous temporal representation from

Fig. 7 Continuous solution (top) and its basis functions (bottom),

where ϑ is the parametric coordinate

computed data. This is essentially a post-processing method,

and can also be seen as a data compression method. For the

version used in direct computation of the solution with con-

tinuous temporal representation, see [148].

6.1 Least-squares projection for full temporal domain

When we have the complete sequence of computed data,

we can project that to a smooth representation, with basis

functions that provide us that smooth representation, such

as NURBS basis functions. As an example, Fig. 7 shows

the goal continuous data φC and its basis functions, where

ϑ denotes the parametric temporal coordinate. The pro-

jection for each spatial node can be done independently

from the other nodes. Consider the time-dependent, typi-

cally discontinuous computed data φD for a node. We define

the basis functions as T α
C , where α = 0, 1, . . ., and the

coefficients to be determined in the projection as φα . We

use a standard least-squares projection: given φD, find the

solution φC ∈ SC, such that for all test functions wC ∈

VC:

T
∫

0

wC (φC − φD) dt = 0, (12)

where T represents time period of the computation, and SC

and VC are the solution and test function spaces constructed

from the basis functions. This approach requires that we store

all the computed data before the projection, and that would

be a significant computer storage cost when the number of

time steps is large.

6.2 Successive-projection technique

In ST-C with the successive-projection technique (ST-C-

SPT), we extract the continuous solution shown in Fig. 7

without storing all the computed data. We describe the tech-

nique here for the special case with quadratic B-splines.
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Fig. 8 Continuous solution up to tn = 4.0 (top) and its basis functions

(bottom)

Fig. 9 Continuous solution up to tn+1 = 5.0 (top) and its basis func-

tions (bottom). The bold part of the top curve indicates the part of the

solution that does not change. The empty squares denote the temporal

control values to be determined. The dashed lines denote the modified

and new basis functions, which correspond to those control values

To explain the successive nature of the SPT, let us sup-

pose that we have the continuous solution extracted up to

tn = 4.0, as shown in Fig. 8. We assume that this contin-

uous solution, which we will call φC, has already replaced

φD up to tn = 4.0. With that, we describe how we extract

the continuous solution up to tn+1 = 5.0, as shown in

Fig. 9. With the newly computed data φD between tn = 4.0

and tn+1 = 5.0, we solve the following projection equa-

tion: given φD on t ∈ (4.0, 5.0), φC on t ∈ [2.0, 4.0],

and φα
C, α = 2, 3, find φC ∈ SC, such that ∀wC ∈

VC:

4.0
∫

2.0

wC

(

φC − φC

)

dt +

5.0
∫

4.0

wC (φC − φD) dt = 0. (13)

We note that Eq. (13) is essentially used for defining

the coefficients φα
C, α = 4, 5, 6, which correspond to

the basis functions T α
C . How to deal with the initial part

of the extraction, description of the ST-C-SPT for the

general case (i.e. beyond quadratic B-splines), and com-

ments on efficient implementation of the SPT can be found

in [148].

Fig. 10 Hypothetical case of two bars that are initially coinciding, with

one hole in the fluid mechanics domain (left). Then the red bar starts

moving upward, creating a second hole in the domain (right)

Fig. 11 Hypothetical case of two bars that are are initially aligned

with connected ends, with one hole in the domain (left). Then the red

bar starts a flapping motion, up (middle) and down (right), creating a

second hole in the domain, except when their ends become connected

periodically during the flapping motion

7 ST-TC

7.1 TC

We consider two hypothetical cases of two bars to provide a

context for TC. In the first case, shown in Fig. 10, the bars are

initially coinciding, with just one hole in the fluid mechanics

domain. Then the red bar starts moving upward, creating a

second hole. In the second case, shown in Fig. 11, the bars

are initially aligned with connected ends, again with a single

hole in the domain. Then the red bar starts a flapping motion,

up and down, creating a second hole in the domain, except

when their ends become connected periodically during the

flapping motion. When the red bar is in the upper position,

the part of the domain below it is connected to the part of the

domain above the blue bar. When the red bar is in the lower

position, the part of the domain above it is connected to the

part of the domain below the blue bar. These two cases are

representatives of the typical TC challenges we expect to see

in the classes of MBI problems we are targeting. Especially

the first case is really not possible to treat in a consistent way

without using an ST method.

7.1.1 Master–slave system

We propose a very simple technique in the ST context. Hav-

ing a constraint between nodes in a finite element formula-

tion is quite common. These constraints reduce the number of

unknowns, but in our implementation we delay that unknown

elimination until the iterative solution of the linear systems

encountered at nonlinear iterations of a time step. The itera-

tive solution of the linear systems is performed with reduced

number of unknowns. The technique is easy to manage in a

parallel-computing environment, especially if the precondi-
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tioner is simple enough. Typically we assign a master node to

each slave node, and we use only the unknowns of the master

nodes in iterative solution of the linear systems. We can use

different master–slave relationships at different time levels.

This is a practical alternative to, but less general than, using

ST meshes that are unstructured in time. Still, we can use this

concept to deal with the TC cases considered above, and the

important point is that the connectivity of the “parent” mesh

does not change. Consequently, the distribution model in the

parallel-computing environment does not change during the

computations with moving meshes.

With this technique, we need to implement one more func-

tionality. We exclude certain elements from the integration

of the finite element formulation. The exclusion principles

are given below.

– Exclude all spatial elements with zero volume from the

spatial integration.

– Exclude all ST elements with zero ST volume from the

ST integration.

– We assume that checking if an ST element has zero ST

volume is equivalent to checking if all the spatial ele-

ments associated with that ST element have zero volume.

Therefore, for this purpose, we check the spatial-element

volumes.

– To identify the spatial elements with zero volume, which

should have zero Jacobian at all the integration points,

instead of evaluating the Jacobians, we make the determi-

nation for a given spatial element from the master–slave

relationship of its nodes. The method is explained more

in [138].

7.1.2 Design of the master–slave system

The data we need to provide to the solver is simple. It is just

the master–slave relationship at each time level. However

there are some restrictions, and here we explain the three

that we want to emphasize. The first restriction is that we

cannot have a node which is not part of any active (nonzero

volume) spatial element. This is because the values at such

nodes would no longer be in our equation system, and there-

fore would become undefined. If because of another TC such

a node comes back to the equation system later as part of

an active element, it would add an undefined component to

the equation system. The second restriction is that when we

construct the ST elements, we have to have matching lateral

element-boundary faces between the active adjacent ST ele-

ments. This condition cannot be checked on the spatial mesh.

Therefore we need to check it on the ST mesh. The third one

is related to implementation. The master–slave relationship

also extends to cases when we have boundary conditions on

the master and slave nodes. In other words, the conditions at

the master node also apply to the slave nodes.

Fig. 12 Contraction. The red nodes, 3 and 5, are on the contraction

interface and are contacting. The white nodes are the slaves. They are

in the same position as their masters, but for visualization purposes we

slightly shift their positions in the figure. The numbers indicate the node

numbers on the parent mesh. (Color figure online)

Fig. 13 Flapping. Red and blue bars at different instants in time as the

red bar crosses the blue bar. (Color figure online)

7.2 Conceptual examples

7.2.1 Contraction and expansion

This is related to the first one of the two cases of TC described

in Sect. 7.1. Contraction and expansion are basically the

same, except having different directions in time progression.

Figure 12 shows a contraction example. The spatial element

with nodes 1 and 2, for example, has zero volume at the first

time level. However, it has nonzero volume at the second

time level, and therefore the corresponding ST element has

nonzero volume.

7.2.2 Flapping

This is related to the second one of the two cases of TC

described in Sect. 7.1. Figure 13 shows the red and blue bars

at three instants in time as the red bar crosses the blue bar.

Figure 14 shows, for the flapping motion, the ST trajectories

of the neighboring ends of the blue and red bars. Figure 15

shows the ST element edges for the line separating the two

sides of the domain containing the blue and red bars (shown

as the vertical dashed line in Fig. 13). For each side of the

domain, the spatial node motions along the ST element edges
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Fig. 14 Flapping. The ST trajectories of the neighboring ends of the

blue and red bars. (Color figure online)

Fig. 15 Flapping. The ST element edges for the vertical dashed line

in Fig. 13

Fig. 16 Flapping. Blue-bar side of the ST boundary between the two

sides. (Color figure online)

have to be designed in a fashion that does not lead to mesh

entanglement. Figure 16 shows the master–slave relationship

for the blue-bar side of the domain, and Fig. 17 the red-

bar side. In addition, those two sides are in a master–slave

relationship along the vertical dashed line in Fig. 13.

8 Aerodynamic analysis of flapping wings of an actual

locust and an MAV

This section is from [57,58]. The fluid mechanics computa-

tions are carried out with the conservative form of the ST-

VMS method. More information on the computational para-

Fig. 17 Flapping. Red-bar side of the ST boundary between the two

sides. (Color figure online)

Fig. 18 Tracking points in the data set from the BCM wind tunnel

meters and conditions can be found in [57,58]. The motion

and deformation data for the wings is extracted from the

high-speed, multi-camera video recordings of a locust in a

wind tunnel at Baylor College of Medicine (BCM), Houston,

Texas. The video recording is accomplished by using a set of

tracking points marked on the FWs and HWs of the locust.

The tracking points can be seen in Fig. 18. The interested

reader can find in [57] the details of how the wing motion

and deformation data is extracted from the video data and

represented in space and time with the methods described

in Sect. 5, including the STNMUM, and some additional

techniques. Figure 19 illustrates, in the context of the HW

wingtip trajectory, how the STNMUM is used in the compu-

tation. Figure 20 show how the body and wings compare for

the locust and MAV models. Figure 21 shows for the locust

the vorticity magnitude during the second flapping cycle.

Figure 22 shows for the MAV the vorticity magnitude during

the third flapping cycle. In Figs. 21 and 22, the color range

from blue to red corresponds to a vorticity range from low to

high, and lighter and darker shades of a color correspond to
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Fig. 19 Mesh update with the STNMUM in the context of the HW

wingtip trajectory, represented with cubic NURBS over four temporal

patches. Control point numbering is local to each patch. A control point

at the start of a patch and collocated with a control point at the end of

the previous patch is in parentheses. A fluid mechanics volume mesh is

generated for each patch at the middle control point, and the meshes at

the other control points are computed with the mesh moving techniques

developed in conjunction with the DSD/SST method. That gives us a

temporal representation of the mesh

Fig. 20 Locust body and wings (left) and MAV body and wings (right)

lower and higher values. Figure 23 shows the lift and thrust

generated by the locust and MAV.

9 Aerodynamic analysis of wind turbines

This section is from [83] and [60]. Computer modeling of

wind-turbine aerodynamics is challenging because correct

aerodynamic torque calculation requires correct separation-

point calculation, which requires an accurate flow field,

which in turn requires good mesh resolution and turbulence

model. We use an actual wind-turbine model, which is NREL

5MW offshore baseline wind turbine, and the geometric com-

Fig. 21 Locust. Vorticity for four equally-spaced points during the

second flapping cycle

plexity is also a computational challenge. Including the tower

in the model increases the computational challenge because

of the mesh update requirements of the fast, rotational rela-

tive motion between the rotor and tower.

First we describe how we computed the aerodynamics of a

rotor without the tower by using the ST-SUPS and ST-VMS

methods. More information on the computational parame-

ters and conditions can be found in [83]. Figure 24 shows,

from [15], the airfoil cross-sections of the wind-turbine blade

superposed on the blade. Figure 25 shows time history of the

aerodynamic torque generated by a single blade, as com-

puted with the ST-SUPS, ST-VMS (conservative form) and

ALE methods. The ALE results are from [15], which we

take as the reference solution. The figure demonstrates how

the ST-VMS method increases the accuracy in this particular

computational analysis.

When we include the tower, we deal with the mesh update

requirements with the methods described in Sect. 5, includ-

ing the STNMUM. Figure 26 illustrates, in the context of the

blade tip trajectory, how the STNMUM is used in the com-

putation. More information can be found in [60]. Figure 27

shows the vorticity magnitude, computed with the conserva-

tive form of the ST-VMS method and the STNMUM. In that

figure, the color range from blue to red corresponds to a vor-

ticity range from low to high, and lighter and darker shades

of a color correspond to lower and higher values. Figure 28

shows the torque for the individual blades.
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Fig. 22 MAV. Vorticity for four equally-spaced points during the third

flapping cycle
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Fig. 23 Total lift (top) and thrust (bottom) generated over one cycle

Fig. 24 Airfoil cross-sections of the wind-turbine blade superposed on

the blade (from [15])
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Fig. 25 Time history of the aerodynamic torque generated by a single

blade. Computed with the ST-SUPS (“SUPS”), ST-VMS (“VMST”),

and ALE methods

Fig. 26 Mesh update with the STNMUM in the context of the blade tip

trajectory, represented with quadratic NURBS over six temporal patches

in 1/3 rotation. Control point numbering is local to each patch. A control

point at the start of a patch and collocated with a control point at the

end of the previous patch is in parentheses. A fluid mechanics volume

mesh is generated for each patch at the middle control point, and the

meshes at the other control points are computed with the mesh moving

techniques developed in conjunction with the DSD/SST method. That

gives us a temporal representation of the mesh

Remark 4 The drop in the aerodynamic torque as the blade

passes the tower is a well-known phenomenon, observed

in experiments and in other computations of wind-turbine

aerodynamics (see, for example, [35]). In [35], a sliding-

interface technique [147] was used in conjunction with the

ALE-VMS formulation [20] to compute wind-turbine aero-

dynamics, including the rotor–tower interaction.
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Fig. 27 Vorticity, computed with the ST-VMS method and the STN-

MUM
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Fig. 28 Torque for the individual blades. The figure clearly shows the

expected torque drop for each blade as it passes the tower, while the

other two blades maintain relatively constant torque

10 Two pairs of symmetrically-flapping surfaces with

coordinated opening/closing actions

This section is from [138]. The 2D model was intended to

resemble the left ventricle of human heart and represent the

TC challenges one would face in computing the blood flow.

There are two pairs of symmetrically-flapping surfaces with

zero thickness, positioned and functioning like the mitral

and aortic valves would be. The 2D domain changes its area

like the left ventricle would change its volume. When one of

the pairs closes, the domain is separated into two. Figure 29

shows the computational domain. The flow enters through the

flapping pair at the inlet (we call this pair “mitral”), and exits

through the pair at the outlet (we call this pair “aortic”). We

Fig. 29 Computational domain. The 2D model was intended to resem-

ble the left ventricle of human heart. The red lines represent the solid

surfaces, and the rest of the domain boundaries are the inlet (near the

domain center) and outlet (upper left). (Color figure online)
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Fig. 30 Opening/closing stages of the mitral and aortic pairs over the

period 1.0 s, prescribed in terms of the angle ratio. The ratios 0.0 and

1.0 represent the closed and fully open stages

carry out the computational analysis with the convective form

of the ST-VMS method and the ST-TC described in Sect. 7.

In representation of the deforming parts of the domain, we

use quadratic NURBS spatially, and cubic NURBS tempo-

rally. The mesh is handled with the methods described in

Sect. 5, including the STNMUM. There is no remeshing

in the customary sense of the word. Figure 30 shows the

opening/closing stages of the mitral and aortic pairs over the

period 1.0 s, prescribed in terms of the angle ratio for each

pair. More information on the computational parameters and

conditions can be found in [138].

Figures 31 and 32 show, from the preliminary computa-

tion reported in [138], the velocity magnitude at different

instants. In those figures, the color range from blue to red

corresponds to a velocity range from low to high. Figure 33

shows the velocity vectors and pressure around the mitral

pair when the pair is closed. The results have all the good fea-

tures expected from computations with moving-mesh meth-

ods, such as pressure jump with zero thickness and boundary-
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Fig. 31 Velocity at t = 0.002 s and t = 0.126 s

Fig. 32 Velocity at t = 0.290 s and t = 0.566 s

layer representation. As pointed out in [138], taking this com-

putation beyond what was reported requires a different way

of dealing with the flow at the inlet when we use stress con-

ditions there. This was not attempted in this 2D test compu-

tation, because the objective was just to show that the ST-TC

method could successfully deal with the TC challenges of

this class of problems.

11 Concluding remarks

We have presented an overview of the new directions we

have taken the ST methods in bringing solution and analy-

sis to different classes of computationally challenging engi-

neering problems. Moving in these new directions was moti-

vated mostly by the following three classes of problems we

targeted: bio-inspired flapping-wing aerodynamics, wind-

turbine aerodynamics, and cardiovascular fluid mechanics.

The new directions for the ST methods include (a) the VMS

version of the DSD/SST method, which is called ST-VMS,

Fig. 33 Two opening/closing pairs. Velocity vectors and pressure (col-

ored) around the mitral pair when the pair is closed (t = 0.126 s). The

red lines indicate the zero-thickness surfaces

(b) ST methods based on using NURBS basis functions in

temporal representation of the unknown variables and motion

of the solid surfaces and fluid meshes, including the mesh

update method STNMUM, c) ST techniques with continu-

ous representation in time, which is called ST-C, and d) ST

interface-tracking with topology change, which is called ST-

TC. We described the new directions, and demonstrated their

power by presenting examples of the challenging problems

solved from the three classes of problems targeted.
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