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In order to address the well-known problem that the nearly cyclic structure of (NH,) 2 de- 
duced from microwave spectra differs greatly from the hydrogen-bonded equilibrium struc- 
ture obtained from ab initio calculations, we have calculated the vibration-rotation-tunneling 
(VRT) states of this complex, and explicitly studied the effects of vibrational averaging. The 
potential used is a spherical expansion of a site-site potential which was extracted from ab 
initio data. The six-dimensional VRT wave functions for all the lowest states with J=O and 
J= 1 were expanded in products of radial (van der Waals stretch) functions and free-rotor 
states for the internal and overall rotations, which were first adapted to the complete nuclear 
permutation inversion group Gsti Although the (expanded) potential is too approximate to 
expect quantitative agreement with the observed microwave and far-infrared spectra, we do 
find several interesting features: The 14N quadrupole splittings and the dipole moment of the 
complex, which are indicative of the orientational distributions of the NH3 monomers, are 
substantially affected by vibrational averaging. The interchange tunneling of the two mono- 
mers is not quenched. In the ortho-ortho and para-para states, of A and E symmetry, this 
tunneling manifests itself in a very different manner than in the ortho-para states of G sym- 
metry. In contrast with the interpretation of Nelson et al. [J. Chem. Phys. 87, 6364 (1987)], 
we believe that the G, and Ga states observed by these authors correspond to a single VRT 
state which is split by (hindered) NH, monomer inversion. 

I. INTRODUCTION 

Hydrogen bonding plays an important role in many 
molecular systems of chemical and biological importance. 
The study of hydrogen-bonded van der Waals complexes 
can provide much insight into the nature of this phenom- 
enon. Both (HF), and (H20)2 have been studied’ exten- 
sively by both theoreticians and experimentalists. Calcula- 
tions have predicted that these complexes possess a 
hydrogen-bonded structure and experiments confirm this 
finding. Another prototypical example of a hydrogen- 
bonded system would be (NH,)2, in which one NH, 
monomer acts as a proton donor and the other one as a 
proton acceptor. This picture is supported by several ab 
initio calculations.’ However, microwave experiments2*3 
have been interpreted as showing that it is not valid. The 
structure deduced from the microwave data is a nearly 
cyclic one, in which both monomers act simultaneously as 
proton donors and acceptors. The only ab initio calculation 
which predicts such a structure was performed by Sagarik, 
Ahlrichs, and Brode.4 We have found, however, that the 
minimum in their model potential, which they fitted to the 
ab initio data, actually occurs also at a structure with a 
nearly linear hydrogen bond. 

Vibrational averaging has been proposed’ as an expla- 
nation for the discrepancy between theory and experiment. 

“‘Visiting professor at the Institute of Theoretical Chemistry, Research 
Institute of Materials, University of Nijmegen (July 1991). 

The calculated potential surface is very flat in some direc- 

tions,4’5 such that the vibrationally averaged structure 
could indeed deviate considerably from the equilibrium 
structure found in ab initio calculations. Microwave exper- 
iments by Nelson et aL3 with isotopomers of ( NH3)2 seem 
to disprove this possibility, however. Because of all these 
features, the NH3 dimer takes a special place among the 
hydrogen-bonded van der Waals complexes. In the review 
paper of Buckingham, Fowler, and Hutson’ a special sec- 
tion is devoted to “the strange case of the ammonia 
dimer.” Furthermore, it should be noted that the micro- 
wave experiments2’3 probe only one of the three possible 
nuclear-spin species (see Sec. IV), oiz. that which supports 
purely rotational transitions. It is quite possible that the 
structures of the other species are different from this one. 

In the present paper we describe full six-dimensional 
dynamics calculations of the vibration-rotation-tunneling 
(VRT) levels of the NH, dimer, using the site-site poten- 
tial of Sagarik, Ahlrichs, and Brode.4 We investigate 
whether the vibrationally averaged structures obtained for 
each nuclear-spin species indeed deviate from the ab initio 

equilibrium structure, and whether this reconciles the ab 
initio calculations with the experiments. An energy-level 
scheme is presented, and the nature of some van der Waals 
states and some observed far-infrared transitions are dis- 
cussed. Note that the calculations must be considered as 
semiquantitative. They are mainly intended to give a qual- 

itative understanding of the spectrum. The calculation of a 
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full ab initio potential surface and the subsequent calcula- 
tion of fully converged rovibrational states are still beyond 
the scope of present-day computers. 

II. THE INTERMOLECULAR POTENTIAL 

In the coordinate system used, the vector R connects 
the centers of mass of the NH, monomers. This vector has 
length R and polar angles fl and a: relative to a space-fixed 
frame. The dimer frame is defined as the frame in which 
the vector R lies along the z axis. This (embedded) frame 
is related to the space-fixed frame by rotations over the 
angles a and p. Further, we define two monomer frames 
which are principal axes frames of NH3 with their origins 
at the centers of mass of the NH3 monomers. Within such 
a principal axes frame, the nitrogen nucleus is located on 
the positive z axis and one of the hydrogen nuclei lies in the 
xz plane with positive x. The monomer frames are related 
to the dimer frame by the Euler angles yA, 6,, and ?A for 
monomer A and yB, Qg, and cp8 for monomer B, as speci- 
fied for Ar-NH,, in Ref. 6. The C, axes of NH3 have polar 
angles QA, yA, and Qg, yB with respect to the dimer frame. 
The angles (Pi and Q)B describe rotations around the C3 
axes. The dihedral angle y is defined as the difference YB 
-T,~. From the microwave and infrared experiments of 
Fraser et al.’ Nelson, Fraser, and Klemperer2 conclude 
that the umbrella inversion motions of the NH3 monomers 
are completely quenched in (NH3)2. Therefore, we have 
neglected the inversion tunneling in these calculations. 

Sagarik, Ahlrichs, and Brode4 have obtained their in- 
termolecular potential by performing ab initio calculations 
for five different orientational geometries of the dimer, 
varying only the three geometrical parameters that corre- 
spond to our coordinates R, 6,, and 6,. Note that they 
choose the origins of the monomers at the nitrogen nuclei 
rather than at the NH, centers of mass. In total, 75 dimer 
configurations were computed. The results were fitted to a 
site-site potential in order to get a full potential-energy 
surface. We are aware that this potential is rather crude, 
but it is the only full surface available at present. Sagarik, 
Ahhichs, and Brode have used their site-site potential to 
perform molecular-dynamics calculations on liquid NH3. 
In this paper we use their potential to investigate the rovi- 
brational and tunneling van der Waals levels of (NH3)2. 
The analytical form of the site-site potential is4 

v= c c [Aijexp( -Bii’ij)+qAirii1-Cj~~(rii)rii6] 
MjcB 

(14 

with 

I 

exp[ - ( 1.28ry/rv- 1)2] for 
F,i(c$ = 1 

rU< 1.28r; 

for rii>1.28ri ’ 

(lb) 

where i and j label the sites in the monomers A and B and 
rO denotes the distance between two sites. The force centers 
on each monomer are the hydrogen atoms and a site 0.08 
A below the nitrogen atom towards the hydrogen atoms. 
The parameters appearing in Eq. ( 1) are given in Table I. 

TABLE I. Parameters (in atomic units) in the site-site potential of Eq. 

(1). 

A, 4j 4Aj Cti 3 

N-N 53.3531 1.5854 1.741 61 28.592 37 5.671 08 

N-H 4.6253 1.8185 -0.580 54 10.811 17 5.103 97 

H-H 1.1390 1.7617 0.193 51 4.289 5 1 4.536 86 

Sagarik, Ahlrichs, and Brode conclude that the mini- 
mum of their potential is at the unsymmetrical cyclic struc- 
ture, found experimentally by Nelson et al.2v3P8 The depth 
of this minimum is - 12.96 kJ mol-’ for the ab initio cal- 
culations and - 10.79 kJ mol-’ when calculated from the 
site-site potential. However, when we scanned the entire 
site-site potential-energy surface, we found a deeper min- 
imum (- 11.86 kJ mol-‘) at a structure with a nearly 
linear hydrogen bond (aQA=22”, il,=71”, qA=qB=O”, y 
= 180”, and R = 3.38 A). This structure was not one of the 
five dimer geometries investigated ab initio, and is about 
1.07 kJ mol-’ more stable than the structure proposed by 
Sagarik, Ahlrichs, and Brode. A similar equilibrium struc- 
ture was found by Hassett, Marsden, and Smith’ who also 
performed ab initio calculations, but used seven different 
geometries and optimized 11 geometrical parameters by 
gradient techniques. The 11 parameters varied in this op- 
timization are four N-H distances, four H-N-H angles, R, 
QA, and 6,. It was assumed that two pairs of N-H dis- 
tances and H-N-H angles are equal. Hassett, Marsden, 
and Smith also made an estimate of the barrier in the 
interchange tunneling path and arrived at a value of 29 
cm -l. We have also calculated this barrier. For given val- 
ues of QA and Qgt we calculated the site-site potential while 
relaxing all other coordinates to arrive at the minimum 
energy. The interchange tunneling path is the path of min- 
imum energy from one minimum to the other and will be 
discussed in more detail below. For the site-site potential, 
a barrier of 77 cm- ’ is found for this path. 

In order to use the site-site intermolecular potential in 
the calculation of the VRT levels we find it convenient to 
expand it in a complete set of angular functions,’ 

= ; ~A(R)AA(~AYA,~)A,~A,YB,~B,~B), (24 

=( 
LA L, L 

= 
M M -lu 0 

(2b) 

where A stands for the set of quantum numbers (LA,KA, 
LB,KB, L), D denotes a Wigner rotation function, and the 
quantity in large parentheses denotes a Wigner 3j symbol. 
The potential depends only on the angles that relate the 
monomer frames to the dimer frame and on the van der 
Waals bond length. The expansion had to be truncated at 
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FIG. 1. Cut through the expanded potential, relaxing the coordinates qA, 
qe y, and R to obtain minimum energy for given values of QA and 9, 
The variation of R is restricted to the integration grid points between 2.78 
and 4.18 A. The numbers indicating the contour lines are energies in 
kJ mol-‘. See the text for a description of the interchange tunneling path. 

LA,L,=5, because an expansion to higher order would be 
too time consuming. The time needed to compute the VRT 
levels (see Sec. III) depends linearly on the number of 
terms retained in the spherical expansion. The truncated 
expansion reproduces the site-site potential to within 
about 8%. The minimum in the expanded potential occurs 
at a structure with a linear hydrogen bond (a,=@, 6, 
=65”, Q)A=~~=OO, y=180”, and R=3.28 A), with a depth 
of - 12.22 kJ mol-’ (D,= 1022 cm-‘). The interchange 
tunneling path for the expanded potential has been calcu- 
lated as described above for the site-site potential. In Fig. 
1 we show the expanded potential along this path. When 
we follow the path starting from the minimum (a,=@, 
6,=65”, ~)A=Q)~=O’, y=180”), we go through a cyclic 
transition state (6, =75”, QB= 105”, qA = 60”, qB=o”, y 
= 180”), to the other minimum at (6, = 115”, QB= 180”, 
pA=pB=600, y= 180”). The value of R only changes by 
about 0.02 A during this motion. A barrier of 167 cm-’ is 
found in this case. Hence, this barrier is very sensitive to 
the truncation of the spherical expansion, but the error in 
the barrier ( 167 cm-’ vs 77 cm- ‘) is still within the in- 
dicated range of *8% of the well depth of 1022 cm-‘. In 
Sec. V we will elaborate on the relation between this bar- 
rier and the interchange tunneling splitting in (NH,),. We 
have also examined the barriers for rotation of the NH3 
monomers around their C, axes, and find that these are 
only slightly affected by the truncation of the spherical 
expansion of the potential. 

The expansion coefficients v,(R) can be obtained by 
multiplying Eq. (2a) with one of the functions A, and 
integrating over five angles.’ Due to the symmetry of the 
problem (see Sec. IV) we can reduce the integration inter- 
vals. We have used a six-point Gauss-Legendre quadrature 
for the angles QA and 6, on the interval [O,?r], a six-point 
Gauss-Chebyshev quadrature for the dihedral angle y on 
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the interval [O,?r], and a five-point Gauss-Chebyshev 
quadrature for the angles Q)~ and 4)8 on the interval 
[0,2?r/3]. The number of expansion coefficients to be cal- 
culated can also be reduced by symmetry. All coefficients 
are real, and both KA and KB have to be multiples of three. 
Furthermore, it is easy to prove that 

VL~K~L~,K~,L(R) = ( - l)LA+LB~~,,~,,~,~,~(R), 

UL~-K~L~,-KJR) = (- l)L+KA+KE~~,,~,,~,~,~(R). 
(3) 

III. CALCULATION OF THE 
VIBRATION-ROTATION-TUNNELING LEVELS 

If we use the coordinate system defined in Sec. II, the 
van der Waals Hamiltonian describing VRT motion in 
( “NH3)2 can be written as” 

&W = ; 4&+&) +&‘J?+?-2$% 

# a2 
--7R+ c VA(R) 

2pR JR ,, 

XAA(YA,6A,~A,‘YB,6B,~B). (4) 

The Hamiltonian fivdw consists of four terms. The first 
term contains both rigid-rotor Hamiltonians^of theAmono- 
mers, with the body-fixed angular momenta jA and j, The 
rotational constants are taken as A,=A,=9.945 cm-’ and 
A,=6.229 cm-‘, which are the mean values of the rota- 
tional constants for the O+ and O- umbrella states given in 
Ref. 11. The second term describes the overall rotatio% of 
the dimer and the Coriolis interaction;^the operator j is 
defined as T=?$ + i iF, wJere 3 :Fand J ’ iF are the space- 
fixed counterparts of jA and j, In the present work we have 
used the so-called helicity decoupling approximation. This 
means that we have neglected the smallzff-diagonal Cori- 
olis contribution contained in the term jd/pR’ and that Sz, 
the component of j as well as J on the dimer z axis, be- 
comes a good quantum number. In calculations on Ar- 
NH, we have found6 that the effect of this approximation 
on the VRT states is very small. The third term is the 
kinetic energy belonging to the radial coordinate R, with p 
denoting the reduced mass of the complex. With the val- 
ues” mH= 1.0078 amu and mN=14.0031 amu for the 
masses of hydrogen and nitrogen, respectively, we get p 
= 8.5133 amu. The last term is the intermolecular potential 
as discussed in Sec. II. 

In or$er to find a convenient basis for the diagonalka- 
tion of &dw, we first diagonalized the Hamiltonian Hrad 
defined by 

h R a2 
Hrad= -2pR aR --zR+VradR). (5) 

The radial potential V,, (R > is found by fixing all angles to 
the values at the minimum of the expanded potenti (see 
Sec. II) and varying R. The radial Hamiltonian Hrad is 
diagonalized by taking a Morse-type basisI of six functions 
parametrized by D,,,,=1021.2 cm-‘, R,,,=3.55 A, 
and o Mane= 108 cm-‘. All integrations over the coordi- 
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nate R were performed by using a 12-point Gauss- 
Laguerre quadrature. 

We calculate the bound states of the Hamiltonian 
Z&w [Eq. (4)] by using the symmetry-adapted (see Sec. 
IV) combinations of the basis functions,” 

(2jAf1)(2jB+1)(W+1) “’ 
= 

2562 1 
x n,Cn, D~~~:(YA,~A,~?A)D~~:(YB,BB,~B) 

X (jAn~~Bljsz)D~n*(cr,P,o)~,,(R), (6) 

where the quantity in angular brackets denotes a Clebsch- 
Gordan coefficient.The functions qn( R) (n = 1,2,3) areAhe 
lowest three eigenfunctions of the radial Hamiltonian Hrad 
of Eq. (5) and are contractions of the Morse-type basis 
functions described above. 

We have chosen j,,,,, = 5 for the maximum values in- 

cluded for the rotational quantum numbers jA and jB of the 
monomers. This limit is imposed by computer resources. It 
should be noted that with this set of basis functions the 
energy levels are not fully converged. The energy differ- 
ences have converged better, however, and we expect the 
ordering of the levels within the energy-level scheme to be 
correct for the intermolecular potential used. For the states 
possessing A-type symmetries (see Sec. IV), we were able 
to perform calculations with j,,,,,=6. This gives us an es- 
timate of the error of the energies calculated. The average 
lowering in the absolute energies of the levels going from 
jmax= 5 to j,,,,,= 6 is 20 cm-‘. The average changes in the 
energy differences are about 15%. 

IV. SYMMETRY 

From the neglect of the NH3 inversion tunneling and 
the assumption of low barrier internal rotation and inter- 
change motions,’ we arrive at G36 as the molecular sym- 
metry (MS) group14 for the NH3 dimer. We label the at- 
oms in monomer A, l-3 ( ‘H, Z= l/2) and 7 ( 14N, Z= 1). 
The atoms in monomer B are labeled 4-6 (‘H) and 8 
( 14N). Nelson and Klemperer’ have in fact used that G36 is 
isomorphic to the semidirect product (e o C$ A ( C2 
8 C, ), in which c;” and C’f contain the cyclic permutations 
of the protons in monomers A and B, respectively. We find 
it more convenient to group these permutations into 
“geared” and “antigeared” permutations of both mono- 
mers simultaneously and use the relation that G36 is a di- 
rect product of two commuting groups G36= q: 8 C$, 
(see Table V). The goup GE is generated by the an- 
tigeared permutation R, =,( 123) (465) and the monomer 
interchange permutation I, = ( 14) (2:) (36) (78), and the 
group C& by the geared pexmrtation R,= ( 123) (456) and 
the interchange operation I,= ( 14) (26) (25) (78)*; the 
latter operation includes space inversion, fl, in order to 
preserve the handedness of the NH, monomers. The ad- 
vantage of using this direct product separation is that the 

irreducible representations (irreps) of G36 can be directly 

TABLE II. Transformation properties of the basis functions of Eq. (6). 

Generator Effect on basis 

&=(123)(465) 

ZA=(14)(25)(36)(78) 

R^2=(123)(456) 

Z2=(14)(26)(35)(78)* 

exp[2vi( k,-- k,)/3] 1 j,ki&&JMn) 

( - l)J+j,‘+ja IjBkdAki - OJMn) 

exp[2?ri( kA+ k,)/3] 1 j,k~&&JMn) 

( - l)j+k~+k, 1 j, - k& - k,,jQJMn) 

obtained by Kronecker matrix multiplication of the irreps 
of the group C,,. The difference with the treatment by 
Nelson and Klemperer’ is only mathematical, however, 
We do not imply that the geared and antigeared rotations 
of the monomers are less hindered than the separate mono- 
mer rotations. 

The action of the group generators on the basis func- 
tions of Eq. (6) is given in Table II. In the Appendix we 
describe the construction of a spatial basis that spans the 
irreps of G36 and is adapted to a subgroup chain. Also, the 
combination with the ‘H and 14N nuclear-spin functions is 
treated in the Appendix. This is required, not only for the 
derivation of the nuclear-spin statistical weights, but also 
for the calculation of the expectation values of operators, 
especially when these are nuclear-spin dependent, such as 
the 14N quadrupole coupling with the electric-field gradi- 
ent. For comparison with infrared and microwave spectra, 
it is important to know that the dipole operator belongs to 
the A, irrep of G36, which yields the following selection 
rules: 

A 1-43, AZ+&, EpE2, E3wE3, E4++E4, G-G. 
(7) 

The symmetry adaptation of the basis is not only a matter 
of convenience. It reduces the size of the calculations sig- 
nificantly and, in this case, it was essential to make the 
calculation of the VRT levels possible. In the helicity de- 
coupling approximation the effective symmetry is higher: 
C, A G36, with the quantum number fl labeling the irreps 
of c,. This approximate symmetry appears to be very 
useful for understanding the results of the calculations, as 
well as for the interpretation of the experimental data. 

TABLE III. Energies (in cm-‘) of the VRT states 1 ruJlCL1) in (NH,),. 

IA,OCO)-549.3158 

I&010)-548.9978 
1 A@O) - 543.7598 
IA,OlO)--543.4418 

14,111)-539.0259 

114,111)-539.0259 
IASlll)--532.7363 
IA,lll)--532.7363 

E,Oll) -541.0893 

E,Oll)-538.8871 
E,Oll)-538.8871 

E,lOO) -535.7633 

E,llO)-535.4453 
EzOl 1) -535.2582 
E@O) -533.2064 

@IO) - 532.8883 
E&Xl) - 528.663 1 

E,llO)-528.3453 
E,2CO) -525.2624 
E,2 10) - 524.9446 

GOOO) - 546.2754 

GtllO) -545.9570 
GlOO) -530.4652 

Gl 10) - 530.1472 
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FIG. 2. Computed VRT levels of (NH3)?. All states with J=O and J= 1 
that lie below - 520 cm-’ are shown, except for the states of G symmetry 
withJ=Inl=l (seetext). 

V. RESULTS AND DISCUSSION 

In Table III and Fig. 2 we show the VRT levels cal- 
culated. We label the van der Waals states by 1 l%Jl Q I), 
where J and fi are the overall rotational quantum number 
and the helicity, I’ is an irrep of Gs6 labeling the spatial 
part of the wave function, and v is a label for the different 
states belonging to the same irrep. In this notation we have 
suppressed all nuclear-spin quantum numbers, which are 
accountec for by the nuclear-spin statistical weights. The 
operator j, is a constant of the motion, beFuse the helicity 
decouplingzpproximation is used. Since I, does not com- 
mute with j, it follows that the direct sums of Gs6 irreps 

AI ~4, A3 @Act, and E3 d E4 are irreducible under 
C, A G36, i.e., that all states with f 0 are degenerate. In 
reality, the 1 R 1 = 1 states in Fig. 2 which belong to differ- 
ent G36 irreps will be slightly split by off-diagonal Coriolis 
interactions. 

30 

14 

OO 
I I t 0 I I I I I I 

30 60 90 120 150 1 

(b) fiA (degrees) 

FIG. 3. Cut through the wave function of the state iA,0 0 0), (a) with 
fixed (equilibrium) values Q)“=Q)~=@‘, y= 180’, and R=3.28 A; and (b) 
along the interchange tunneling path of Fig. 1 as explained in the text. 

These calculations put high demands on the computer 
resources. To give some impression, the calculation of the 
J=s1=0 states of G symmetry took nearly 20 CPU hours 
on the IBM 3090/600. The Hamiltonian matrix had a di- 
mension of 2694 in this case. For the J= I fl I = 1 states of 
E, symmetry the dimension is 2796 and the time to com- 
pute the energies was nearly 30 CPU hours. It was found 
that the construction of the Hamiltonian matrix was the 
most time-consuming step. 

ground state of the pm-u NH, monomer is the j= I k I = 1 
state. Dimer states of A symmetry dissociate into two ortho 
NH, monomers, states of E symmetry into two puru NH, 
monomers, and states of G symmetry into one ortho and 
one para NH3 monomer (see Table VI). The dissociation 
energies, relative to the ground states of the dissociation 
products, are 549.3, 573.4, and 562.8 cm-‘, for the ground 
states of A, E, and G symmetry, respectively. Therefore, 
the species corresponding to E symmetry is the most sta- 
ble. This may be expected because puru NH, monomers 
with j= I k I= 1 are more easily orientationally localized by 
the anisotropic dimer potential than ortho NH3 monomers 
with j= k= 0. Also, the absolute ground-state energies (see 
Table III) are different, which is noteworthy because it 
indicates that the NH3 dimer is not a rigid molecule. 

Our first point of interest concerns the dissociation en- Figures 3(a) and (b) show cuts through the wave 
ergies Do of the different nuclear-spin species. For ortho functions of the lA,OOO) state. In Fig. 3 (a) all coordinates 
NH3, the ground state is the j= k=O monomer state. The except 6, and QB are frozen at the values in the minimum 

120 
3 
1 
& 4 90 

d 
60 
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180 

150 

120 
z 
Ei 

5 90 
22. 

3 
60 

a 

(a) 
30 60 90 120 150 ! 

6” (degrees) 

18( 

OO 
1 I I b I I ! 

30 60 90 120 150 180 

(b) fiA (degrees) 

FIG. 4. Cut through the wave function of the state IA,0 0 0), (a) with 
fixed (equilibrium) values ~~=q~a=o”, y=180”, and R=3.28 A; and (b) 
along the interchange path of Fig. 1 as explained in the text. 

of the expanded potential, i.e., Q)~=~~=OO, y=180”, and 
R=3.28 A. We observe that the position of the maximum 
in the vibrational wave function ( QA ~20” and aB=:6Y) 
does not coincide with the minimum in the potential. How- 
ever, from this figure we cannot determine whether inter- 
change tunneling takes place. In Fig. 3(b) we followed the 
wave function along the interchange tunneling path of min- 
imum energy which passes through a cyclic structure (see 
Sec. II). The coordinates at which the wave function was 
calculated are the same as those at which we have plotted 
the expanded potential in Fig. 1. This means that not only 
the coordinates 9, and QB vary, but implicitly also the 
coordinates qA, qE, y, and R. Figures 4(a) and 4(b) show 
the same information for the IA,OOO) state. From these 
figures it is clear that these two states form an interchange 
tunneling doublet. The associated energy splitting of 5.6 
cm-’ shows that the interchange is indeed a feasible oper- 

ation. The extent to which vibrational averaging takes 

place is very sensitive to the barrier in the interchange 
tunneling path. In our expanded potential this barrier is 
too high. This means that we probably underestimate the 
splitting between these two levels, and hence also the ef- 
fects of the vibrational averaging. 

The two minima in the expanded potential shzy in 
Fig. 1 are connected by the symmetry operation R212. If 
interchange tunneling were not a fea$bleAoperatiFA the 
MS group would become ,Gu with R,, R,, and I,I, as 
generators.’ The generator IlIz of G,s is a product of two 
interchange operations, one of which is combined with 
space inversion. It corresponds to a reflection with respect 
to a plane containing the dimer axis, and not to an inter- 
change operation. The irreps A, and A4 of G36 both corre- 
late to the irrep Al of Gis. This gives us a group-theoretical 
confirmation that the splitting between the A, and A, levels 
found above is indeed due to interchange tunneling. 

From Fig. 2 and the selection rules of Eq. (7) it can be 
seen that the states of G symmetry support pure rotational 
transitions. The microwave experiments of Nelson et 4L213 

probed only these states. Their experiments show that two 
states with J= R = 0 (called G, and Gs in Refs. 2 and 3 ) 
are very close in energy. Nelson et 41. infer from the mi- 
crowave and infrared measurements by Fraser et al.’ that 
neither NH, monomer is inverting, hence they conclude 
that these states belong to different van der Waals vibra- 
tions. From the properties of these two G states they de- 
duce that the interchange tunneling is nearly quenched. 

The principal result from the microwave experiments 
of Nelson et 41zv3 is the structure of the NH, dimer. The 
rotational constants are found* to be B,=5110.412( 2) 
MHz and BP= 5 110.564( 2) MHz for the G, and GB states, 
respectively. From the rotational constants the separation 
between the centers of mass was calculated as RcM 
=3.3374( 1) A. By taking half the energy difference be- 
tween the calculated I GOOO) and the I GolO) states (see 
Table III), we arrive at a rotational constant of B=4772.7 
MHz and a distance R cM=3.53 A, in fairly good agree- 
ment with experiment. From the centrifugal distortion 
constant, Nelson et al. 3 obtained an estimate of the van der 
Waals stretching frequency w,= 106( 1) cm-‘, within the 
pseudodiatomic approximation. Our calculated stretching 
frequency ws= 108 cm-’ is very close to this estimate. 
From a harmonic calculation, Dykstra and Andrews15 
found a stretching frequency of 160 cm- ‘, which deviates 
substantially from the value of Nelson et al. and from our 
value. 

Information on the angles 6, and QB can be obtained 
from both the i4N quadrupole splittings and from the mea- 
sured value of the dipole moment of the dimer. When the 
nuclear quadrupole interaction is taken into account the 
Hamiltonian can be written as 

(8) 

where g vdW is the van der Waals Hamiltonian of Eq. (4) 
and &$ (X=A,B) are the quadrupole interaction Hamil- 
tonians of the monomers A and B. The quadrupole inter- 
action Hamiltonian fi$ is an inner product of two tensor 

operators, one acting on the spatial wave functions and one 
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From our calculations we have found the following 
values for the ground state of G symmetry: 

(P2(cos 8,)) =0.4822, (P2(cos 6,)) = -0.2388 
(114 
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acting on the nuclear-spin part. Following Nelson et ~1.~‘~ 
we assume that the field gradient at the nitrogen nucleus of 
a monomer is not altered by the presence of the other 
monomer. Although we suppressed the nuclear-spin quan- 
tum numbers in our notation of the eigenkets, they corre- 
spond to Pauli allowed total wave functions. These are and 
obtained by projecting the A, component of Pts (see the 
Appendix) out of the tensor product F o Fsp”‘, where F 
and Fspin are irreps of G36, belonging to the spatial and 
nuclear-spin part, respectively. The quadrupole splitting 
can be obtained by first-order perturbatioz theory with the 
operator fiG+& on the eigenstates of HvdW. 

(Pl(cos 6,)) =0.7595, (P,(cos 13,)) =0.2356. 
(lib) 

It is shown in the Appendix that for states with A or E 
symmetry the quadrupole splitting calculated in this way 
depends only on one average quadrupole coupling con- 
stant. For states with G symmetry, which arise from the 
coupling of an ortho and a para monomer, two d.#erent 
quadrupole coupling constants are obtained. These con- 
stants may be calculated from those (primitive) basis func- 
tions of EZq. (6) that transform according to I+ = G. From 
the derivation in the Appendix it follows that for fi = 0 one 
quadrupole coupling constant is proportional to the expec- 
tation value (P2( cos 6,)) of the ortho monomer and the 
other constant is proportional to the same quantity 
(P2( cos 9,)) of the paru monomer. The expectation value 
of the dipole operator with respect to an a=0 state of G 
symmetry vanishes because of space inversion symmetry. 
Switching on an external field lowers the symmetry to P,,; 
from the observed second-order Stark splitting of the a=0 
states one can deduce the quantity (Pt (co&,)) 

+V,(cos qJ)). 
Nelson, Fraser, and Klemperer2 have indeed found 

two different values of ( P2 (co&) ) . They could not assign 
these values to the ortho orpara monomers, but we find the 
best agreement with our calculations for the ground state 
of G symmetry if we assume that their monomer A is the 
ortho species and monomer B the para species. From their 
values of (P2( cos S) ) Nelson, Fraser, and Klemperer’ 
conclude that the “average” angles are 6,=48.6( 1)” or 
131.4( 1)” and S,=64.5(1)” or 11X5( 1)“. The component 
of the dimer dipole moment p along the dimer bond axis is 
given by 

Due to the truncation of our free-rotor basis, Eq. (6)) these 
values have not fully converged. Upon extending the basis 
from j,,, = 4 to j,,, =5, we found that the angles which 
can be obtained from these expectation values still changed 
by 5-lo”, towards the equilibrium angles. The angles 6, 
= 36.0” and app= 65.3” obtained from the expectation values 
(P2(cos a)), Eq. ( 1 la), are not inconsistent with the ex- 
perimental values deduced from (P2( cos 6) ) only. How- 
ever, using their dipole moment, Nelson et al. have chosen 
the value 6,= 115.5”, which does not agree with our value 
of 13~ The (smaller) discrepancy between their value 6, 
=48.6” and our value 6,= 36.0” may be due to the trunca- 
tion error in the potential that we have used; for the un- 
expanded potential the equilibrium angle is 6,=22”, 
whereas for the truncated expansion of the potential this 
equilibrium angle is 6, =o” (see Sec. II). The dipole mo- 
ment calculated from Eq. (9) and ( 10) with the angles 
6,=36.00 and ap=65.3” obtained from (P,(cos 6)) is CL= 
- 1.97 D (pind= -0.17 D). When we use our values of 
(Pt (cos 6,) ) and (P, (cos apP, > directly, a dipole moment 
of p = - 1.60 D (,uind= -0.14 D) is found. This shows 
that one must use caution in calculating the dipole moment 
from the average angles obtained from (P2(cos 6) >. Our 
value of the vibrationally averaged dipole moment p= 
- 1.60 D is substantially smaller than the dipole p = - 2.29 
D obtained for the equilibrium structure in the expanded 
potential, but still too large compared to the experimental 
value p= -0.75 D. The angles found from the expectation 
values (Pt(cos6,)) and (Pt(cos~~)) are 6,=40X and 
9,=76X, respectively. We note especially that the differ- 
ence between the “average” angles 6,=40.6” and 36.0” cal- 
culated from (P, (cos 6,) and ( P2 (cos 6,) ) , and the equi- 
librium angle aA=Oo is striking. 

~=~~I~~l~COSSA~~+~~l~~~~~s~~l+~i”d, (9) 

where po= - 1.47 D (Ref. 16) is the dipole moment of an 
NH3 monomer. Following Nelson et aZ.2’3 we assume that 
the monomer dipole moments do not change upon dimer 
formation, other than by induction.The induced dipole mo- 
ment pind along the dimer bond axis can be approximated 

by 

rU'"d=2~~OR~~[(PI(COS~A))+(P1(COS~g))l, (10) 

where CZ= 13.95 ai (Ref. 17) is the dipole polarizability of 
the NHs monomer (which is nearly isotropic) and RCM 
=3.53 A. From the measured dipole moment of the dimer 
p= -0.75 D and an assumed induced dipole moment of 
pind= -0.3 D, Nelson, Fraser, and Klemperer2 conclude 
that the average angles are in fact 6,=48.6( 1)” and 6, 
=115.5(l)“. 

In Figs. 5(a) and 5(b) we show the probability am- 
plitudes of the lowest two J=O states of G symmetry along 
the interchange tunneling path of Fig. 1. These pictures 
may be compared with Figs. 3 (b) and 4(b), which show 
the Al and A4 wave functions along the same path. It is 
clear that the states of G symmetry are much more local- 
ized. This can be understood from the inequivalence of the 
ortho and paru monomers that constitute the states of G 
symmetry and the different barriers for rotation of the two 
monomers around their C3 axes. If the monomer C3 rota- 
tions are not completely hindered, this leads to an energy 
gap between the lowest two J=O states of G symmetry (cf. 
Fig. 2), even in the absence of interchange tunneling. This 
gap will be large for the equilibrium structure with a linear 
hydrogen bond, since the barrier for C3 rotation of the 
proton acceptor molecule is very small in this geometry. 
Interchange tunneling couples the two states of G symme- 

J. Chem. Phys., Vol. 97, No. 7, 1 October 1992 

Downloaded 13 Jun 2006 to 128.32.220.140. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



t I # I 1 1 1 1 1 ' ' 1 I 
'0 30 60 90 120 150 180 

(a) 

120 
‘E; 
z 

6 3 90 

G 
60 

3c 

19, (degrees) 

1.0 
c) 

I f I I D t 8 1 

30 60 90 120 150 
do (degrees) 

FIG. 5. Cuts through the probability distribution 1 Y 1’ of the states of G 
symmetry along the interchange tunneling path, cf. Figs. 3(b) and 4(b); 
(a) for the lowest state 1 GO 0 0) and (b) for the second state 1 Gl 0 0). 

try and thereby increases their energy gap. On the other 
hand, it leads to a displacement of the monomer C3 axes 
towards the cyclic structure, which reduces the difference 
in the barriers for monomer rotation and thereby decreases 
the energy gap. As displayed in Fig. 5, the wave functions 
show considerable amplitude away from the equilibrium 
structure, and in the higher state one may even observe the 
onset of interchange tunneling. 

The states of G symmetry with J= 1 Cl 1 = 1 are not 
shown in Fig. 2, because we had to restrict our calculations 
for these states to j,,, =4, while all the levels displayed in 
Fig. 2 have been calculated with j,,,= 5. By comparison 
with the results for J= a= 0, also calculated with j,,=4, 
we estimate that the lowest J= 1 n 1 = 1 state lies nearly 8 
cm- ’ below the lowest J=fl=O state. This does not agree 
with the microwave2*20 and far-infrared2’ data. We believe 
that this discrepancy is related to the fact that we still 
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A2 1 

Al A2 
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FIG. 6. Qualitative illustration of the rotational GJ6 ladders. The ladders 
on the left- and on the right-hand side are offset by Coriolis interaction; 
the ladders in the middle part of the drawing are not split by this inter- 
action For each species a typical allowed AJ= 1 transition is indicated. 

underestimate the interchange tunneling in our calcula- 
tions. 

If we look at Fig. 2 and the selection rules of Eq. (7), 
it seems that the G states are not the only ones that support 
pure rotational transitions. The J= In I = 1 states of E3 
and E4 symmetry in Fig. 2 are degenerate. The states with 
higher J corresponding to the E3 state will have E3 sym- 
metry for all odd J, but E4 symmetry for even J, while the 
rotational levels of the E4 state with J= I fi I = 1 will have 
E4 symmetry for all odd J, but E3 symmetry for even J. 
Hence, the dipole selection rules E3wE3 and E4++E4 allow 
transitions with AJ= 1 within this twofold degenerate 
manifold which involve only pure rotational quanta. How- 
ever, as it is explained in the first paragraph of Sec. V, the 
degeneracy of the E3 and E4 states is actually lifted by 
off-diagonal Coriolis interactions and the frequencies of 
these rotational transitions are shifted. In Ref. 20 these 
shifted rotational transitions have indeed been observed. 
The dipole matrix elements are explicitly discussed in the 
Appendix of the present paper, where it is shown also that 
the I RI > 1 states of E3, E4, and G symmetry (and not 
those of other symmetries) will display a first-order Stark 
splitting. Measurement of these splittings will directly pro- 
vide additional information on the dipole moment of the 
NH, dimer. 

In Table IV the band origins of the published far- 
infrared transitions are given, By using combination differ- 
ences it has been shown that transitions 2 and 8 share the 
same initial level.18 Furthermore, transitions 4 and 5 share 
the initial states with the microwave transitions and are 
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TABLE IV. Experimental far-infrared transition frequencies (in GHz). 

1 

2 
3 

4 
5 

6 

7 
8 
9 

“From Ref. 18. 
bFrom Ref. 19. 

453.5995( l)P n/=1+1 
483.301 07(6)a t2l=O+O 
486.7314(4)’ n1=1-1 
613.7202(3)b nl=o-+o 
614.6354(3)b RI =0-o 
730.6045( 2)b Ql=l-+l 
730.5653(2)b n1=1-+1 
734.0586(4)b RI =0-l 
747.0918(3)b 01=1-l 
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therefore G-type transitions.” Transitions 2 and 8 were 
shown to be A-type transitions.19v20 Although our potential 
is not good enough to make definite assignments, we think 
that this assignment is correct. We assign the lines 
IA,OOO)+ ]A,OlO) at 176 GHz and ~A@OO)+ ]A3111) at 
497 GHz to the R(0) lines of transitions 2 and 8. This 
means that the interchange tunneling splitting for the 
states of A-type symmetry is known precisely 
[483.301 07(6) GHz]. We find a splitting of 176 GHz, 
which confirms that our barrier for the interchange tun- 
neling is too high. The line I GQOO) + I Gl 10) calculated at 
484 GHz should correspond to the R (0) line of transition 
4 or 5, which is found experimentally at 614 GHz. The 
detailed experimental results and analysis presented by 
Loeser et aL2’ in the accompanying paper unambiguously 
confirm these statements and rigorously determine the tun- 
neling splitting. 

substantially from the ab initio equilibrium structure. Our 
average structure is not the cyclic structure which Nelson 
et al.2’3 deduced from the microwave spectrum, however. 
Taking into account that we underestimate the vibrational 
averaging because our barrier in the interchange tunneling 
path is too high, and that the minimum in the expanded 
potential deviates by 22” in QA from the minimum in the 
original site-site potential, we do believe that the experi- 
mental structure can be obtained from the ab initio equi- 
librium structure by vibrational averaging. Our ortho aver- 
age value of 6,~-40” deviates considerably from the 
equilibrium angle (6, = o”), but at this moment we cannot 
decide whether in reality the paru average value of S, 
should be larger than 9CY, as in the cyclic structure,2 or 
smaller, as in our calculations, aPz 70” (equilibrium value 
QB=6Y). 

VI. CONCLUSIONS 

We have calculated the VRT levels of the NH3 dimer 
for J=O and 1. For the intermolecular potential we used a 
spherical expansion of the site-site potential of Sagarik, 
Ahlrichs, and Brode,4 which they have obtained from a fit 
to ab initio data. We can explain several features of the 
published microwave and far-infrared spectra and we feel 
that the results contribute much to the understanding of 
the dynamics of this complex. 

At this point we would like to elaborate on the nature 
of the states G, and GB, observed by Nelson et al.2’3 Since 
these states are almost equally populated at a beam tem- 
perature of 1 K, they should lie very close together. Ac- 
cording to Nelson et al. they correspond to two different 
van der Waals vibrations. We find a much larger splitting 
between the lowest states of G symmetry in our calcula- 
tions, which is due to the different hindered rotations for 
the ortho and paru monomers, as well as to interchange 
tunneling. This must imply that the two states G, and G, 
of Nelson et al. correspond in fact to our lowest state of G 
symmetry which in reality, but not in our calculations, is 
split by inversion tunneling. The results of Loeser et al. 2o in 
the accompanying paper establish that this is the case, and 
that this inversion is partly, but not completely, quenched 
in the NH3 dimer. This (hindered) NH, monomer inver- 
sion may also reduce the effective dipole moment of the 
dimer and, thereby, diminish the gap which is still present 
between our calculated average dipole moment and the 
observed value.2*3 It is also possible, however, that the “ob- 
served” value of the dipole moment is not completely cor- 
rect, because Nelson et al. extracted this value from 
second-order Stark splitting, while neglecting the monomer 
inversion. 

We find that the lowest states of A, and A, symmetry 
are well separated in energy from other states of the same 
symmetry and form an interchange tunneling doublet. 
From the far-infrared data we conclude that the splitting 
between the A, and A, levels in our calculation is too small. 
This splitting is related to the barrier in the interchange 
tunneling path. The corresponding barrier (29 or 77 
cm-‘) in the ab initio calculations of Refs. 4 and 5 may be 
realistic, but our truncated expansion of the potential over- 
estimates this barrier (167 cm-‘). On the other hand, the 
truncation of the free-rotor basis may overestimate the 
amount of delocalization. If, however, we compare our 
results with those of Marshall, Jensen, and Bunker2’ for 
the HF dimer (where the basis was varied from j,, 
=4-lo), we conclude that interchange tunneling occurs 
much more easily in (NH,) 2 than in (HF),. 

We have found that the vibrationally averaged struc- 
ture calculated for the lowest state of G symmetry deviates 

Finally, we discuss some qualitative pictures for the 
VRT dynamics of ( NH3) 2. Since the functions with differ- 
ent j,, kA and jB, kB in our free-rotor basis are strongly 
mixed and the eigenstates are to some extent localized, we 
exclude the free internal rotor limit. The other extreme, the 
nearly rigid limit, is excluded too, because of the large- 
amplitude motions along the interchange tunneling path 
and the substantial tunneling splitting between the A, and 
A, states. Moreover, the ground-state energies of the dif- 
ferent nuclear-spin species are different. In Ref. 8 Nelson 
and Klemperer propose some other limiting cases. One 
limit is the (2C3+I) limit, wherein the interchange split- 
ting is small compared with the splitting due to internal 
rotations around the C3 axes. In the (1+2C3) limit it is 
just the other way around. Nelson and Klemperer argue 
that the (2C3+I) limit is the most likely. From the 
energy-level scheme (Fig. 2) we conclude that our results 
are intermediate between these two limits. If we account 
for the fact that we underestimate the interchange tunnel- 
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TABLE V. Groups of antigeared permutations q$ and geared permuta- 
tions C$ 

c;: CL 

(1) (1) 

C-F 

I 

(123)(465) =R^, a 

I 

(123)(456)=& 

(132)(456) (132)(465) 

(14)(25)(36)(78)=1^, (14)(26)(35)(78)*=$ 

(16)(24)(35)(78) (15)(24)(36)(78)* 
(15)(26)(34)(78) (16)(25)(34)(78)* 

ing splitting, we favor the (1+2Cs) limit. This too is rig- 
orously established by Loeser et al., who, in the accompa- 
nying paper, describe the measurement and analysis of 
over 950 far-infrared VRT transitions and 12 microwave 
lines of (NH,)*. That work independently establishes the 
large interchange splitting in the states of A symmetry, the 
umbrella inversion of the constituent monomers, and the 
validity of the (1+2Cs) limit for the internal motions of 
the dimer, and rigorously determines the energy-level dia- 
gram for all the lowest R=O and 1 flI = 1 levels. 

ACKNOWLEDGMENTS 

We thank Jennifer Loeser for her detailed and critical 
comments on this manuscript, Dr. W. Leo Meerts, Dr. 
Martina Havenith, and Harold Linnartz for valuable dis- 
cussions, Professor Reinhart Ahlrichs for making available 
the parameters in the site-site potential of Ref. 4, IBM for 
granting computer time on the IBM 3090/600 at SARA 

(Amsterdam) and Rob Houweling from IBM for technical 
support. Part of this work has been performed as an IBM 
Academic Information Systems (ACIS) project. R.J.S. 
thanks the Research Institute of Materials (RIM) at 
Nijmegen for inviting him as a visiting professor. R.J.S. is 
supported by the National Science Foundation (Grant No. 
CHE86-12296). 

APPENDIX 

In this Appendix we will discuss the group-theoretical 
aspects of our computations. As stated in the main text, the 
pertinent permutation inversion group of two noninverting 
ammonia molecules is Gs6, which is isomorphic to the 
outer direct product group Gf 8 4,. The latter two com- 
muting groups, consisting of “antigeared” and “geared” 
permutations, respectively, are listed in Table V. The Pauli 
principle is only concerned with permutations, not with 
inversion. We therefore remove the starred permutations 
from Gs6 and obtain a pure permutation group of order 18, 

P**“C$9 4. (AlI 

The decomposition of the irreps (irreducible representa- 
tions) of Gs6 under subduction to P,, is given in Table VI. 
The correlation rules follow simply from the observation 
that under the subduction C,,S C, we have A,=A, and 
E=A2 8 A3. The same rules enable us to further subduce to 
the subgroup Gg o 4, which obviously is isomorphic to 
theouter product CeCf, where ~={(1),(123),(132)} 
and Cf={ ( 1),(456),(465)}. The correspondence between 
the irreps of qg Q 4 and C$ o e is easily made by inspec- 
tion of the characters of these isomorphic Abelian groups. 

TABLE VI. Correlation diagram for irreps of G,,. Functions adapted to the given chain of subgroups are 
given. The shoe-hand^notation: 1 k,,ks) m ljA kj,k&JMn) is used. The listed k values are unique mod 3. 
The action of I, and I, is given in Table II. The irreps of G36 are labeled according to Bunker (Ref. 14). 

G36 

4 
A2 

A) 
A4 

=c;t@CY” 3cgeq =‘p,, 3cy@cJ S:c;‘@Cf Sequence adapted ket 

Al@Al AI @AI Al AI @AI AI @AI 
A,@4 

G+Q ( Et-$, lO,O) 

&@A, A2 AI @AI AI @AI 

A,@4 AI @AI 

(&,($+I,, lO,O) 

AI AI@AI AI @AI q+$,cg-I,, lO,O) 

A2@A2 A,@AI A2 A,@AI AI@AI (E-Z,)W-I,) lO,O) 

EI EeA, E@A, EI I A,@AI A,@A, G+$, I L-1) 
h Ah 

&@A, AJ@A, W-tZ2)Z, I L-1) 

E2 E@A, E@A, EI 

I 

A,@AI A,@4 @--12)j1,-1) 

A,@AI A,@& (.E-12,1^, 1 l,- 1) 

4 A,@E 
A,@A3 A3 A,@‘43 &@A, %+I^,, 1191) 

A,@‘42 A4 A,@A2 A,@A, $+I^,,& Il,l) 

E4 A,sE I 
,-+@A, 4 A,@A3 A,@& G-r?, 1191) 

A,@& ‘46 A,@A2 AJ@A, (iL?,,121 1,l) 

G E@E I E@A, E2 

I 

A,@& A,@A, 

A,@& A,@4 

E@A, E3 I-6 @A, AI 8-4, 

I A3@A3 A,@A, 

lO,l) 
r? 1091) 
1?lO,O 

I?I? lO,l) 
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Since a monomer spatial ket 1 k,=O) belongs to A,, a 
ket /kx=l) toA,,andaket Ik,=-1) toA30fc,X=A 
or B, the functions adapted to qg 8 4 are simply products 
of spatial monomer kets of definite k values. If we further 
realize that kets adapted to A, and A, of C$ are, respec- 
tively, symmetric and antisymmetric under {r and that the 
corresponding statement holds for C’$, and I,, all of Table 
VI follows easily. The spatial basis functions in this table 
are uniquely labeled by the irreps associated with the group 
chain @ o CtC P,,C Gs6 . Henceforth we assume that all 
kets are adapted to this chain. 

We define the monomer A proton spin functions such 
that 

(123) I IA,kA,m,J =e’2?rkA’311A,kA,mA), 

(23) IIA,kA,mA)= (I,+-kA,mA). (A21 

The same relations hold for the spin functions on B with 
( 123) replaced by (456) and (23) by (56). The ortho 
proton spin functions are symmetric under all monomer 
permutations and hence transform as A, under @. They 
are designated as I 3/2,0, mx), mx= - 3/2 ,..,, 3/2. The 
paru functions I 1/2,1,mx) and I l/2,- l,mx) span an A, 
and an A3 irrep, respectively. Since mx= f l/2, the para 
functions carry two such irreps. We write, suppressing the 
magnetic quantum numbers of the proton functions, 

I I,&,dAJ = I IJwn,J 4 I IB,kB,mB). (A3) 

The magnetic quantum numbers of the r4N spin functions 
are explicitly shown: the spin function is written as 
1 M,,M,G ), where we suppress the I quantum numbers 
( iA = IB= 1) . The following relations are the spin equiva- 
lents of two of the relations for spatial functions given in 
Table II: 

&I ~,&,d&d o I M&f;> = 1 IB,kd,&,d 8 1 W,&N), 

I’;[ I,.,,k,d&J @ 1 M,&f&) = ) I,, - kidA, - kzd 

Q IMj&fN). C-44) 

Thz last relation follows immediately from & 
=1,(23) (56)*, if we remember that spin is invariant un- 
der inversion2nd us%Eq. (A2). The spin analogs of the 
relations for R, and R, in Table II follow easily from Eq. 
(A2). Table VII can now be derived by the same kind of 
considerations as were used for Table VI. The total number 
N of spin functions of different magnetic quantum number 
is given in the table. Although it may seem tempting to 
symmetry adapt the proton and nitrogen spin functions 
separately, followed by an adaptation of the product, this is 
not allowed, since PI8 is not (isomorphic to) a product of 
two groups acting on the respective spin coordinates. Since 
the proton and nitrogen coordinates are intertwined in P,*, 
we must act on these coordinates simultaneously. 

Since protons are fermions and 14N nuclei are bosons, 
the total space-spin states must transform according to the 
antisymmetric representation A, of P,,. In order to con- 
struct such space-spin states, we must formally solve the 
Clebsch-Gordan (CG) problem of PI8 (i.e., subduce irreps 
of PI8 CZJ P,, to P,,) . Multiplicity-free CG coefficients can be 

TABLE VII. Spin functions adapted to P,, and GJ6. The magnetic quan- 
tum numbers of the proton functions are suppressed in the dimer func- 
tions, but are accounted for in the spin statistical weight N. The second 
factor depends on the spin coordinates of i4N, kere thE Z quantum num- 
bers are suppressed: ZA=ZB= 1. The actions of I, and I2 are given explic- 
itly, cf. Table VI. 

Spin function N PIS G36 

I M,O) 0 I MA4f.Q + 1 ;,o;;,o, 63 1 Mk,M‘+. ) 78 A, A, 

I ~A&) 8 I M,&G) - 1 ;,o; $,o, 0 1 Mg4,) 66 A, A4 

l4JQl,@ IMww+ I&l; f,l) Q IMh,M,) 21 A, E3 

l&+,-1,@ lM,w&)+I f,-I;;,-l)@ IM&tf,) 21 A., E3 

IfAtl) 8 IM,,Mg- kl; &l, @ IM~,M~) 15 A, E4 

If,-I;;,-lb IM,,M~,-l ;,-I;$,-l)@ IM,‘,r,M,,r) 15 A, E4 

l~&l, 0 IMW%)S If,l;&l)@ IWv,MN) 

I 

21 El El 

I Mk!,,MN) + If, - 1;+, 1) 8 I M‘wwf) If,-l;&l) 0 

Ibl;f,-l,@ 

If,-l;$,l) @ 

( zkf,mg - 1 f, 1;5, - 1) Q Mk,MN) 

I 15 E, E, 

Iww,Mh4- l&l;fA 8 I~.NiwJ 
I 

I;d, 1) 0 I M&$J 
I 72 E2 G 

If, GO) 0 I w&f,) I 

I f, - l;j,O) CO I M$M‘v) 

I 

72 E3 G 

I t&t;, - 1) 8 I M‘&z~) 

calculated from irreducible fA-dimensional matrix irreps 
U(g)n by the following well-known formula, valid for an 
arbitrary finite group G: 

WpkI vq)(vpI@l) =&, c Wg)~U(g)~,W-‘)~. 
SG 

(A51 

By the use of character relations it can be shown that the 
CG problem of PI8 is indeed multiplicity free-see Table 
VIII-and since all the irreducible matrices U(g)’ are 
known, the CG coefficients can be computed. The CG se- 

TABLE VIII. Multiplication table of P,, irreps. 

A2 A3 A4 4 A6 El E2 E3 

A2 AI 

A, 4 -44 

A4 A6 AI A, 

4 A, A6 A2 A4 

A6 ‘44 A2 4 AI A3 

EI EI ~53 ~72 E3 E2 A,aA,@E, 

E2 E2 EI E3 E, E, A,eA,aE, A3eA,eE3 

E3 E3 E, E, E2 E, A,eA,eE, A,@A,teE, A,cBA,@E, 
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ries thus obtained for v=AZ can be written succinctly in a 
form known from the representation theory of the permu- 
tation group, 

where the-$; are the spatial basis functions of Table VI 
and the 8 j are the spin functions of Table VII. The irrep 1 
is associate to II. From Table VIII we find that associate 

pairs are (Al&, (Aw%), ~~4JiS), WI, 4) and ULW 
The index F counts backwards, i.e., p=fn+ 1 -p. The 
overall phase of the CG series Eq. (A6) is not determined 
by Eq. (A5) and can be chosen arbitrarily. From Eq. (A6) 
it follows that each irrep il of P,s corresponds exactly to 
one antisymmetric ket of definite nitrogen and proton spin 
magnetic quantum numbers. The number of spin functions 
N given in Table VII agrees with the spin statistical 
weights of Nelson and Klemperer.’ Note that Eq. (A6) in 
fact defines ( W+ 1) x N kets, differing in their nuclear and 
rotational space-fixed magnetic quantum numbers. 

In order to study the first-order quadrupole interaction 
with the 14N nuclei, we write the usual Hamiltonian as an 
inner product of two second-rank tensor operators 

Hg= 2 qX.QX=qA-QA+qB.QB, 
X 

(A7) 

where qx is the field gradient operator and QX the nuclear 
quadrupole operator, X= A or B. Substitution of Eq. (A6) 
gives the following matrix element between two antisym- 
metric basis functions: 

*(6$QXl$). (A81 

In Table II the effect of ?I and & on the basis is given. We 
SF that for kA#kB (mod 3) the kets I k,,k,) and 
Zi I k,,kB) belong to different irreps of c”;” o e and hence 
are orthogonak If kA#- kB (mod 3) the same is true for 
I k,,kB) and I, I k,,k,). Since q” and qB commute with 
c;‘@ e, we find upon consultation of Table VI for the 
operator matrix elements, 

~~19xl~>=s,(~IsxI~~. (A9) 

Many of these elements, diagonal in p, are equal. Using 

qB=?*qAE, =?zqA&, (AlO) 

E,Il)f’)~?~(~+~~, 11,-l)= I@>, (All) 

we find, for instance, 

=(@ 

=<*fl 

=<$pI 

wlp> 

l%qBf,l~) 

IdIg% (12) 
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This is as far as GJ6 can simplify the calculation of the 
quadrupole splittings. In principle, we must now solve (2 J 
+ 1) X N-dimensional secular problems of Ho with matrix 
elements (A13) or (A14). In order to proceed, we may 
consider the angular momenta involved, i.e., turn to the 
groups SO( 3) and SU( 2)) which-since they commute 
with GJ6-may be considered independently from GJ6. It is 
w,ellAkngwn for free NH3 that the operator @?, defined by 
F=J+I,, commutes with HP Vector coupling of the spa- 

TABLE IX. Multiplication table of GS6 irreps. 

A2 4 ~44 El E2 E3 E4 G 

A2 Al 
A3 A4 AI 
A4 A3 A2 AI 

4 4 E2 

Al@ 
E2 A,eE, 

E2 4 4 4 
A,@ A,@ 

A,@E, A,@E, 

4 E4 E3 E4 G G 
Al@ 

A,@& 

E4 E3 ~54 E3 G G 
A,@ A,@ 

A,eE, A,eE, 

G G G G 
E,a E,CB E,e E,e Ge 

E,@G E,eG E,eG E,eG P;=,(A,@E,) 

Similarly, we can find equalities across different irreps of 

h, e.g. 

w~IQAI~9=(1cp41QAIP9 

A quadrupole coupling constant being the expectation 
value of q” with respect to a van der Waals state, it follows 
that for every irrep of Gs6 there is just one such coupling 
constant, except for the G representation, where the matrix 
elements (@I (1” I YJF) cannot be shown to be equal to 
(+$I qBI qf) by the procedure just outlined. 

In order to simplify Eq. (A8), we may apply the same 
procedure to the spin matrix elements, since the nitrogen 
quadrupole operators QX satisfy the equivalent of Eq. 
(AlO) and the spin kets of Table VII satisfy the equivalent 
of Eq. (Al 1). The unique first-order quadrupole splitting 
matrix elements that remain to be evaluated are (with th-e 
irrep label il now referring to Gs6, and the functions r&, fl, 
and 13 i being defined in Tables VI and VII, respectively) 

(~~lHe13)=2(~lqAI~).(~lQAl~) for all L#G 

(A13) 

and 

From Table IX we find the pairs of Gs6 irreps, denoted by 
I and Ispi” in the main text, that can give Pauli allowed 
functions, i.e., space-spin functions containing an A, or an 
A4 component. Recall in this connection that A, and A, 
only differ under space inversion. 
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tial eigenkets of p with the 14N spin kets then blocks out 
the first-order secular problem of HP In the present case of 
t,wo nitrogen spins,~ne~a~cou@e the two momenta with 
J to 2, defined by FEZ J+I,,+I,, which commutes with 
2x(l”-QX. We will not work out in detail the spin matrix 
elements, suffice it to mention that the proton spin func- 
tions integrate out and lead only to Kronecker deltas. The 
splitted energies are obtained from the solution of small 
secular problems. The magnitudes of the splittings are 
solely determined by the quadrupole coupling constants 
and the value of the 14N quadrupoles. 

In the case of G symmetry and fi = 0, the computation 
of the quadrupole coupling constants requires the evalua- 
tion of the matrix elements over the spatial basis of Bq. 

(61, 

These reduced matrix elements appear only in the para 
( kB= 1) expectation value (P2( cos 6,) ). Since the first or- 
der quadrupole splittings of states of G symmetry contain 

Wcos 6,) > and VA cos 3,)) weighted by different nu- 
clear spin factors, cf. Bq. (A14), measurement of the split- 
tings allows the separate determination of these expecta- 
tion values.2 

Next, we turn to the dipole operator p=pA+pB. Un- 
der the assumptions discussed in the main text, the com- 
ponents of this operator can be written in a form similar to 

Eq. (A16), 

Assuming that the field gradient on monomer X ( =A or 
B) is not affected by the other monomer, we may write the 
components of the operator q” as22 

” 

m= - l,O,l, (A=) 

where cl0 is the dipole moment of the free NH3. An explicit 
expression for d,( R ) is given in Ref. 6. The dipole operator 
satisfies relations equivalent to (A lo), 

pB=I”IpAF1 = -12pAI”Z. (~23) 

4x,=90 5 D~~*?*(~,P,o)D~)*(yx,6x,~x~, 

m = - 2,...,2, (A161 

where the component go is the only nonvanishing compo- 
nent of (1” expressed in the principal axes frame of the free 
monomer X. From the internal part 

Furthermore, ZJ is invariant under R^, and Rh2, so that it 
transforms as A, of Gs6 and as A, of P,,. 

Since p does not act on nuclear spin, we can integrate 
out the spin coordinates. From the analogue of (A8) and 
(A9) (with irrep labels referring to PI,), 

(jAk~&&-bl ID$‘*Ij;k’&t~iW). (A17) 

of the matrix elements (A15) it follows that, for n=O, 
only the term with v=O contributes. Recalling that 

Note that this matrix element is an unweighted average 
over the partners in a PI8 irrep, while in the corresponding 
expression (A8) for the quadrupole coupling the terms are 
weighted by spin matrix elements. 

Dg’*(yx6xqx)=P2(cos6 ) f , X9 

Eq. (A15) becomes 

(A181 

with the proportionality factor being given by go times the 
integral over a and j3. Upon substitution of the CG series 
of Eq. (6)) integration over the internal coordinates YB, i+a, 
VB and the distance R, and use of the Wigner-Bckart the- 
orem for q”, Eq. (A19) becomes for X=A, 

Using Eq. (A22) and performing the integration over 
the external angles a and p, we find the result, which is 
well known for rigid symmetric tops, that dipole matrix 
elements diagonal in J vanish for R = 0. The R = 0 states of 
the dimer do not exhibit first order splittings when per- 
turbed with -WE, the interaction of the dimer with an 
external electric field E. For a#0 first order Stark split- 
tings may be observed, though, provided the internal mo- 
tions do not forbid them. 

<qGlqAIqG) =a. .fS 1 1 JdB nn 
&A01 lP2( cos$A) 1 l.&o>6jd?$ 

(A201 

where cjA2Bis a simple algebraic factor consisting of a sum 

of products of three CG coefficients. The reduced matrix 
element is the field gradient sandwiched between two orrho 
(kA=O) basis functions of free NHs. This matrix element 
appears in the coupling constant (P2( cos 6,) ), discussed 
in the main text. 

The internal motions that allow a first order Stark 
splitting are easily found by the procedure of Bq. (A12), 
with the rules of (A23) instead of (AlO). Thus, we can 
show that for il=A,, AZ, and El the expression (A24) 
vanishes, whereas for the PI8 zairs (W*)=(As,A4), 
(A,&), (E,,E,)-connected by I,---we find that 

c +i$lPliq)=- 2 (t$*lPlq). (A251 

If we next substitute X= B into (A19), we obtain 
along the very same lines 

(~pI(I"I~~>~~j~~S,,f(j,l(lp2(co~qB)Ili;ll)~j~~~ 

(A211 

P P 

Because the direct sums ;1 d a* are irreps of Gs6 (see Table 
VI), it follows that, upon averaging over partners in an 
irrep of the latter group, all expectation values of p vanish. 
In a Stark measurement parity is broken, however, and the 
symmetry of the system is lowered to P,,. It follows im- 
mediately from (A25) that the degenerate E3, E4, and G 
states split in first order under the influence of an electric 
field. Using the model dipole (A22) and applying the pro- 
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cedure developed in Eqs. (A15) through (A21 ), we can 
easily show that the Stark splitting of an I R I > 0 state of G 
symmetry depends on the sum (P, (cos 6,) > 
+ (PI (cos 6,)). The Stark splittings of E3 and E4 states 
depend only on (p, (cos 6,)) = (p, (cos 6,)) 
=(Pl(cos6,)). 

Let us finally discuss the selection rules for pure rota- 
tional transitions, illustrated in Fig. 6. Without off- 
diagonal Coriolis interaction the pure rotational ladders 

1 JMW 1Af-U and I JM-O>?I IKl), J= 1,2,... 

(A261 

are pairwise degenerate for n#O. The external ket 

I JIMI) a Dgn*( a,P,O) depends only on a and p, and 
I Xl) is a shorthand notation for the part of the van der 
Waals state depending only on the internal coordinatzs. 
Since theAexternal ket is invariant under the generators R ,, 
R2, and 12, the kets in (A26) transform as /Z,of qg 8 C&, 
a group obtained from G36 by removal of II. When we 
switch on the Coriolis interaction, the energies of the kets 

IJMf-k) I/U-Q h I J&f-I>?, I/Iii) (A271 

will be slightly split in the following cases, which are listed 
by indicating their correlation qg 8 C&C Gj6, cf. the dis- 
cussion in the first paragraph of Sec. V, 

AI 04-W.s, (A281 

A, Q E -‘E3,E4. 

Noting that ?I I JMO) = ( - l)JI JM-iI>, cf. Table II, we 
find from 

=~(-l)J(IJMn)Ina)~IJM--)I^,I/Zn)), (A29) 

that foLeven J the plus combination (A27) is symmetric 
under I, and for odd J it is antisymmetric. If we step 
through the rotational ladders of Eq. (A28) with AJ= 1, 
the irreps alternate between AI/A,, A3/A4, and E3/E4, re- 
spectively. For the minus combination of Eq. (A27), we 
find the same result with the roles of even and odd J re- 
versed. We thus have three pairs of rotational ladders with 
energy separations modified by off-diagonal Coriolis inter- 
actions. Only pure rotational transitions from the plus to 
the minus E3/E4 ladder-and vice versa-can be observed, 
since the GJ6 selection rules forbid those for the other four 
ladders. Note that this selection rule is consistent with the 

fact that the internal functions of A symmetry do not have 
dipoles, whereas those of E3 and E4 symmetry have non- 
vanishing dipoles. 

In the remaining three cases Coriolis interaction does 
not give a splitting, so that the linear combinations (A27) 
do not have to be taken. These cases are 

{Az@A,JA~~A,~-+E,, 

CA~~AWG@A~~-+E~, (A30) 

{A2eE,A3@E)-+G. 

Only GctG is an observable AJ= 1 pure rotational transi- 
tion, the other two ladders of Eq. (A30) do not support 
allowed AJ= 1 transitions. Note that this selection rule is 
consistent with the fact that the internal functions of G 
symmetry give a nonvanishing dipole, as we have discussed 
above. 
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