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Abstract

Traditional fact checking by expert journalists cannot keep up with the enormous volume of

information that is now generated online. Computational fact checking may significantly en-

hance our ability to evaluate the veracity of dubious information. Here we show that the

complexities of human fact checking can be approximated quite well by finding the shortest

path between concept nodes under properly defined semantic proximity metrics on knowl-

edge graphs. Framed as a network problem this approach is feasible with efficient computa-

tional techniques. We evaluate this approach by examining tens of thousands of claims

related to history, entertainment, geography, and biographical information using a public

knowledge graph extracted fromWikipedia. Statements independently known to be true

consistently receive higher support via our method than do false ones. These findings repre-

sent a significant step toward scalable computational fact-checking methods that may one

day mitigate the spread of harmful misinformation.

Introduction

Online communication platforms, in particular social media, have created a situation in which

the proverbial lie “can travel the world before the truth can get its boots on.”Misinformation

[1], astroturf [2], spam [3], and outright fraud [4] have become widespread. They are now

seemingly unavoidable components of our online information ecology [5] that jeopardize our

ability as a society to make rapid and informed decisions [6–10].

While attempts to partially automate the detection of various forms of misinformation are

burgeoning [11–15], automated reasoning methods are hampered by the inherent ambiguity of

language and by deliberate deception. However, under certain conditions, reliable knowledge

transmission can take place online [16]. For example, Wikipedia, the crowd-sourced online en-

cyclopedia, has been shown to be nearly as reliable as traditional encyclopedias, even though it

covers many more topics [17]. It now serves as a large-scale knowledge repository for millions

of individuals, who can also contribute to its content in an open way. Vandalism, bias, distor-

tions, and outright lies are frequently repaired in a matter of minutes [18]. Its continuous edit-

ing process even indicates signs of collective human intelligence [19].
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Here we show that we can leverage any collection of factual human knowledge, such as

Wikipedia, for automatic fact checking [20]. Loosely inspired by the principle of epistemic clo-

sure [21], we computationally gauge the support for statements by mining the connectivity pat-

terns on a knowledge graph. Our initial focus is on computing the support of simple

statements of fact using a large-scale knowledge graph obtained fromWikipedia. More in gen-

eral, fact checking can be seen as a special case of link prediction in knowledge graphs [22].

Knowledge Graphs

Let a statement of fact be represented by a subject-predicate-object triple, e.g., (“Socrates,” “is

a,” “person”). A set of such triples can be combined to produce a knowledge graph (KG), where

nodes denote entities (i.e., subjects or objects of statements), and edges denote predicates.

Given a set of statements that has been extracted from a knowledge repository—such as the

aforementioned Wikipedia—the resulting KG network represents all factual relations among

entities mentioned in those statements. Given a new statement, we expect it to be true if it exists

as an edge of the KG, or if there is a short path linking its subject to its object within the KG. If,

however, the statement is untrue, there should be neither edges nor short paths that connect

subject and object.

In a KG distinct paths between the same subject and object typically provide different factu-

al support for the statement those nodes represent, even if the paths contain the same number

of intermediate nodes. For example, paths that contain generic entities, such as “United States”

or “Male,” provide weaker support because these nodes link to many entities and thus yield lit-

tle specific information. Conversely, paths comprised of very specific entities, such as “positro-

nic flux capacitor” or “terminal deoxynucleotidyl transferase,” provide stronger support. A

fundamental insight that underpins our approach is that the definition of path length used for

fact checking should account for such information-theoretic considerations.

To test our method we use the DBpedia database [23], which consists of all factual state-

ments extracted fromWikipedia’s “infoboxes” (see Fig 1(a)). From this data we build the large-

scaleWikipedia Knowledge Graph (WKG), with 3 million entity nodes linked by approximately

23 million edges (see Materials and Methods). Since we use only facts within infoboxes, the

WKG contains the most uncontroversial information available on Wikipedia. This conserva-

tive approach is employed to ensure that our process relies as much as possible on a human-an-

notated, collectively-vetted factual basis. The WKG could be augmented with automatic

methods to infer facts from text and other unstructured sources available online. Indeed, other

teams have proposed methods to infer knowledge from text [24] to be employed in large and

sophisticated rule-based inference models [24–26]. Here we focus on the feasibility of automat-

ic fact checking using simple network models that leverage DBpedia. For this initial goal, we do

not need to enhance the WKG, but such improvements can later be incorporated.

Semantic Proximity from Transitive Closure

Let the WKG be an undirected graph G = (V, E) where V is a set of concept nodes and E is a set

of predicate edges (see Materials and Methods). Two nodes v, w 2 V are said to be adjacent if

there is an edge between them (v, w) 2 E. They are said to be connected if there a sequence of

n� 2 nodes v = v1, v2, . . . vn = w, such that, for i = 1, . . ., n−1 the nodes vi and vi+1 are adjacent.

The transitive closure of G is G� = (V, E�) where the set of edges is closed under adjacency, that

is, two nodes are adjacent in G� iff they are connected in G via at least one path. This standard

notion of closure has been extended to weighted graphs, allowing adjacency to be generalized

by measures of path length [27], such as the semantic proximity for the WKG we introduce

next.
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The truth value τ(e) 2 [0, 1] of a new statement e = (s, p, o) is derived from a transitive clo-

sure of the WKG. More specifically, the truth value is obtained via a path evaluation function:

τ(e) = maxW(Ps,o). This function maps the set of possible paths connecting s and o to a truth

value τ. A path has the form Ps,o = v1 v2. . .vn, where vi is an entity node, (vi, vi+1) is an edge, n is

the path length measured by the number of its constituent nodes, v1 = s, and vn = o. Various

characteristics of a path can be taken as evidence in support of the truth value of e. Here we use

the generality of the entities along a path as a measure of its length, which is in turn aggregated

to define a semantic proximity:

WðPs;oÞ ¼ Wðv
1
. . . vnÞ ¼ 1þ

X

n�1

i¼2

log k ðviÞ

" #�1

ð1Þ

Fig 1. UsingWikipedia to fact-check statements. (a) To populate the knowledge graph with facts we use
structured information contained in the ‘infoboxes’ of Wikipedia articles (in the figure, the infobox of the article
about Barack Obama). (b) Using theWikipedia Knowledge Graph, computing the truth value of a subject-
predicate-object statement amounts to finding a path between subject and object entities. In the diagram we
plot the shortest path returned by our method for the statement “Barack Obama is amuslim.” Numbers in
parentheses indicate the degree of the nodes. The path traverses high-degree nodes representing generic
entities, such as Canada, and is assigned a low truth value.

doi:10.1371/journal.pone.0128193.g001

Computational Fact Checking from Knowledge Networks

PLOS ONE | DOI:10.1371/journal.pone.0128193 June 17, 2015 3 / 13



where k(v) is the degree of entity v, i.e., the number of WKG statements in which it participates;

it therefore measures the generality of an entity. If e is already present in the WKG (i.e., there is

an edge between s and o), it should obviously be assigned maximum truth. In factW = 1 when

n = 2 because there are no intermediate nodes. Otherwise an indirect path of length n> 2 may

be found via other nodes. The truth value τ(e) maximizes the semantic proximity defined by

Eq 1, which is equivalent to finding the shortest path between s and o [27], or the one that pro-

vides the maximum information content [28, 29] in the WKG. The transitive closure of weight-

ed graphs equivalent to finding the shortest paths between every pair of nodes is also known as

themetric closure [27]. This approach is also related to the Path Ranking Algorithm [30], ex-

cept that here we use the shortest path (equivalent to maximum probability) rather than com-

bining a sample of bounded-length paths in a learning framework.

Fig 1(b) depicts an example of a shortest path on the WKG for a statement that yields a low

truth value. Note that in this specific formulation we disregard the semantics of the predicate,

therefore we are only able to check statements with the simplest predicates, such as “is a”; nega-

tion, for instance, would require a more sophisticated definition of path length.

Alternative definitions of τ(e) are of course possible. Instead of shortest paths, one could use

a different optimization principle, such as widest bottleneck, also known as the ultra-metric clo-

sure [27], which corresponds to maximizing the path evaluation functionWu:

WuðPs;oÞ ¼ Wuðv1 . . . vnÞ ¼

(

1 n ¼ 2

½1þmax n�1

i¼2
flog k ðviÞg�

�1

n > 2:

ð2Þ

Or it could be possible to retain the original directionality of edges and have a directed WKG

instead of an undirected one. As described next, we evaluated alternative definitions of τ(e) and

found Eq 1 to perform best.

Results

Calibration

Our fact-checking method requires that we define a measure of path semantic proximity by se-

lecting a transitive closure algorithm (the shortest paths of Eq 1 or the widest bottleneck paths

of Eq 2) and a directed or undirected WKG representation. To evaluate these four combina-

tions empirically, let us attempt to infer the party affiliation of US Congress members. In other

words, we want to compute the support of statements like “x is a member of y” where x is a

member of Congress and y is a political party. We consider all members of the 112th US Con-

gress that are affiliated with either the Democratic or Republican party (Senate: N = 100;

House: N = 445). We characterize each member of Congress with its semantic proximity to all

nodes in the WKG that represent ideologies. This yields an N ×M feature matrix Ftc for each

of the four transitive closure methods. Panel (a) of Fig 2 illustrates the proximity network ob-

tained from Ftc that connects members of the 112th Congress and their closest ideologies, as

computed using Eq 1. A high degree of ideological polarization can be observed in the WKG,

consistent with blogs [31] and social media [32].

We feed Ftc into off-the-shelf classifiers (see Materials and Methods). As shown in Table 1,

the metric closure on the undirected graph gives the most accurate results. Therefore, we con-

tinue to use this combination in our semantic proximity computations when performing the

validation tasks described below.

To evaluate the overall performance of the calibrated model, we also compared it against

DW-NOMINATE, the state of the art in political classification [34]. This model is not based on data

from a knowledge graph, but on explicit information about roll-call voting patterns.
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PLOS ONE | DOI:10.1371/journal.pone.0128193 June 17, 2015 4 / 13



Fig 2. Ideological classification of the US Congress based on truth values. (a) Ideological network of the 112th US Congress. The plot shows a subset
of theWKG constituted by paths between Democratic or Republican members of the 112th US Congress and various ideologies. Red and blue nodes
correspond to members of Congress, gray nodes to ideologies, and white nodes to vertices of any other type. The position of the nodes is computed using a
force-directed layout [33], which minimizes the distance between nodes connected by an edge weighted by a higher truth value. For clarity only the most
significant paths, whose values rank in the top 1% of truth values, are shown. (b) Ideological classification of members of the 112th US Congress. The plot
shows on the x axis the party label probability given by a Random Forest classification model trained on the truth values computed on the WKG, and on the y

axis the reference score provided by DW-NOMINATE. Red triangles are members of Congress affiliated to the Republican party and blue circles to the
Democratic party. Histograms and density estimates of the two marginal distributions, color-coded by actual affiliation, are shown on the top and right axes.

doi:10.1371/journal.pone.0128193.g002

Table 1. Transitive closure calibration.

Directed Undirected

k-NN RF k-NN RF

House Metric 96 99 97 99

House Ultra-metric 56 57 53 57

Senate Metric 70 100 96 100

Senate Ultra-metric 49 39 70 61

Area under Receiver Operating Characteristic (ROC) curve of two classifiers, random forests (RF) and k-

nearest neighbors (k-NN) on the ideological classification task.

doi:10.1371/journal.pone.0128193.t001
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Comparing our classification results with such a baseline is also useful to gauge the quality of

the latent information contained in the WKG for the task of political classification. As shown

in panel (b) of Fig 2, a Random Forests classifier trained on our truth values matches the per-

formance of DW-NOMINATE.

Value of indirect connections

Most of the WKG information that our fact checker exploits is provided by indirect paths (i.e.,

comprising n> 2 nodes). To demonstrate this, we compare the calibrated model of Eq 1 to the

fact checker’s performance with only the information in the infoboxes.

In practice, we compute an additional feature matrix Fb, using the same sequence of steps

outlined in the calibration phase, but additionally constraining the shortest path algorithm to

use only paths (if any) with exactly n = 2 nodes, i.e., direct edges. Thus Fb encodes only the in-

formation of the infoboxes of the politicians. The results from 10-fold cross validation using

Ftc and Fb are shown in Table 2. The same off-the-shelf classifiers, this time trained on Fb,

perform only slightly better than random, thus confirming that the truth signal is yielded by

the structure of indirect connections in the WKG.

Validation on factual statements

We test our fact-checking method on tasks of increasing difficulty, and begin by considering

simple factual statements in four subject areas related to entertainment, history, and geogra-

phy. We evaluate statements of the form “di directedmj,” “pi was married to sj,” and “ci is the

capital of rj,” where di is a director,mj is a movie, pi is a US president, sj is the spouse of a US

president, ci is a city, and rj is a country or US state. By considering all combinations of subjects

and objects in these classes, we obtain matrices of statements (see Materials and Methods).

Many of them, such as “Rome is the capital of India,” are false. Others, such as “Rome is the

capital of Italy,” are true. To prevent the task from being trivially easy, we remove any edges

that represent true statements in our test set from the graph. Fig 3 shows the matrices obtained

by running the fact checker on the factual statements. Let e and e0 be a true and false statement,

respectively, from any of the four subject areas. To show that our fact checker is able to correct-

ly discriminate between true and false statements with high accuracy, we estimate the probabil-

ity that τ(e)> τ(e0). To do so we plot the ROC curve of the classifier (see Fig 4) since the area

Table 2. Ideological classification results.

RF k-NN

Dataset F-score AUROC F-score AUROC

TRANSITIVE CLOSURE Ftc

Senate 0.99 1.00 0.91 0.96

House 0.99 1.00 0.90 0.97

INFOBOXES Fb

Senate 0.66 0.46 0.62 0.54

House 0.54 0.66 0.68 0.54

Out-of-sample F-score and Area Under Receiver Operating Characteristic (AUROC) of random forest (RF) and k-nearest neighbors (k-NN) classifiers

trained on truth scores computed by the fact checker, using either the transitive closure or solely information from infoboxes.

doi:10.1371/journal.pone.0128193.t002
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Fig 3. Automatic truth assessments for simple factual statements. In each confusion matrix, rows represent subjects and columns represent objects.
The diagonals represent true statements. Higher truth values are mapped to colors of increasing intensity. (a) Films winning the Oscar for Best Movie and
their directors, grouped by decade of award (see the complete list in the S1 Text). (b) US presidents and their spouses, denoted by initials. (c)US states and
their capitals, grouped by US Census Bureau-designated regions. (d)World countries and their capitals, grouped by continent.

doi:10.1371/journal.pone.0128193.g003
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under the ROC curve is equivalent to this probability [35]. With this method we estimate that,

in the four subject areas, true statements are assigned higher truth values than false ones with

probability 95%, 98%, 61%, and 95%, respectively.

Validation on annotated corpus

In a second task, we consider an independent corpus of novel statements extracted from the

free text of Wikipedia and annotated as true or false by human raters [36] (see Materials and

Methods). We compare the human ratings with the truth values provided by our automatic

fact checker (Fig 5). Although the statements under examination originate fromWikipedia,

they are not usually represented in the WKG, which is derived from the infoboxes only. When

a statement is present in the WKG, the link is removed. The information available in the WKG

about the entities involved in these particular statements is very sparse, therefore this task is

more difficult than the previous case.

We find that the truth values computed by the fact checker are positively correlated to the

average ratings given by the human evaluators. Table 3 shows the positive correlation between

GREC human annotations and our computational truth scores.

As shown in Fig 5, our fact checker yields consistently higher support for true statements

than false ones. Using only information in the infoboxes however yields worse performance,

closer to random choice: AUROC = 0.47 and 0.52 for the ‘degree’ and ‘institution’ predicates,

respectively. We conclude that the fact checker is able to integrate the strength of indirect paths

in the WKG, which pertain to factual information not originally included in the infoboxes.

Fig 4. Receiver Operating Characteristic for the multiple questions task. For each confusion matrix
depicted in Fig 3 we compute ROC curves where true statements correspond to the diagonal and false
statements to off-diagonal elements. The red dashed line represents the performance of a random classifier.

doi:10.1371/journal.pone.0128193.g004
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Fig 5. Real-world fact-checking scenario. (a) A document from the ground truth corpus. (b) Statement to
fact-check: Did Steve Tesich graduate from Indiana University, Bloomington? This information is not present
in the infobox, and thus it is not part of theWKG. (c) Annotations from five human raters. In this case, the
majority of raters believe that the statement is true, and thus we consider it as such for classification
purposes. (d) Receiver operating characteristic (ROC) curve of the classification for subject-predicate-object
statements in which the predicate is “institution” (e.g., “Albert Einstein,” “institution,” “Institute for Advanced
Studies”). A true positive rate above the false positive rate (dashed line), and correspondingly an area under
the curve (AUC) above 0.5, indicate better than random performance. (e)ROC curve for statements with
“degree” predicate (e.g., “Albert Einstein,” “degree,” “University Diploma”).

doi:10.1371/journal.pone.0128193.g005

Table 3. Agreement between fact checker and human raters.

Relation ρ p-value τ p-value

Degree 0.17 2 × 10−5 0.13 10 × 1−6

Institution 0.09 4 × 10−19 0.07 1 × 10−24

We use rank-order correlation coefficients (Kendall’s τ and Spearman’s ρ) to assess whether the scores are correlated to the ratings. Significance tests

rule out the null hypothesis that the correlation coefficients are zero.

doi:10.1371/journal.pone.0128193.t003
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Discussion

These results are both encouraging and exciting: a simple shortest path computation maximiz-

ing information content can leverage an existing body of collective human knowledge to assess

the truth of new statements. In other words, the important and complex human task of fact

checking can be effectively reduced to a simple network analysis problem, which is easy to

solve computationally. Our approach exploits implicit information from the topology of the

WKG, which is different from the statements explicitly contained in the infoboxes. Indeed, if

we base our assessment only on direct edges in the WKG, performance decreases significantly.

This demonstrates that much of the correct measurement of the truthfulness of statements re-

lies on indirect paths. Because there are many ways to compute shortest paths in distance

graphs, or transitive closures in weighted graphs [27], there is ample room for improvement on

this method.

Our WKG is built from statement of facts, which are represented as subject-predicate-object

triples, i.e. information with an inherent directionality. Our results show that an undirected

KG yielded the best outcomes [37, 38]. This is somehow surprising, given that in transforming

a directed graph into undirected we are destroying potentially useful information. However,

while some semantic relations are inherently one-way, it can be argued that some relations can

be navigated in both directions (e.g. “Barack Obama” “Married-To” “Michelle Obama”) [39].

Thus we conjecture that the loss of information from disposing of the direction of edges is bal-

anced by the possibility of finding paths, and hope that future research will elucidate this

conjecture.

We live in an age of overabundant and ever-growing information, but much of it is of ques-

tionable veracity [10, 40]. Establishing the reliability of information in such circumstances is a

daunting but critical challenge. Our results show that network analytics methods, in conjunc-

tion with large-scale knowledge repositories, offer an exciting new opportunity towards auto-

matic fact-checking methods. As the importance of the Internet in our everyday lives grows,

misinformation such as panic-inducing rumors, urban legends, and conspiracy theories can ef-

ficiently spread online in variety of new ways [5, 8]. Scalable computational methods, such as

the one we demonstrate here, may hold the key to mitigate the societal effects of these novel

forms of misinformation.

Materials and Methods

Wikipedia Knowledge Graph

To obtain the WKG we downloaded and parsed RDF triples data from the DBpedia project

(dbpedia.org). We used three datasets of triples to build the WKG: the “Types” dataset, which

contains subsumption triples of the form (subject, “is-a,” Class), where Class is a category of

the DBpedia ontology; the “Properties” dataset, which contains triples extracted from info-

boxes; and the DBpedia ontology, from which we used all triples with predicate “subClassOf.”

This last data was used to reconstruct the full ontological hierarchy of the graph. We then dis-

carded the predicate part of each triple and conflated all triples having the same subject and ob-

ject, obtaining an edge list. In this process, we discarded all triples whose subject or object

belonged to external namespaces (e.g., FOAF and schema.org). We also discarded all triples

from the “Properties” dataset whose object was a date or any other kind of measurement (e.g.,

“Aristotle,” “birthYear,” “384 B.C.”), because by definition they never appear as subjects in

other triples.

Computational Fact Checking from Knowledge Networks
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Ideological classification of the US Congress

To get a list of ideologies we consider the “Ideology” category in the DBpedia ontology and

look up in the WKG all nodes Y connected to it by means of a statement (Y, “is-a,” “Ideology”).

We foundM = 819 such nodes (see S1 Text for the complete list). Given a politician X and an

ideology Y we then compute the truth value of the statement “X endorses ideology Y.” To per-

form the classification, we use two standard classifier algorithms: k-Nearest Neighbors [41]

and Random Forests [42]. To assess the classification accuracy we computed F-score and area

under Receiver Operating Characteristic (ROC) curve using 10-fold cross-validation.

Simple factual statements

We formed simple statements by combining each of N subject entities with each of N object en-

tities. We performed this procedure in four subject areas: (1) Academy Awards for Best Movie

(N = 59), (2) US presidential couples (N = 17), (3) US state capitals (N = 48), and (4) world cap-

itals (N = 187). For directors with more than one award, only the first award was used. All data

were taken fromWikipedia (see S1 Text for data tables). To make the test fair, if a triple indi-

cating a true statement was already present in the WKG, we removed it from the graph before

computing the truth value. This step of the evaluation procedure is typical of link prediction al-

gorithms [43].

Independent corpus of statements

The second ground truth dataset is based on the Google Relation Extraction Corpus (GREC)

[36]. For simplicity we focus on two types of statements, about education degrees (N = 602)

and institutional affiliations (N = 10,726) of people, respectively. Each triple in the GREC

comes with truth ratings by five human raters (Fig 5(c)), so we map the ratings into an ordinal

scale between −5 (all raters replied ‘No’) and +5 (all raters replied ‘Yes’), and compare them to

the truth values computed by the fact checker. The subject entities of several triples in the

GREC appear in only a handful of links in the WKG, limiting the chances that our method can

find more than one path. Therefore we select from the two datasets only triples having a subject

with degree k> 3. Similarly to the previous task, if the statement is already present in the

WKG, we remove the corresponding triple before computing the truth value.

Supporting Information

S1 Text. Data tables and list of ideologies. data tables for Fig 3 and list of ideologies used in

the ideological classification of the US Congress.

(PDF)
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