
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 04, 2022

Computational Fluid Dynamics Simulation of Deep-Water Wave Instabilities Involving
Wave Breaking

Li, Yuzhu; Fuhrman, David R.

Published in:
Journal of Offshore Mechanics and Arctic Engineering

Link to article, DOI:
10.1115/1.4052277

Publication date:
2022

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Li, Y., & Fuhrman, D. R. (2022). Computational Fluid Dynamics Simulation of Deep-Water Wave Instabilities
Involving Wave Breaking. Journal of Offshore Mechanics and Arctic Engineering, 144(2), [021901].
https://doi.org/10.1115/1.4052277

https://doi.org/10.1115/1.4052277
https://orbit.dtu.dk/en/publications/0c0519fc-0a5c-409d-8366-4d47bfb824b9
https://doi.org/10.1115/1.4052277


CFD Simulation of Deep-Water Wave Instabilities
Involving Wave Breaking

Yuzhu Li∗

Section for Fluid Mechanics, Coastal

and Maritime Engineering

Department of Mechanical Engineering

Technical University of Denmark

DK-2800 Kgs. Lyngby, Denmark

Email: yuzhuli@mek.dtu.dk

David R. Fuhrman

Section for Fluid Mechanics, Coastal

and Maritime Engineering

Department of Mechanical Engineering

Technical University of Denmark

DK-2800 Kgs. Lyngby, Denmark

Email: drf@mek.dtu.dk

Instabilities of deep-water wave trains subject to initially

small perturbations (which then grow exponentially) can lead

to extreme waves in offshore regions. The present study

focuses on the two-dimensional Benjamin–Feir (or modu-

lational) instability and the three-dimensional crescent (or

horseshoe) waves, also known as Class I and Class II in-

stabilities, respectively. Numerical studies on Class I and

Class II wave instabilities to date have been mostly limited to

models founded on potential flow theory, thus they could only

properly investigate the process from initial growth of the per-

turbations to the initial breaking point. The present study con-

ducts numerical simulations to investigate the generation and

development of wave instabilities involving the wave breaking

process. A computational fluid dynamics (CFD) model solv-

ing Reynolds-averaged Navier-Stokes (RANS) equations cou-

pled with a turbulence closure model in terms of the Reynolds

stress model is applied. Wave form evolutions, Fourier am-

plitudes, and the turbulence beneath the broken waves are

investigated.

1 Introduction

Extreme waves can sometimes be encountered in the off-

shore deep-water regions. They can have severe impacts on

offshore structures (e.g. ships, offshore platforms) by caus-

ing wave over-topping, imparting extreme slamming loads,

and affecting the stability of the structure. Therefore, it is of

fundamental importance and practical interest to understand,

and be able to model, the mechanisms potentially causing

their occurrence in ocean and offshore conditions. One of

the theoretical mechanisms leading to extreme waves is the

instability of deep-water wave trains subject to initially small

perturbations, which then grow exponentially. Under cer-

tain conditions, wave breaking will occur. Benjamin and

Feir [1] first showed that weakly nonlinear deep-water waves

∗Address all correspondence to this author. Email: yuzhuli@mek.dtu.dk

can be unstable to two-dimensional (2D) modulational per-

turbations. McLean [2] classified the so-called Benjamin-

Feir wave instability as Class I instability, which is generally

strongest in the case of a plane wave train subject to 2D

perturbations. Tulin and Waseda [3] conducted a massive

study of seeded experiments of wave train evolutions, where

the modulation naturally evolved from background noise in

their experiments. They observed an overall decrease in the

amplitude of the carrier wave, with an increase in the wave

amplitude of the lower sideband (i.e. perturbation of fre-

quency lower than the carrier wave frequency). Hwung et

al. [4] further conducted a longer-time experiment to inves-

tigate a long time evolution of the Benjamin-Feir instability,

and they confirmed the phenomenon of permanent frequency

downshift after wave breaking. Madsen et al. [5] numeri-

cally reproduced the experiments of Tulin and Waseda [3]

and investigated the Benjamin-Feir (or modulational) insta-

bility with a nonlinear potential flow theory based Boussinesq

model. They reproduced the phenomenon of recurrence of

the sidebands growth (with energy exchange between carrier

wave and sidebands) in the case without wave breaking. For

steeper waves involving breaking, their fine-grid simulation

broke down. Therefore, they had to use a relatively coarse

grid resolution to trigger a certain amount of numerical dis-

sipation (instead of turbulent dissipation) in order for the

simulation to survive the breaking process. The numerical

study of Madsen et al. [5] indicates the necessity of proper

turbulence modelling for studying wave instability involving

the wave breaking process. To investigate the modulation

process that goes beyond wave breaking, Iafrati et al. [6, 7]

and Alberello and Iafrati [8] modelled the Benjamin-Feir in-

stability with wave breaking using a combined method. They

adopted a fully nonlinear potential flow model to simulate the

modulational instability up to the breaking point. Then a 2D

Navier-Stokes solver for two-phase flows (i.e. air and water)

were used to simulate the further evolution of the modulated
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waves. In contrast to the works of [6, 7, 8], De Vita et al. [9]

conducted a 2D simulation for the modulational instability

using the two-phase Navier-stokes solver from the very be-

ginning of the wave evolution. In this way, the transition

from non-breaking potential flow to breaking was solved in

a smoother manner. It is emphasized, however, that such 2D

Navier-Stokes simulations (at least in the absence of a turbu-

lence model) cannot fully account for effects of turbulence

post-breaking, since turbulence is inherently three dimen-

sional. In order to explore the regime of large wave lengths

to reduce the role of surface tension of breaking [10], De Vita

et al. [9] adopted a wave length of 0.6 m (much larger com-

paring to 0.24 m in the numerical study of Deike et al. [11],

although is still shorter than the wave length 1.2 m in the

experiment of Tulin and Waseda [3]). In order to further

reduce the computational time, De Vita et al. [9] considered

a relatively high initial steepness to reach the breaking point

earlier than in the Tulin and Waseda’s experiments [3]. Due to

the high computational cost for conducting 2D Navier-Stokes

simulations without using a turbulence model, their simula-

tions were ended shortly after wave breaking while frequency

downshift still persists.

Another type of wave instability of interest leads to

predominantly three-dimensional (3D) crescent waves, also

known as Class II instability according to McLean [2]. Nu-

merical simulations of crescent waves using a boundary-

element model were performed by Xue et al. [12], in which

their investigation was limited to relatively small domains

and short time scales. Fuhrman et al. [13] studied cres-

cent waves with a high-order Boussinesq model at somewhat

larger spatial and temporal scales, providing new insight into

the physical processes involved. Later, Fructus et al. [14],

Xu and Guyenne [15] and Klahn et al. [16] have also simu-

lated such phenomenon based on potential flow equations. To

the authors’ knowledge, seemingly all of the numerical stud-

ies on Class II wave instabilities to date have been limited

to models founded on potential flow theory, thus they could

only properly investigate the process from initial growth of the

perturbations to the initial breaking point [5,12,13,14,15,16].

The present study will conduct computational fluid dy-

namics (CFD) simulations to investigate the phenomena of

both Class I and Class II deep-water wave instabilities involv-

ing wave breaking in a detailed manner. One of the exper-

iments of Tulin and Waseda [3] for Benjamin-Feir (Class I)

wave instability of a weakly-nonlinear plane wave subjected

to 2D disturbances will be numerically reproduced. The sim-

ulation of 3D crescent waves will likewise generate the com-

mon phase-locked (L2) patterns experimentally observed by

e.g. Su [17]. The open-source CFD wave generation toolbox

waves2foam [18] developed in the OpenFOAM v1812 frame-

work will be used to conduct simulations. The free-surface

(i.e. the interface between air and water) is captured using the

volume of fluid (VOF) method.

As the wave instabilities will involve turbulence after

initial breaking, a model solving Reynolds-averaged Navier-

Stokes (RANS) equations coupled with the anisotropic

Reynolds stress turbulence model (RSM) i.e. the Wilcox

(2006) stress-𝜔 model [19] will be applied, where 𝜔 is the

specific turbulence dissipation rate. The stress-𝜔 turbulence

model is used because it has been proved to be neutrally sta-

ble in the potential flow region beneath surface waves [20].

Previous works using two-equation models (both standard

𝑘-𝜔 and 𝑘-𝜀 types, where 𝑘 is the turbulence kinetic en-

ergy, and 𝜀 is the turbulence dissipation rate) [21, 22, 23, 24]

have shown a persistent problem of over-production of tur-

bulence in the potential flow region beneath non-breaking

surface waves, which causes the progressive waves to decay

during long-time simulation even before reaching the wave

breaking point. Larsen and Fuhrman [25] have analyzed

almost all of the two-equation models and found that they

are "unconditionally" unstable in the potential flow region

beneath surface waves. They have then formally stabilized

the two-equation models by reformulating the eddy viscos-

ity. Fuhrman and Li [26] analyzed a more complicated but

also commonly used two-equation model - the realizable 𝑘-𝜀

model [27], and they proved that it is "conditionally" unstable

in such regions. They have likewise stabilized the realizable

𝑘-𝜀 model. In contrast to two-equation RANS models, the

RSM models break free from the Boussinesq approximation,

thus they were proved to be neutrally stable for simulating

non-breaking progressive wave trains [20] without having

the problem of over-production of turbulence in the poten-

tial flow region beneath surface waves. The RSM model has

also achieved excellent accuracy in the prediction of coastal

breaking waves on a sloped beach, especially the undertow

velocity, as presented in the work of [28, 20].

With using the present CFD model, the physical process

of wave instabilities involving wave breaking will be simu-

lated. Wave forms evolutions, Fourier amplitudes, and the

turbulence beneath the broken waves will be investigated.

Since the present CFD model is able to accurately simulate

the entire breaking process, the during- and post-breaking

evolution of deep-water wave instabilities can be studied in a

proper manner, thus extending previous investigations based

on nonlinear potential flow theories.

2 Theoretical Background and Mathematical Equations

2.1 The Two-Dimensional Benjamin-Feir Instability

As observed in the work of [1, 3, 2], deep-water waves

may develop instabilities under sideband perturbations when-

ever the resonance conditions are satisfied, which leads to

disintegration of the original wave form. This will produce

resonance where the sideband waves can grow exponentially.

According to [2], the strongest Class I instabilities are ac-

tually 2D which was first showed by Benjamin and Feir [1]

therefore commonly known as the Benjamin-Feir instability.

It can be described as quartet resonant interactions between

a carrier wave and two small disturbances satisfying the fol-

lowing condition:

𝑘𝑘𝑘1 + 𝑘𝑘𝑘2 = 2𝑘𝑘𝑘0, (1)
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𝜔1 +𝜔2 = 2𝜔0 (2)

where 𝑘𝑘𝑘0 = 〈𝑘0,0〉 and 𝜔0 are the carrier wave number and

frequency; 𝑘𝑘𝑘1 = 〈𝑘1,0〉, 𝑘𝑘𝑘2 = 〈𝑘2,0〉, and 𝜔1,2 are the wave

numbers and frequencies of two small perturbations, respec-

tively. Note that in the present paper, the 𝑘 and 𝜔 without

subscripts denote the kinetic energy and specific dissipation

rate of turbulence, as defined in Section 1. The propagation

of each wave component is along the same direction.

It was found by McLean [2] that the Benjamin-Feir type

of instability is dominant for relatively small amplitude waves

where the carrier wave can be described by linear wave theory.

A Stokes wave train travelling in the 𝑥 direction consisting of

a carrier wave and two small-amplitude sideband waves can

be expressed as [5]:

𝜂 = 𝑎0 cos(𝜔0𝑡 − 𝑘0𝑥) + 𝜉𝑎0 cosΘ1 + 𝜉𝑎0 cosΘ2 (3)

Θ1 = 𝜔0 (1+ 𝛿)𝑡 − 𝑘1𝑥 +Ψ1 (4)

Θ2 = 𝜔0 (1− 𝛿)𝑡 − 𝑘2𝑥 +Ψ2 (5)

𝑘1 = 𝑘0 (1+ 𝛿)2, 𝑘2 = 𝑘0 (1− 𝛿)2 (6)

where 𝛿 is small. In the equations above, 𝜂 is the wave

elevation, 𝑎0 is the wave amplitude of the carrier wave, 𝜉 is

the normalized amplitude of the perturbation relative to the

carrier wave amplitude. For linear deep-water waves,

𝑘0 =
𝜔2

0

𝑔
(7)

where 𝑔 is the gravitational acceleration.

2.2 The Three-Dimensional L2 Crescent Waves

The crescent (also called ‘horseshoe’ due to the wave

shape) waves are a result of fully nonlinear 3D wave inter-

actions. In the present study, we consider the most unstable

(also most commonly seen) phase-locked L2 crescent pat-

terns (i.e. the wave pattern is repeated every other carrier

wave length [17,29]). Quintet resonant condition is the dom-

inant physical process for the L2 crescent patterns, which

satisfies:

𝑘𝑘𝑘1 + 𝑘𝑘𝑘2 = 3𝑘𝑘𝑘0 (8)

𝜔1 +𝜔2 = 3𝜔0 (9)

where 𝑘𝑘𝑘0 = 〈𝑘0,0〉 is the wave number of the central harmonic

or the carrier wave. In the general L2 case, 𝑘𝑘𝑘1 =
〈
𝑘𝑥 , 𝑘𝑦

〉
and

𝑘𝑘𝑘2 =
〈
𝑘𝑥 ,−𝑘𝑦

〉
are two symmetric oblique satellites.

According to McLean [2], the instability is predomi-

nantly 3D (Class II) for fully nonlinear steep waves. Follow-

ing the numerical study in Fuhrman et al. [13], the crescent

waves are generated by superimposing the 3D perturbations

to a stream-function solution [30] for a plane wave travelling

in the 𝑥 direction. The perturbation function is expressed as

follows:

𝜂′ =
𝜖𝐻0

2
sin(𝑘𝑥𝑥) cos(𝑘𝑦𝑦) (10)

where 𝜖 is the relative perturbation amplitude, 𝐻0 is the car-

rier wave height. According to McLean [2], the most unstable

disturbance for this type of instability occurs at 𝑘𝑥 = 1.5𝑘0

and 𝑘𝑦 ≠ 0 .

2.3 Turbulence Closure Model

To simulate wave instability involving the wave break-

ing process, the present CFD model is built by solving the

incompressible unsteady Reynolds-averaged Navier-Stokes

(URANS) equations together with an anisotropic Reynolds

stress turbulence closure model i.e. the Wilcox (2006) stress-

𝜔 model [19]. The Wilcox (2006) stress-𝜔 model has been

proved to be neutrally stable in regions of nearly potential flow

with finite strain [20], unlike standard two-equation models

that were proved to be unconditionally [25] or condition-

ally [26] unstable in such regions. Therefore, the Wilcox

(2006) stress-𝜔 model is applied for simulating surface waves

in the present work. The equations of the Wilcox (2006)

stress-𝜔 model [19] consisting of six equations for Reynolds

stresses 𝜏𝑖 𝑗 and one equation for 𝜔 are as follows:

𝜕�̄�𝜏𝑖 𝑗

𝜕𝑡
+ �̄�𝑘

𝜕�̄�𝜏𝑖 𝑗

𝜕𝑥𝑘
= −�̄�𝑃𝑖 𝑗 +

2

3
�̄�𝛽∗𝜔𝑘𝛿𝑖 𝑗 − �̄�Π𝑖 𝑗

+ 𝜕

𝜕𝑥𝑘

[
�̄�(𝜈 +𝜎∗ 𝑘

𝜔
)
𝜕𝜏𝑖 𝑗

𝜕𝑥𝑘

]
+ �̄�𝛼∗

𝑏

𝑘

𝜔
𝑁𝑖 𝑗

(11)

𝜕�̄�𝜔

𝜕𝑡
+ �̄� 𝑗

𝜕�̄�𝜔

𝜕𝑥 𝑗

= �̄�𝛼
𝜔

𝑘
𝜏𝑖 𝑗

𝜕�̄�𝑖

𝜕𝑥 𝑗

− �̄�𝛽𝜔2 +𝜎𝑑

�̄�

𝜔

𝜕𝑘

𝜕𝑥 𝑗

𝜕𝜔

𝜕𝑥 𝑗

+ 𝜕

𝜕𝑥𝑘

[
�̄�(𝜈 +𝜎 𝑘

𝜔
) 𝜕𝜔
𝜕𝑥𝑘

]

(12)

The pressure-strain correlation is:

Π𝑖 𝑗 = 𝛽∗𝐶1𝜔

(
𝜏𝑖 𝑗 +

2

3
𝑘𝛿𝑖 𝑗

)
− �̂�(𝑃𝑖 𝑗 −

2

3
𝑃𝛿𝑖 𝑗 )

−𝛽(𝐷𝑖 𝑗 −
2

3
𝑃𝛿𝑖 𝑗 ) − �̂�𝑘 (𝑆𝑖 𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖 𝑗 )

(13)
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where

𝑃𝑖 𝑗 = 𝜏𝑖𝑚
𝜕�̄� 𝑗

𝜕𝑥𝑚
+ 𝜏𝑗𝑚

𝜕�̄�𝑖

𝜕𝑥𝑚
(14)

𝐷𝑖 𝑗 = 𝜏𝑖𝑚
𝜕�̄�𝑚

𝜕𝑥 𝑗

+ 𝜏𝑗𝑚
𝜕�̄�𝑚

𝜕𝑥𝑖
(15)

𝑆𝑖 𝑗 =
1

2

(
𝜕�̄�𝑖

𝜕𝑥 𝑗

+
𝜕�̄� 𝑗

𝜕𝑥𝑖

)
(16)

𝑃 =
1

2
𝑃𝑘𝑘 (17)

𝑘 = −1

2
𝜏𝑘𝑘 (18)

In the present work, the Reynolds stress tensor is denoted by

�̄�𝜏𝑖 𝑗 , where 𝜏𝑖 𝑗 is the specific Reynolds stress tensor defined

as

𝜏𝑖 𝑗 = −𝑢′
𝑖
𝑢′
𝑗

(19)

where the overbar denotes Reynolds (ensemble) averaging.

Note that 𝜏𝑖 𝑗 also appears directly in the RANS governing

equations, and is therefore through this quantity that the tur-

bulence model affects the hydrodynamic model. The last

term in Eqn. (11) is the buoyancy production term as derived

in [20] which is proportional to the Brunt-Väisälä frequency

tensor:

𝑁𝑖 𝑗 =
1

𝜌0

(
𝑔𝑖

𝜕�̄�

𝜕𝑥 𝑗

+𝑔 𝑗

𝜕�̄�

𝜕𝑥𝑖

)
(20)

In the equations above, 𝑥 𝑗 are the Cartesian coordinates, �̄� 𝑗

are the mean components of the velocity, 𝑢′𝑗 are the fluctu-

ating velocity, 𝑔 𝑗 are the gravitational acceleration, 𝜈 is the

kinematic viscosity, �̄� is the density, 𝜌0 is the constant refer-

ence density of the fluid, 𝑡 is time, and 𝑆𝑖 𝑗 is the mean strain

rate tensor. The closure coefficients are [19, 20]:

𝐶1 = 1.8, 𝐶2 = 10/19, �̂� = (8+𝐶2)/11,

𝛽 = (8𝐶2 −2)/11, �̂� = (60𝐶2 −4)/55, 𝛼 = 0.52,

𝛽∗ = 0.09, 𝛽0 = 0.0708, 𝛽 = 𝛽0 𝑓𝛽 ,

𝜎 = 0.5, 𝜎∗
= 0.6, 𝜎𝑑0 = 0.125,

𝛼∗
𝑏 = 1.36

(21)

Wave

length

𝜆 (m)

Wave

period

𝑇 (s)

Wave

height

𝐻 (m)

Carrier wave 1.2 0.87 0.0508

Upper sideband 1.0 0.8 0.00254

Lower sideband 1.5 0.98 0.00254

Table 1: Wave parameters input for the simulation of

Benjamin-Feir instability based on the Tulin and Waseda’s

experiment [3].

𝜎𝑑 =





0,
𝜕𝑘

𝜕𝑥 𝑗

𝜕𝜔

𝜕𝑥 𝑗

≤ 0

𝜎𝑑0,
𝜕𝑘

𝜕𝑥 𝑗

𝜕𝜔

𝜕𝑥 𝑗

≥ 0

(22)

𝑓𝛽 =
1+85𝜒𝜔

1+100𝜒𝜔

,

𝜒𝜔 =

�����
Ω𝑖 𝑗Ω 𝑗𝑘𝑆𝑘𝑖

(𝛽∗𝜔)3

�����
,

𝑆𝑘𝑖 = 𝑆𝑘𝑖 −
1

2

𝜕�̄�𝑚

𝜕𝑥𝑚
𝛿𝑘𝑖

(23)

3 CFD Simulation of the Benjamin-Feir Instability

3.1 Numerical Setup

Tulin and Waseda [3] conducted a series of seeded ex-

periments to investigate the Benjamin-Feir instability of deep

water wave trains. Without wave breaking, they have noticed

a recurrence phenomenon as modelled numerically in the

work of Madsen et al. [5]. Conversely, for experiments with

local wave breaking, they observed a permanent downshift

of the peak frequency. Namely, after breaking the carrier

wave and upper sideband amplitudes decreased, whereas the

amplitude of the lower sideband permanently increased. In

the present study, we will simulate one of the tests from Tulin

and Waseda [3] involving wave breaking. The carrier wave

has wave length 𝜆0 = 1.2 m and wave steepness 𝑘0𝑎0 = 0.133,

where 𝑎0 =𝐻0/2 = 0.0254 m. The perturbations are designed

on the basis of 𝛿 = 0.785𝑘0𝑎0 and with relative amplitude

𝜉 = 0.03 following the numerical study in Madsen et al. [5].

The length of the wave tank is set as 6 m i.e. 5𝜆0, and the

depth of the numerical tank is set as ℎ = 𝜆0 (hence 𝑘0ℎ = 2𝜋)

to be well beyond the practical deep-water limit. The wave

properties used as input to OpenFOAM for the carrier wave and

sideband waves are provided in Table 1. The initial waves are

specified based on the stream-function solutions [30].

The numerical wave tank as shown in Fig. 1 is built

in a uniform Cartesian coordinate system with 𝑥 positive

corresponding to the direction of carrier wave propagation, 𝑦
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Fig. 1: The layout of the three-dimensional numerical wave

tank with carrier wave propagating along the 𝑥 positive di-

rection.

positive toward the side of the tank, and 𝑧 positive upwards

with 𝑧 = 0 the undisturbed free surface. The open-source CFD

wave generation toolbox waves2foam [18] developed in the

OpenFOAM v1812 framework is used to simulate the wave

initiation and propagation process. The boundary conditions

are specified as follows:

• At the inlet and outlet, cyclic (periodic) boundary con-

ditions are applied.

• At the atmosphere, the uniform pressure is applied with

its value equal to the atmosphere pressure and the veloc-

ity of zero-gradient.

• At the bottom of the wave tank, slip boundary condition

is specified as deep-water waves are considered.

Based on a preliminary grid convergence study, the nu-

merical grid resolution for the 2D simulation of Benjamin-

Feir instability is set with 180 cells per wave length and 25

grids per wave height. The total number of grid cells is

157,500. It is worthwhile to mention that the number of cells

used in [9] is 2
11 per wave length. Our present study us-

ing a RANS approach accounts for turbulence effects more

efficiently.

Since the present study consists of a free surface, the

Courant number is set as 0.01 to achieve stable and accurate

wave elevation results based on our preliminary convergence

study. This is generally in accordance with small Courant

numbers recommended by Larsen et al. [31]. The initial

turbulence quantities are set as low as 𝑘/(𝜔𝜈) = 0.1, where

𝜈 = 10
−6 m2/s is the kinematic viscosity of water. The simu-

lated Benjamin-Feir instability case (up to 150 wave periods)

required approximately 6 days to run in parallel on 16 proces-

sors on the supercomputing cluster at the Technical University

of Denmark (DTU).

3.2 Results and Analysis

The present numerical reproduction for the test case of

Tulin and Waseda [3] involves a brief event of wave breaking

at around the first modulational peak. First, to validate the

present CFD model, the spatial evolution of the wave train

is plotted and is compared with the experimental data of

Tulin and Wadeda [3]. The exponential growth rate of the

sidebands is also verified against the analytical prediction

of Benjamin and Feir [1], as shown in Fig. 2. Since the

experimental results of Tulin and Waseda [3] were presented

in the spatial domain, we transform our results from time

domain to the spatial domain following Madsen et al. [5]

using the following relation:

𝑥

𝜆
=
𝑐𝑔𝑡

𝑐𝑇
≈ 1

2

𝑡

𝑇
(24)

where 𝑐𝑔 is the group velocity and 𝑐 is the celerity.

It is observed in Fig. 2 that the initial growth rate of the

sidebands agrees well with the theoretical prediction. The

theoretical amplitude for the growing sidebands during the

initial stage is expressed as [1]:

𝑎

𝑎0

= 𝜉𝑒𝛿 (2𝑘
2

0
𝑎2

0
−𝛿2)

1

2 𝑘0𝑥 (25)

The initial evolutions of the carrier wave and the sidebands

also match very well with the experimental data of Tulin

and Waseda [3]. During the resonant interaction, it is seen

in Fig. 2 that the lower sideband grows to a level at around

0.8𝑎0, which is in good agreement with the experiment. Wave

breaking was observed around 𝑘𝑤𝑥/(2𝜋) = 40, where 𝑘𝑤 is

the wave number. After the occurrence of wave breaking,

the amplitude of the lower sideband slightly decreases but

remains to be higher than that of the carrier wave. Moreover,

the carrier wave shows the behaviour described by Tulin and

Waseda [3] that after wave breaking, it decreases to a local

minimum and then rises but not back to its original strength.

This phenomenon is also observed in the experiments of

e.g. Melville [32]. Figure 3 further presents the present sim-

ulation results over a longer time evolution (𝑡/𝑇 ≈ 150) than

were measured in the experiment. It is seen that the am-

plitude of the lower sideband remains the highest, while the

carrier wave and upper sideband amplitudes fluctuate, but

remain much lower than the lower sideband. Therefore, it

can be confirmed that a permanent frequency downshift has

occurred after waves breaking around the peak of the modula-

tion. The present findings using a CFD model are consistent

with the long-time measurement and analytical prediction of

wave evolution in Hwung et al. [4]. These results are the

first to simulate this long term evolution using a model which

properly simulate the breaking process.

Figure 4 presents the wave profile over the simulated do-

main and the corresponding Fourier amplitudes at different

time instants. It is seen that near the initial time (Fig. 4a), the

sideband amplitudes are insignificant compared to the carrier

wave. The sidebands then grow gradually but exponentially,

extracting energy from the carrier wave (Fig. 4b). The interac-

tion between carrier wave and sidebands further activates the

growth of other wave components spreading over more wave

numbers. Figure 4(c) shows a time when the lower sideband

amplitude exceeds that of the carrier wave. A steep wave

emerges in the simulated domain with its wave amplitude
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1.2

Carrier wave (Present)

Carrier wave (T&W 1999)

Lower sideband (Present)

Lower sideband (T&W 1999)

Upper sideband (Present)

Upper sideband (T&W 1999)

Theorectical (B&F 1967)

Fig. 2: Spatial evolution of the carrier wave and sideband wave amplitudes. In the legend, T&W 1999 denotes the experimental

data of Tulin and Waseda [3], and B&F 1967 denotes the theoretical prediction of the sideband growth rate from Benjamin

and Feir [1].

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2
Carrier wave

Lower sideband

Upper sideband

Fig. 3: Long-time simulation of spatial evolution of the carrier wave and sideband wave amplitudes.

2.5 times the initial wave amplitude. Wave breaking occurs

around this time instant and will be shown later. Figure 4(d-

e) present time instants after wave breaking, demonstrating

a permanent frequency downshift, i.e. the amplitude of wave

component 𝑘/𝑘0 = 0.785 remains higher than that of 𝑘/𝑘0 = 1

and other wave components.

Figure 5 further shows snapshots of the wave profile and

turbulence level beneath the waves in the simulated domain.

It is seen that during the initial development (Fig. 5a), the

waves are in a Stokes pattern with no turbulence production

beneath the surface. In this region, the potential flow the-

ory is valid. The spilling breaking process occurs when the

wave becomes very steep, as shown in Fig. 5(b). The wave

breaking process is accompanied with turbulent kinetic en-

ergy production beneath the surface waves. Once the onset

of wave breaking occurs, a potential flow theory based model

will break down. The spilling breaking event here is rather

brief and mild without much overturning of the crest. There-

fore, the turbulence production beneath the broken wave is

also relatively mild. The crescent shape in Fig. 5(b) for the

first breaking event is very similar to that presented in [9]

(their Fig. 4). Figure 5(c) shows a post-breaking time instant

where the carrier wave has decayed and the lower sideband

amplitude has increased, and breaking has ceased. At this

stage, the turbulence kinetic energy is continuously diffused

downward from near-surface regions. Figure 5(d) shows a

time step around 40 periods after wave breaking, where the

turbulent kinetic energy has been dissipated to an almost zero

level.

Overall, the CFD simulation of the Benjamin-Feir in-
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Fig. 4: Wave profiles over the simulated domain and the corresponding Fourier amplitudes at different time instants for the

Benjamin-Feir instability.

stability involving wave breaking demonstrates reasonably

accurate results which are in agreement with the previous

experiment of Tulin and Waseda [3]. The present CFD pre-

diction of the exponential growth rate of the sidebands is also

verified against the analytical prediction. Compared to the

previous numerical models based on the potential flow the-

ory, the present CFD model with the Wilcox (2006) stress-𝜔

turbulence closure model can well capture the wave breaking

phenomenon arising from the instability and is able to pre-

dict the long-time wave evolution (including the frequency

downshift phenomenon) after breaking.

4 CFD Simulation of L2 Crescent Waves

4.1 Numerical Setup

We will now focus on the CFD simulation of Class II

wave instability, leading to fantastic three-dimensional cres-

cent surface waves. The present crescent wave simulation

starts with a fully nonlinear deep-water wave of 𝑘0𝑎0 = 0.33

and wave number 𝑘0 = 1.0 m−1. The wave steepness of 𝐻0/𝜆0
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Fig. 5: Turbulence levels indicated by 𝑘/(𝜔𝜈) beneath the surface waves during the nonlinear evolution of the Benjamin-Feir

instability.

is 0.105, where 𝜆0 = 2𝜋 m is the carrier wave length. The

satellite (perturbation) wave numbers are set as 𝑘𝑥 = 1.5𝑘0

and 𝑘𝑦 = 1.23 m−1. According to McLean [2], this cor-

responds to the most unstable Class II mode for this wave

steepness. The perturbation amplitude is set to be small with

𝜖 = 0.05 in order to clearly simulate the generation and devel-

opment process of the crescent waves. For the 3D crescent

wave simulation, the layout of the numerical wave tank is the

same as that in Fig. 1. The water depth is set as ℎ = 𝜆0 to

be in the deep-water condition. The domain length for the

wave tank is set to 2𝜆0, and the domain width is set as half of

crescent width i.e. 𝐿𝑦 = 𝜋/𝑘𝑦 as the crescent pattern is sym-

metric about its centreline. The waves are likewise initiated

with stream-function solutions [30]. Based on earlier grid

convergence study, the cell number per wave height is set as

30 and per wave length is set as 190. The mesh in the 𝑥 and

𝑦 directions are uniform with Δ𝑥 = Δ𝑦. The total number of

grid cells is 3.68 million. The simulated 3D crescent wave

case (up to 16 wave periods) required approximately 7 days

to run in parallel on 32 processors on the supercomputing

cluster at DTU.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6: Free surface evolution during the interaction between a plane wave train and 3D perturbations.

4.2 Results and Analysis

The 3D free surface patterns of crescent waves during

the nonlinear evolution process are shown in Fig. 6. The free

surfaces with multiple widths of the computed free surface are

obtained by reflecting the simulated domain over the 𝑦-axis.

Figure 6(a) shows the initial perturbed free surface profile

which is approximately in 2D. In Fig. 6(b), a 3D wave feature

starts to develop. From Fig. 6(c), clear crescent shapes start

to emerge. The waves then become steeper in Fig. 6(d) with

sharp triangular ‘Delta’ regions appearing on the front face. A

clearer view of the ‘Delta’ regions in the front of the crescent

forward fronts is provided in Fig. 7. Accompanied with the

rising of the ‘Delta’ region and the crescent steepness, the

crescent crests eventually break in the form of spilling breaker

on the shoulders, as shown in Fig. 6(e) when the breaking just

starts. The simulated L2 crescent wave as shown in Fig. 7

displays all the notable features that have been observed in the

experiment in the basin of [17], i.e. the semicircular crests,

steep shoulders, flat troughs and rising Delta regions on the

front face.

In previous numerical studies based on potential flow

theory (e.g. [12,13]), the simulations broke down at this initial

breaking point (𝑡/𝑇 ≈ 8). The present CFD simulation is able

to simulate the process during and beyond wave breaking. It is

further seen in Fig. 6(f) that after the initial breaking, the free

surface becomes turbulent, and the crescent shapes diminish.
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Fig. 7: Propagation of crescent waves at 𝑡/𝑇 = 7.40.

The wave steepness decreases due to energy dissipation in

the breaking process and the 3D crescent pattern tends to go

back to a nearly 2D form as shown in Fig. 6(g,h). It is seen

in Fig. 6(h) that the waves finally decay to a status with a

even flatter crest and trough compared to the initial status in

Fig. 6(a). This overall process simulated with the present

CFD model agrees with the observation of Su et al. in [29].

Their experiment showed that the crescent-shaped breaker

quickly disappeared and the wave train returned to a more or

less 2D form and with continuous modulations.

It is noted that with the occurrence of the crescent-shaped

breaker, the wave surface becomes rough instead of the initial

smooth surface. The present simulation incorporates the

Reynolds stress turbulence model, therefore the 3D wave

breaking process can be simulated. Moreover, the predicted

rough surfaces for the crescent-shaped breaker, especially

near the wave crest, look more like the observation in the

wave tank (e.g. Figure 17 in [29]) than similar (preliminary)

simulations with two-equation models which tend to smooth

the wave surface.

For further quantitative analysis, the longitudinal profile

of the L2 crescent waves along their centreline i.e. 𝑦 = 𝐿𝑦/2 is

presented in Fig. 8 at a representative time instant 𝑡/𝑇 = 7.0.

The time instant is chosen because around the time of 𝑡/𝑇 ∼ 7

an approximate quasi-steady state of crescent shape occurs

and waves have not yet broken. A typical L2 feature is

seen with the wave pattern repeated every other carrier wave

length. The characteristic crescent wave geometric param-

eters computed from the present CFD model are compared

with the measurement of Su [17] in Table 2. 𝜆2/𝜆1 is the

wavelength ratio between the alternating troughs. ℎ11/ℎ12,

ℎ21/ℎ22 and ℎ11/ℎ21 are the characteristic wave height ratios.

It is seen that the wavelength and wave height ratios match

reasonably well with the experimental data. Similar com-

puted results can be seen in e.g. [12, 13] with potential flow

models.

The harmonic amplitudes of the carrier wave and the

perturbation are shown in Fig. 9. The initial growth rate of

the perturbations is verified against the theoretical predic-

tion of McLean [2]. The theoretical line of the perturbation

Experiment of

Su [17]

Present CFD simulation

(𝑡/𝑇 = 7.0)

𝜆2/𝜆1 1.28 1.08

ℎ11/ℎ12 1.10 1.13

ℎ21/ℎ22 0.88 0.86

ℎ11/ℎ21 1.66 1.34

Table 2: The characteristic crescent wave geometric parame-

ters computed from the present CFD model and the measure-

ment of Su [17].

amplitude in Fig. 9 is expressed as:

𝑎

𝑎0

= 𝜖𝑒0.0316

√
𝑔𝑘0𝑡 (26)

It is seen that the initial exponential growth rate of the pertur-

bation from the present CFD simulation matches very well

with the theoretical prediction of McLean [2]. The pertur-

bations continuously grow to a level that the wave starts to

break (𝑡/𝑇 ≈ 8). During the wave breaking process, the har-

monic amplitudes of both the carrier wave and perturbations

are decreasing due to the turbulent energy dissipation (𝑡/𝑇 ≈
8-12.5). Finally, the amplitude of the carrier wave reduces

about 20% and the perturbation amplitude decreases to an

insignificant level.

Figure 10 presents turbulence levels just prior to, during

and after wave breaking. Figure 10(a) shows a time instant

before wave breaking while the crescent shape has already

emerged. At this stage, the wave crests gradually become

steeper but without turbulence generation beneath the wave

surface. Figure 10(b) shows the turbulent kinetic energy

during the initial wave breaking. Turbulence production is

seen beneath the broken waves near the free surface. Dur-

ing the wave breaking process (around 4.5 wave periods),

the turbulence level increases and turbulent kinetic energy

is diffused downward to a greater depth beneath the free

surface, as shown in Fig. 10(c) at the end of the wave break-

ing process. After breaking, the turbulent kinetic energy

continuously dissipates and the wave steepness reduces to a
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Fig. 8: Longitudinal profiles of the L2 crescent wave along the crescent centreline at 𝑡/𝑇 = 4.3.
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Fig. 9: Temporal evolution of the carrier wave and perturbation of the L2 crescent wave simulation.

non-breaking level, as shown in Fig. 10(d). It can also be

observed that during the post-breaking stage, the turbulent

kinetic energy continuously decays and diffuses downward.

Near the free surface, the turbulence level has already reached

an insignificant level. At this stage, the wave pattern returns

back to a nearly 2D status, as presented earlier in Fig. 6(h).

The wave steepness (𝑘0𝑎 ≈ 0.26) of the resulting wave train

post breaking is below the threshold where Class II instability

dominates (𝑘𝑎 ≈ 0.3) [2]. The resulting wave train would still

be unstable to Class I perturbations, however, as studied in

Section 3.

5 Conclusions

The present study has focused on the numerical study of

wave instability phenomena in terms of the 2D Benjamin-Feir

instability (Class I type) and the 3D crescent waves (Class II

type). The simulated cases in the present study have involved

the wave breaking process. The Wilcox (2006) Reynolds

stress-𝜔model has been applied for turbulence modelling due

to its neutrally stable performance in the potential flow region

beneath surface waves. The generation and development

of wave instabilities from the initial evolution to the post-

breaking status due to interaction between a plane wave train

and perturbations have been investigated.

The present CFD model has been validated against a

previous experiment of 2D Benjamin-Feir (Class I) instabil-

ity involving wave breaking. The CFD results are in good

agreement with the experimental data. The initial exponen-

tial growth rates of both sidebands are also verified against

the analytical prediction. For Benjamin-Feir instability, our

long-time simulation demonstrates the phenomenon of per-

manent frequency downshift after the occurrence of wave

breaking.

For the 3D Class II crescent wave simulation, the initial

growth rate of the perturbation is also consistent with the

theoretical prediction. The present simulation has shown that

the wave breaking process for the simulated crescent waves

is brief (lasting for about 4.5 wave periods). The amplitude

of the carrier wave decays about 20% during wave breaking.
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Fig. 10: Free surface (solid line) and turbulence levels beneath the surface waves during the nonlinear evolution of the L2

crescent waves (𝑦 = 𝐿𝑦/2).

After the crescent-shaped breaker disappears, the wave train

returns to a nearly 2D form although with continuous three-

dimensional modulations.

This is the first time a CFD model with proper turbu-

lence modelling has been applied for simulating the Class I

and Class II wave instability problems leading to breaking. In

contrast to previous studies founded on potential flow theory

which can only predict the wave evolution up to the breaking

point or using artificial means of inducing dissipation due to

breaking, the present study has been able to properly simulate

the occurrence of wave breaking due to wave instabilities and

investigate the wave evolution during and after breaking. By

using a RANS-based Reynolds stress turbulence model, the

computational cost for 3D two-phase breaking wave simula-

tions becomes affordable, and the present approach is able

to account for turbulence much more efficiently than the di-

rect numerical simulation (DNS) and large eddy simulation

(LES). The present study has shown that accompanied by
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wave breaking, significant levels of turbulence are produced

beneath the broken free surface. It is then diffused downward

during the post-breaking wave evolution, before gradually

decaying to insignificant levels.

Supplementary material

Animations for both the Class I (Benjamin-Feir) and II

(crescent wave) simulations presented above can be found at:

DOI:10.11583/DTU.14909949..

Acknowledgements

The first author acknowledges financial support from

the European Union’s Horizon 2020 research and innova-

tion program, Marie Sklodowska- Curie Grant No. 713683

(COFUNDfellowsDTU, H. C. Ørsted Postdoc project SUB-

SEA: SimUlating Breaking waves and SEdiment trAnsport

with stabilized turbulence models). The second author ac-

knowledges financial support from the Independent Research

Fund Denmark (project SWASH: Simulating WAve Surfzone

Hydrodynamics and sea bed morphology, Grant No. 8022-

00137B).

References

[1] Benjamin, T. B., and Feir, J., 1967. “The disintegration

of wave trains on deep water”. J. Fluid. Mech., 27(3),

pp. 417–430.

[2] McLean, J. W., 1982. “Instabilities of finite-amplitude

water waves”. J. Fluid. Mech., 114, pp. 315–330.

[3] Tulin, M. P., and Waseda, T., 1999. “Laboratory ob-

servations of wave group evolution, including breaking

effects”. J. Fluid. Mech., 378, pp. 197–232.

[4] Hwung, H.-H., Chiang, W.-S., Yang, R.-Y., and Shugan,

I. V., 2011. “Threshold model on the evolution of stokes

wave side-band instability”. Eur. J. Mech. B Fluids,

30(2), pp. 147–155.

[5] Madsen, P. A., Bingham, H., and Liu, H., 2002. “A

new boussinesq method for fully nonlinear waves from

shallow to deep water”. J. Fluid. Mech., 462, pp. 1–30.

[6] Iafrati, A., Babanin, A., and Onorato, M., 2013. “Mod-

ulational instability, wave breaking, and formation of

large-scale dipoles in the atmosphere”. Phys. Rev. Lett.,

110(18), p. 184504.

[7] Iafrati, A., Babanin, A., and Onorato, M., 2014. “Mod-

eling of ocean–atmosphere interaction phenomena dur-

ing the breaking of modulated wave trains”. J. Comput.

Phys., 271, pp. 151–171.

[8] Alberello, A., and Iafrati, A., 2019. “The velocity field

underneath a breaking rogue wave: Laboratory exper-

iments versus numerical simulations”. Fluids, 4(2),

p. 68.

[9] De Vita, F., Verzicco, R., and Iafrati, A., 2018. “Break-

ing of modulated wave groups: kinematics and energy

dissipation processes”. J. Fluid. Mech., 855, pp. 267–

298.

[10] Tulin, M. P., 1996. “Breaking of ocean waves and down-

shifting”. In Waves and Nonlinear Processes in Hydro-

dynamics. Springer, pp. 177–190.

[11] Deike, L., Melville, W. K., and Popinet, S., 2016. “Air

entrainment and bubble statistics in breaking waves”. J.

Fluid. Mech., 801, pp. 91–129.

[12] Xue, M., Xü, H., Liu, Y., and Yue, D. K., 2001. “Com-

putations of fully nonlinear three-dimensional wave-

wave and wave-body interactions. part 1. dynamics of

steep three-dimensional waves”. J. Fluid. Mech., 438,

pp. 11–39.

[13] Fuhrman, D. R., Madsen, P. A., and Bingham, H. B.,

2004. “A numerical study of crescent waves”. J. Fluid.

Mech., 513, pp. 309–341.

[14] Fructus, D., Kharif, C., Francius, M., Kristiansen, Ø.,

Clamond, D., and Grue, J., 2005. “Dynamics of crescent

water wave patterns”. J. Fluid. Mech., 537, pp. 155–186.

[15] Xu, L., and Guyenne, P., 2009. “Numerical simula-

tion of three-dimensional nonlinear water waves”. J.

Comput. Phys, 228(22), pp. 8446–8466.

[16] Klahn, M., Madsen, P. A., and Fuhrman, D. R.,

2020. “Simulation of three-dimensional nonlinear wa-

ter waves using a pseudospectral volumetric method

with an artificial boundary condition”. Int. J. Numer.

Methods Fluids, pp. 1843–1870.

[17] Su, M.-Y., 1982. “Three-dimensional deep-water waves.

part 1. experimental measurement of skew and symmet-

ric wave patterns”. J. Fluid. Mech., 124, pp. 73–108.

[18] Jacobsen, N. G., Fuhrman, D. R., and Fredsøe, J., 2012.

“A wave generation toolbox for the open-source cfd

library: Openfoam®”. Int. J. Numer. Methods Fluids,

70(9), pp. 1073–1088.

[19] Wilcox, D., 2006. Turbulence Modeling for CFD. 3rd

edition. DCW industries La Canada, CA.

[20] Li, Y., Larsen, B. E., and Fuhrman, D. R., 2021.

“Reynolds stress turbulence modelling of surf zone

breaking waves”. Submitted.

[21] Brown, S., Greaves, D., Magar, V., and Conley, D.,

2016. “Evaluation of turbulence closure models under

spilling and plunging breakers in the surf zone”. Coast.

Eng., 114, pp. 177–193.

[22] Derakhti, M., Kirby, J. T., Shi, F., and Ma, G., 2016.

“Wave breaking in the surf zone and deep-water in a

non-hydrostatic RANS model. Part 2: Turbulence and

mean circulation”. Ocean Modelling, 107, pp. 139–150.

[23] Devolder, B., Troch, P., and Rauwoens, P., 2018. “Per-

formance of a buoyancy-modified 𝑘-𝜔 and 𝑘-𝜔 SST

turbulence model for simulating wave breaking under

regular waves using OpenFOAM”. Coast. Eng., 138,

pp. 49–65.

[24] Hsu, T. J., Sakakiyama, T., and Liu, P. L.-F., 2002. “A

numerical model for wave motions and turbulence flows

in front of a composite breakwater”. Coast. Eng., 46(1),

pp. 25–50.

[25] Larsen, B. E., and Fuhrman, D. R., 2018. “On the

over-production of turbulence beneath surface waves in

Reynolds-averaged Navier–Stokes models”. J. Fluid.

Mech., 853, pp. 419–460.

13 Copyright © by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Offshore Mechanics and Arctic Engineering. Received May 17, 2021;
Accepted manuscript posted August 20, 2021. doi:10.1115/1.4052277
Copyright © 2021 by ASME

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/o

ffs
h
o
re

m
e
c
h
a
n
ic

s
/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
1
5
/1

.4
0
5
2
2
7
7
/6

7
5
2
1
4
7
/o

m
a
e
-2

1
-1

0
6
3
.p

d
f b

y
 T

e
c
h
n

ic
a
l U

n
iv

e
rs

ity
 o

f D
e
n
m

a
rk

 u
s
e
r o

n
 0

7
 S

e
p
te

m
b
e
r 2

0
2
1

DOI: 10.11583/DTU.14909949.


[26] Fuhrman, D. R., and Li, Y., 2020. “Instability of the

realizable k-𝜀 turbulence model beneath surface waves”.

Phys. Fluids, 32(11). Article No. 115108.

[27] Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z., and Zhu,

J., 1995. “A new 𝑘-𝜀 eddy viscosity model for high

Reynolds number turbulent flows”. Comput. Fluids,

24(3), pp. 227–238.

[28] Li, Y., Fredberg, M. B., Larsen, B. E., and Fuhrman,

D. R., 2020. “Simulating breaking waves with the

Reynolds stress turbulence model”. Coastal Engineer-

ing Proceedings(36v), pp. 17–17.

[29] Su, M.-Y., Bergin, M., Marler, P., and Myrick, R., 1982.

“Experiments on nonlinear instabilities and evolution

of steep gravity-wave trains”. J. Fluid. Mech., 124,

pp. 45–72.

[30] Fenton, J., 1988. “The numerical solution of steady wa-

ter wave problems”. Comput. Geosci., 14(3), pp. 357–

368.

[31] Larsen, B. E., Fuhrman, D. R., and Roenby, J., 2019.

“Performance of interfoam on the simulation of pro-

gressive waves”. Coast. Eng. J., 61(3), pp. 380–400.

[32] Melville, W., 1982. “The instability and breaking of

deep-water waves”. J. Fluid. Mech., 115, pp. 165–185.

14 Copyright © by ASME

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Offshore Mechanics and Arctic Engineering. Received May 17, 2021;
Accepted manuscript posted August 20, 2021. doi:10.1115/1.4052277
Copyright © 2021 by ASME

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/o

ffs
h
o
re

m
e
c
h
a
n
ic

s
/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
1
5
/1

.4
0
5
2
2
7
7
/6

7
5
2
1
4
7
/o

m
a
e
-2

1
-1

0
6
3
.p

d
f b

y
 T

e
c
h
n

ic
a
l U

n
iv

e
rs

ity
 o

f D
e
n
m

a
rk

 u
s
e
r o

n
 0

7
 S

e
p
te

m
b
e
r 2

0
2
1


	Introduction
	Theoretical Background and Mathematical Equations
	The Two-Dimensional Benjamin-Feir Instability
	The Three-Dimensional L2 Crescent Waves
	Turbulence Closure Model

	CFD Simulation of the Benjamin-Feir Instability
	Numerical Setup
	Results and Analysis

	CFD Simulation of L2 Crescent Waves
	Numerical Setup
	Results and Analysis

	Conclusions

